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Abstract
We investigated trophic transfer of cadmium (Cd) through an Arctic marine food web in Hudson Bay and compared it with 
mercury (Hg), a metal known to strongly biomagnify. We evaluated blue mussel, sea urchin, common eider, sculpin, Arctic 
cod, and ringed seal for the influence of dietary and biological variables on variation in Cd and Hg concentrations. Age and 
size influenced metal concentrations among individuals within a vertebrate species. Consumer carbon and sulfur isotope 
values were correlated with their Cd and Hg concentrations, indicating habitat-specific feeding influenced metal bioaccumu-
lation. Trophic transfer patterns for Cd depended on the vertebrate tissue, with food web biodilution observed for the muscle 
but not the liver. Liver Cd concentrations were higher in ringed seal and some common eider relative to prey. In contrast, 
we observed mercury biomagnification for both tissues. Tissue- and species-specific physiology can explain discrepancies 
of Cd trophic transfer in this Arctic marine food web.
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Introduction

Cadmium (Cd) is a non-essential element present in marine 
food webs. Exposure to elevated levels of Cd can result in 
health consequences for fish and wildlife. For example, 
dietary Cd exposure has been linked to kidney, bone, and 
reproductive damage in mammals (summarized in Marettová 
et al. 2015; Thévenod and Lee 2013) and has immunotoxic 
effects (Desforges et al. 2016). Additionally, exposure to 
higher concentrations of Cd can reduce fish growth (Ng and 

Wood 2008), reduce nutrition uptake, and cause kidney and 
reproductive organ damage in birds (Marettová et al. 2015; 
Wayland and Scheuhammer 2011). Researchers have detected 
elevated concentrations of Cd in tissues of marine mammals 
and seabirds in Arctic environments (Brown et al. 2016; Mal-
lory et al. 2014; Wayland et al. 2001). Ocean food web stud-
ies have typically concluded that Cd does not biomagnify 
(Campbell et al. 2005; Cardwell et al. 2013; Gao et al. 2021; 
Gray 2002). However, uncertainties remain regarding Cd 
transfer in marine food webs since Cd biomagnification has 
been observed in benthic food webs with macroinvertebrates 
(Cheung and Wang 2008; Croteau et al. 2005) and since Cd 
concentrations were found to increase with trophic position 
in Arctic seabirds (Øverjordet et al. 2015).

Both natural and anthropogenic sources of Cd contribute 
to exposure levels in the Arctic. Cadmium enters the Arctic 
Ocean via long-range atmospheric transport and via deposi-
tion of volcanic and industrial emissions (De Vera et al. 2021), 
though the fluxes are relatively low compared to background 
transport via oceanic currents (Macdonald et al. 2000). Natu-
ral and anthropogenic sources of Cd also contribute to coastal 
environments via river transport of Cd-containing materials 
(Lambelet et al. 2013), including from mining (Søndergaard 
and Mosbech 2022). In addition, climate change-induced 
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alterations to the Arctic environment, including thawing of 
permafrost, loss of costal sea ice, and atmospheric changes 
are leading to changes in transport and deposition of metals 
in Arctic aquatic ecosystems (AMAP 2021).

Carbon, nitrogen, and sulfur isotopes (δ13C, δ15N, and δ34S) 
are widely used to evaluate the role of trophic position and 
habitat-specific feeding on metal bioaccumulation. Dietary 
δ13C values undergo minimal change as carbon is transferred 
through the food web; therefore, δ13C values can provide infor-
mation on relative carbon sources (Post 2002). In aquatic eco-
systems, higher δ13C values indicate that individuals are feed-
ing on benthic carbon sources, and lower (more negative) δ13C 
values indicate that individuals are feeding on pelagic carbon 
sources (Post 2002). Similarly, sulfur stable isotopes can pro-
vide information on habitat-specific feeding of biota. The δ34S 
values of pelagic-feeding Arctic marine mammals are higher 
than benthic-feeding Arctic marine mammals (Szpak and Buck-
ley 2020). Sulfur stable isotopes can also indicate feeding in 
coastal estuarine habitats due to lower values in biota influenced 
by freshwater inputs of sulfate (Fry 2013). Finally, variation 
in δ34S values can reflect differences in the degree of sulfate 
reduction in foraging habitats (Habicht and Canfield 1997). The 
δ15N values of biota provide information on the trophic position 
of individuals as δ15N values increase significantly between a 
consumer and their food source (Post 2002).

The purpose of this study was to determine the role of 
food web processes in controlling high Cd concentrations 
detected in Arctic marine biota. We sampled animals from 
multiple trophic levels (primary, secondary, and tertiary 
consumers) and from both benthic and pelagic habitats near 
four communities in east Hudson Bay (EHB), Canada. We 
also explored the role of biological variables such as age and 
size in explaining variation in Cd concentrations within and 
between sampled species from EHB. Further, we compared 
the dynamics of Cd in the EHB food web to those of mercury 
(Hg). In aquatic systems, microbial and photochemical pro-
cesses can transform inorganic Hg into an organic form called 
methylmercury (MeHg) (Lehnherr 2014). Methylmercury is 
well studied in aquatic food webs and is known to strongly 
biomagnify in Arctic marine food webs (Braune et al. 2015). 
Therefore, if Cd does biomagnify in the Hudson Bay food 
web, we would expect to see similar trends to those of Hg 
in the same food web. This research addresses uncertainties 
regarding processes that elevate Cd concentrations in Arctic 
marine vertebrates feeding on benthic and pelagic prey.

Methods

Study area

Hudson Bay is a Canadian subarctic marine ecoregion 
and the most southerly extension of inland sea with Arctic 

oceanic conditions (Gupta et al. 2022; Stewart and Barber 
2010). The ice cover period for Hudson Bay extends from 
approximately December to June in the southern reaches 
(Gupta et al. 2022). This ecosystem supports a typical 
Arctic marine food web that includes keystone species 
such as Arctic cod (Boreogadus saida), ringed seal (Pusa 
hispida), and polar bear (Ursus maritimus) (Stewart and 
Barber 2010). The study area in EHB encompassed three 
communities along the coast (Kuujjuaraapik, Umiujaq, 
and Inukjuak) and a fourth community (Sanikiluaq) on the 
Belcher Islands, within a latitudinal range of 55° 17′ N to 
58° 27′ N (Fig. 1). Little anthropogenic development has 
occurred along the shores in the study area, but Hudson 
Bay receives large inputs of fresh water from its water-
shed, including from major hydroelectric developments in 
northern Quebec and Manitoba (Stewart and Barber 2010).

Several bioindicator taxa were selected to design a 
study that incorporated both benthic and pelagic trophic 
transfer in the marine food web. Ringed seal in Hudson 
Bay feed on forage fish such as species of sand lance 
(Ammodytes spp.) and capelin (Mallotus villosus), ben-
thic sculpin (Cottidae), and to a lesser extent Arctic 
cod, and crustacean invertebrates such as amphipods 
and mysids (Chambellant et al. 2013). Common eiders 
(Somateria mollissima) are diving seaducks that consume 
benthic invertebrates such as molluscs, crustaceans, and 
polychaetes in coastal areas (Galaktionov et al. 2021). 
Arctic cod and sculpin occupy pelagic and benthic habi-
tats, respectively; however, both fishes consume a mix of 
pelagic and benthic fauna (Buckley and Whitehouse 2017; 
Landry et al. 2018). Finally, blue mussel (Mytilus edulis) 
and sea urchin (Echinoidea) were selected as pelagic and 
benthic bioindicators, respectively, due to filter feeding of 
mussels on particulate organic matter in the water column 
and feeding on benthic algae and on plants by sea urchins.

Sample collection

Wildlife and marine invertebrate samples were collected 
through community-based projects during the summer, 
fall, and winter between the years of 2014 and 2017 by 
Inuit hunters from the four communities. We provided 
sampling kits and field sheets to record collection infor-
mation by local hunters who harvested common eiders 
and ringed seals. In most cases, the liver and muscle were 
removed in the field and placed in the sampling bags 
from the kits for storage and transport, although a few 
whole eiders were shipped frozen to the National Wildlife 
Research Centre (NWRC), a facility of Environment and 
Climate Change Canada in Ottawa, Canada, for dissection. 
Ringed seal length and girth were recorded in field sheets. 
Arctic cod and sculpin were line caught and shipped in 



20588	 Environmental Science and Pollution Research (2024) 31:20586–20600

plastic bags frozen whole. Blue mussel and sea urchin 
were collected by hand or by using a bottom-dredge net, 
usually in groups of ten animals per site (range 4–11), 
and frozen for storage and transport. Zooplankton were 
collected only at Sanikiluaq using a 1 m diameter, 1000-
µm mesh net, towed by boat, and frozen in 500-mL HDPE 
containers for shipment.

In the laboratory at NWRC, blue mussel soft tissues and 
sea urchin gonads were removed from shells and processed 
as pools. Fish were weighed, measured for total length, 
and dissected to retrieve the liver and dorsal muscle. Oto-
liths were collected and aged using the crack and burn 
method by AAE Tech (La Salle, Manitoba, Canada). The 
fish stomachs were examined, and if present, undigested 

prey was collected for analysis. Muscle samples, fish liv-
ers, and small prey samples were freeze-dried for 48 h and 
manually homogenized within their containers. Seal and 
eider livers, mussel soft tissues, urchin gonads, and the 
larger prey samples were mechanically homogenized and 
freeze-dried for 48 h.

Laboratory analyses

All chemical analyses were performed on freeze-dried and 
homogenized material, and concentrations are reported on 
a dry weight basis. Total mercury (THg) concentrations 
were measured in tissues (n = 436) using a Direct Mercury 
Analyzer 80 (Milestone Inc., Shelton, Connecticut, USA) at 

Fig. 1   Map of eastern Hudson 
Bay (Quebec and Nunavut, Can-
ada) illustrating the locations 
where marine biota were col-
lected in the study area. Loca-
tion data were not available for 
all samples, and in those cases, 
the nearest community was used 
to indicate collection site
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NWRC. One replicate was analyzed for every ten samples 
and had a mean relative standard deviation of 2.5% (n = 52). 
Six types of reference materials were analyzed with a mean 
recovery of 95% (range 84–108%, n = 108) (Table S1). The 
method detection limit was 0.007 µg/g dry weight or lower, 
and samples were always above detection.

Methylmercury (MeHg) is the chemical form of Hg that 
biomagnifies through food webs, and invertebrate tissues and 
liver can have variable proportions of THg as MeHg, while 
the muscle contains predominately MeHg (Chételat et al. 
2020). A subset of zooplankton, prey items, blue mussel, sea 
urchin, fish liver, and seal liver samples (n = 96) was ana-
lyzed for MeHg at NWRC, Flett Research Ltd. (Winnipeg, 
Canada), or the University of Montreal (Montreal, Canada), 
depending on the year. Duplicate samples were analyzed 
and had a mean relative standard deviation of 2.9% (n = 13). 
The mean recovery of certified reference materials was 92% 
(range 84–104%, n = 15) (Table S2). The method detection 
limit was 0.004 µg/g dry weight or lower.

Cadmium concentrations were analyzed for the full 
sample set (n = 345) by acid digestion and detection on an 
inductively coupled plasma mass spectrometer (ICP-MS) at 
NWRC or RPC laboratories (Fredericton, Canada). Dupli-
cate samples were analyzed and had a mean relative stand-
ard deviation of 2.1% (n = 14). The mean recovery of certi-
fied reference materials was 98% (range 93–124%, n = 18) 
(Table S3). The method detection limit was 0.01 µg/g dry 
weight or lower.

Stable isotope ratios of carbon, nitrogen, and sulfur in 
biota were measured in invertebrates and vertebrate muscle 
(n = 271) on a DeltaPlus XP Isotope Ratio Mass Spectrom-
eter interface by a ConFlo II to a Vario EL III elemental 
analyzer at the Ján Veizer Stable Isotope Laboratory at 
the University of Ottawa (Ottawa, Canada). Lipid content 
was measured in the livers of cod and sculpin and a sub-
set of ringed seal liver, eider liver, blue mussel, and sea 
urchin (n = 124). Acid hydrolysis method AOAC 948.15 
was employed to quantify tissue lipid content at RPC 
laboratories.

Statistical analyses

All statistical analyses were completed using R version 
4.0.2 (R Core Team 2021). Information regarding testing of 
assumptions for statistical tests can be found in Appendix 
A—Supplementary Information. The complete dataset for 
this study is publicly available on the Open Data Portal of 
the Government of Canada (GOC 2022).

Sculpin and Arctic cod had variable and in some cases 
high lipid content in their livers, which dilute protein-
bound metal concentrations (Amlund et al. 2007; López-
García et al. 2014). For Arctic cod, for example, there was 
a negative correlation between lipid content and metal 

concentrations in the liver (Table S4). Therefore, we used 
lipid-normalized concentrations for the liver of fish, eider, 
and seal and whole-body measurements of blue mussel and 
gonads of sea urchin in the statistical models using the liver. 
Lipid normalization was calculated as follows: lipid nor-
malized [metal] = [metal]/(1 − lipid portion), where lipid 
portion has values between 0 and 1 and is assumed to con-
tain negligible metal concentrations (Amlund et al. 2007; 
López-García et al. 2014). Normalization was applied using 
individual % lipid values for Arctic cod and sculpin liver, 
which were highly variable, and average % lipid values for 
eider liver, seal liver, mussel, and urchin, which had low and 
consistent lipid content. Vertebrate muscle is typically low in 
lipid (≤ 10%) (Braune et al. 1999; Pedro et al. 2019; Schantz 
et al. 1993) and similar to lipid content of blue mussel and 
sea urchin (8% and 21%, respectively); therefore, statistical 
models that included the muscle for higher trophic levels did 
not include lipid-normalized data.

We used THg concentrations for the liver and for the 
muscle and MeHg concentrations for invertebrates. The 
% MeHg of the muscle exceeds 80% for included species 
(Dietz et al. 1996; Houserová et al. 2007; Wagemann et al. 
1998). However, the % MeHg of invertebrate tissues is more 
variable, and we wanted to account for the greater variation. 
Therefore, we only included the subset of invertebrates that 
had MeHg concentrations measured in our analyses. The % 
MeHg in the liver of vertebrates is more variable (50–90%) 
than in the muscle. Therefore, we conducted an additional 
general linear mixed model (GLMM) analysis where we 
used MeHg-corrected values for liver data. For the analysis, 
we used measured values for MeHg concentrations for a 
subset of ringed seal liver (n = 13). We calculated MeHg 
concentrations in the liver of Arctic cod, sculpin, and com-
mon eider by multiplying the THg concentration in the liver 
by the average proportion of MeHg in the liver for each spe-
cies (0.75, 0.50, and 0.81, respectively) reported in literature 
(Harley et al. 2015; Wayland et al. 2001). When we refer to 
models that include both THg and MeHg data, we simply 
use “Hg” when describing the results.

Some Cd concentrations in the muscle of fish and ringed 
seal were below analytical detection limits. For ringed seal 
muscle data, we followed the 2006 US EPA Guideline and 
substituted non-detected samples with 1/2 the detection 
limit because < 15% of the samples were below the analyti-
cal detection limit (Shoari and Dubé 2018; USEPA 2006). 
Over 50% of the Arctic cod and sculpin muscle samples 
were below the analytical detection limits (n = 14 of 16 
and n = 11 of 15, respectively), and standard data estima-
tion/adjustment techniques could not be performed on the 
left-censored data (Shoari and Dubé 2018; USEPA 2006); 
therefore, we removed the muscle Cd data of Arctic cod and 
sculpin from analyses but did use liver Cd data for these 
species in relevant analyses.
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We conducted correlation and regression analyses, 
respectively, to examine co-variance of metal concentrations 
between tissues of the same individual and to examine the 
influence of age or size on metal concentrations (Table S5). 
We conducted GLMMs to investigate food web patterns of 
metal concentrations. We included dietary tracers, specifi-
cally, δ15N, δ13C, and δ34S ratios as fixed effects, and we 
included location of sample collection as a random effect. 
We conducted two GLMMs (one for Cd and one for Hg) 
using muscle concentrations for vertebrates, whole-body 
concentrations for blue mussel, and gonad concentrations 
for sea urchin. We then conducted two more GLMMs using 
lipid-normalized concentrations in the liver for vertebrates, 
whole-body concentrations for blue mussel, and gonad con-
centrations for sea urchin.

Finally, we calculated the trophic magnification slopes 
(TMS) for both metals in the EHB food web. We ran simple 
linear regressions of log metal concentrations versus δ15N 
ratios. We used metal concentrations in the muscle for ver-
tebrate species. Additional analyses completed using zoo-
plankton and prey item samples are presented in Appendix 
A—Supplementary Information.

Results

Metal concentrations in marine biota

Metal concentrations varied widely among biota and 
between tissue types from the same species (Table 1). Aver-
age Cd concentrations in biota ranged more than three orders 
of magnitude from 0.006 to 24.0 µg/g dw. Average Cd con-
centrations were highest in ringed seal and in common eider 
liver and were lowest in fish muscle. Average THg concen-
trations in biota ranged from 0.067 to 20.3 µg/g dw, with 
the highest levels observed in ringed seal and common eider 
liver and the lowest levels in sea urchin gonads. Interest-
ingly, both metals were more concentrated in the liver than 
in the muscle of vertebrate animals, with the exception of 
THg in fish. For both fish species, THg concentrations were 
higher in the muscle than in the liver.

Biological and geographic drivers of metal 
concentrations within species

We observed geographic variation in metal concentra-
tions for common eider and blue mussel, which were the 
only biota collected at all four communities (Table 1). We 
observed larger location differences for Cd than for THg. 
Muscle Cd concentrations of common eiders from Kuu-
jjuaraapik (0.433 ± 1.03  µg/g dw) and from Sanikiluaq 
(0.463 ± 0.343 µg/g dw) were almost half the average con-
centrations found at Inukjuak (0.849 ± 0.714 µg/g dw) and 
at Umiujaq (0.774 ± 0.671 µg/g dw). Common eider liver 

from Kuujjuaraapik had a lower average Cd concentration 
(7.01 ± 8.55 µg/g dw) than the other three sampling loca-
tions. Blue mussels from Kuujjuaraapik also had a lower 
average Cd concentration (2.98 ± 0.756 µg/g dw) than the 
other three sampling locations. In contrast, THg concentra-
tions in the muscle and in the liver of common eider were 
comparable among locations, and we observed minor vari-
ation in THg of blue mussel.

Biological variables explained some within-species vari-
ation of metal concentrations, though the influences were 
not consistent among biota or metals. We were unable to 
conduct these analyses for Cd concentrations in fish muscle 
because a high number (> 50%) of samples were below the 
level of detection. Metal concentrations in the muscle were 
positively correlated with those in the liver from the same 
animals for both common eider and ringed seal (Table S6). 
Age was not an important explanatory variable of metal con-
centrations in fish liver, and a significant positive effect was 
only observed for Cd in Arctic cod liver (Table 2). Similarly, 
length was generally not a strong explanatory variable, and 
positive effects were only found for THg in the liver and 
muscle of Arctic cod and in the muscle of ringed seal. In 
contrast, length was negatively correlated with Cd in Arctic 
cod liver though the association was weak. Axial girth was 
not an important variable for explaining variation of Cd con-
centrations in ringed seal liver but was positively related to 
liver THg concentration. Overall, biological variables more 
strongly explained THg concentrations in fish and ringed 
seal (R2 from 0.15 to 0.76) than Cd concentrations in biota 
(R2 ≤ 0.11).

Trophic influences on metal concentrations

Mean δ15N values ranged from 6.0 ± 0.2‰ to 15.7 ± 1.1‰ 
(Fig. 2, Table S7). Blue mussel and sea urchin had the low-
est mean δ15N values of sampled species. Arctic cod, ringed 
seal, and sculpin shared similar trophic positions in this food 
web as indicated by their similar mean δ15N values. Mean 
δ13C values ranged from − 23.4 ± 0.5‰ to − 15.7 ± 3.1‰ in 
sampled biota (Fig. 2, Table S7). The observed δ13C values 
indicate variation in habitat-specific feeding among sam-
pled species. Mean δ34S values ranged from 13.0 ± 0.6‰ 
to 20.7 ± 1.5‰ (Fig. 2, Table S7). We observed variation 
in δ34S values among species, which indicates differences 
in foraging behavior. We observed contrasting food web 
patterns between Cd and Hg when using the muscle for 
vertebrate species in the GLMM models (Table 3). Cad-
mium concentrations of biota were negatively correlated 
with δ15N values (an indicator of trophic position), while 
an expected positive correlation was found for Hg concen-
trations (Table 3, Fig. 3). These results indicated food web 
biodilution of Cd in contrast with biomagnification of Hg 
in the same food web. The TMS for Cd in the EHB food 
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web was − 0.192 ± 0.018 (Table 4, Fig. 3). The TMS for Hg 
in the EHB food web was 0.150 ± 0.007 (Table 4, Fig. 3). 
While we did not include Arctic cod and sculpin samples 
in the analyses using Cd concentrations in vertebrate mus-
cle, Cd concentrations in fish muscle tissue are lower than 
concentrations of Cd in invertebrates (Table 1), which also 
indicates biodilution of Cd, even if we were unable to quan-
tify the exact rate of biodilution. Habitat-specific feeding, 
indicated by a correlation with δ13C values, also explained 
Cd but not Hg concentrations in the food web (Table 3). A 
negative correlation suggested a greater reliance on pelagic 
carbon was associated with higher Cd concentrations. Sulfur 
isotope values explained Hg but not Cd concentrations in 
the food web. Mercury concentrations were negatively cor-
related with δ34S values.

We found a different food web pattern for Cd when the 
GLMM models were run using the liver for vertebrate spe-
cies (Table 5). Note that this Cd GLMM model included 
fish liver data (which, unlike fish muscle, had Cd concen-
trations consistently above analytical detection limits). We 
observed both Hg and Cd concentrations were positively 
correlated with δ15N (Table 5, Fig. 4). However, the cor-
relation between log Cd concentrations and δ15N was 
weak (ß coef = 0.027 ± 0.010, P = 0.006), compared to the 
correlation between log Hg concentrations and δ15N (ß 
coef = 0.171 ± 0.013, P < 0.001), and the former correla-
tion was only significant after accounting for other factors 
in the model. Liver Cd concentrations ranged more than 
two orders of magnitude among vertebrate species with a 
similar trophic position, and there was no simple correlation 

Table 1   Average Cd, THg, and MeHg concentrations in tissues by species and sampling location. Metal concentrations are presented as average 
dry weight concentrations ± one standard deviation (SD). Hyphen (-) indicates no value available. Sample sizes are provided in parentheses

a Averages calculated with non-detects = ½ the detection limit

Species Location Tissue Cd ± SD (n) (µg/g DW) THg ± SD (n) (µg/g DW) MeHg ± SD (n) (µg/g DW)

Arctic cod Inukjuak Liver 1.70 ± 2.24 (27) 0.087 ± 0.084 (27) 0.073 ± 0.064 (11)
Inukjuak Muscle 0.009 ± 0.006 (6)a 0.336 ± 0.300 (27) -
Kuujjuaraapik Liver 0.258 ± 0.121 (15) 0.032 ± 0.022 (15) -
Kuujjuaraapik Muscle 0.006 ± 0.000 (5)a 0.360 ± 0.224 (15) -
Sanikiluaq Liver 0.301 ± 0.202 (15) 0.042 ± 0.038 (15) -
Sanikiluaq Muscle 0.006 ± 0.000 (5)a 0.355 ± 0.302 (15) -

Blue mussel Inukjuak Whole body 5.64 ± 2.77 (16) 0.200 ± 0.066 (16) 0.035 ± 0.010 (11)
Kuujjuaraapik Whole body 2.98 ± 0.756 (10) 0.170 ± 0.033 (10) 0.048 ± 0.005 (5)
Sanikiluaq Whole body 6.67 ± 2.86 (20) 0.138 ± 0.047 (20) 0.030 ± 0.015 (15)
Umiujaq Whole body 6.20 ± 2.53 (6) 0.159 ± 0.033 (6) 0.031 ± 0.009 (6)

Common eider Inukjuak Liver 16.5 ± 11.9 (4) 1.17 ± 0.278 (4) -
Inukjuak Muscle 0.849 ± 0.714 (4) 0.258 ± 0.075 (4) -
Kuujjuaraapik Liver 7.01 ± 8.55 (24) 1.23 ± 1.26 (24) -
Kuujjuaraapik Muscle 0.433 ± 1.029 (11) 0.292 ± 0.199 (24) -
Sanikiluaq Liver 17.3 ± 10.2 (16) 1.14 ± 0.572 (16) -
Sanikiluaq Muscle 0.463 ± 0.343 (6) 0.238 ± 0.148 (16) -
Umiujaq Liver 18.0 ± 29.3 (16) 1.08 ± 0.710 (16) -
Umiujaq Muscle 0.774 ± 0.671 (6) 0.275 ± 0.214 (16) -

Ringed seal Kuujjuaraapik Liver 18.7 ± 13.1 (23) 20.3 ± 22.0 (23) -
Kuujjuaraapik Muscle 0.191 ± 0.217 (22) 0.705 ± 0.354 (23) -
Sanikiluaq Liver 24.0 ± 18.6 (16) 17.8 ± 36.7 (16) 1.13 ± 1.56 (14)
Sanikiluaq Muscle 0.156 ± 0.100 (7) 0.645 ± 0.778 (7) -

Sculpin Inukjuak Liver 1.38 ± 1.37 (11) 0.142 ± 0.071 (11) -
Inukjuak Muscle 0.007 ± 0.002 (5)a 0.557 ± 0.311 (11) -
Kuujjuaraapik Liver 4.27 ± 3.60 (10) 0.182 ± 0.075 (10) -
Kuujjuaraapik Muscle 0.015 ± 0.009 (5)a 0.514 ± 0.211 (10) -
Sanikiluaq Liver 1.21 ± 1.55 (10) 0.183 ± 0.142 (10) -
Sanikiluaq Muscle 0.006 ± 0.000 (5)a 0.486 ± 0.398 (10) -

Sea urchin Inukjuak Gonad 1.26 ± 0.204 (4) 0.085 ± 0.010 (4) 0.013 ± 0.004 (4)
Kuujjuaraapik Gonad 1.06 ± 0.353 (5) 0.069 ± 0.022 (5) 0.014 ± 0.005 (5)
Sanikiluaq Gonad 1.21 ± 0.544 (10) 0.067 ± 0.027 (10) 0.012 ± 0.012 (10)
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Table 2   Results from within-
species multiple regression 
models of log-transformed Cd 
and Hg concentrations (µg/g 
dw) in the liver and muscle in 
relation to measures of size 
and age. Significant results 
are shown in bold. Liver 
concentrations were lipid 
normalized

a Cadmium concentrations were not log-transformed—model assumptions met without data transformation
b Axial girth was removed from analysis in the ringed seal muscle regressions due to a VIF value over 5

Species/
metal/tissue

Estimate (β coef) SE t-value Partial R2 P-value

A) Arctic cod—cadmium concentrations (µg/g dw) in the liver
R2 = 0.11, n = 57, F-statistic = 3.348, P-value = 0.043

(Intercept) 0.224 0.180 1.244 - 0.219
Age 0.109 0.042 2.571 0.04 0.013
Length  − 0.016 0.008  − 2.102 0.07 0.040

B) Arctic cod—mercury concentrations (µg/g dw) in the liver
R2 = 0.53, n = 57, F-statistic = 30.55, P-value < 0.001

(Intercept)  − 1.750 0.117  − 15.024 -  < 0.001
Age 0.049 0.028 1.800 0.03 0.077
Length 0.019 0.005 3.769 0.50  < 0.001

C) Arctic cod—mercury concentrations (µg/g dw) in the muscle
R2 = 0.76, n = 57, F-statistic = 85.07, P-value < 0.001

(Intercept)  − 1.709 0.093  − 18.46 -  < 0.001
Age 0.063 0.022 2.882 0.04 0.006
Length 0.025 0.004 6.399 0.72  < 0.001

D) Sculpin—cadmium concentrations (µg/g dw) in the liver
R2 = 0.03, n = 30, F-statistic = 0.3924, P-value = 0.679

(Intercept)  − 0.260 0.654  − 0.397 - 0.694
Age  − 0.001 0.060  − 0.014 - 0.989
Length 0.021 0.031 0.690 0.03 0.496

E) Sculpin—mercury concentrations (µg/g dw) in the liver
R2 = 0.15, n = 30, F-statistic = 2.423, P-value = 0.108

(Intercept)  − 1.466 0.371  − 3.947 - 0.001
Age  − 0.013 0.034  − 0.382 - 0.706
Length 0.034 0.018 1.911 0.15 0.067

F) Sculpin—mercury concentrations (µg/g dw) in the muscle
R2 = 0.26, n = 30, F-statistic = 4.67, P-value = 0.020

(Intercept)  − 1.362 0.402  − 3.384 - 0.002
Age 0.033 0.037 0.877 0.02 0.388
Length 0.032 0.019 1.689 0.24 0.103

G) Ringed seal—cadmium concentrations (µg/g dw) in the liver
R2 = 0.06, n = 38, F-statistic = 1.157, P-value = 0.326

(Intercept) 0.919 0.353 2.242 - 0.031
Length 0.007 0.006 1.224 0.05 0.220
Axial Girth  − 0.005 0.007 -0.639 0.01 0.421

H) Ringed seal—mercury concentrations (µg/g dw) in the liver
R2 = 0.70, n = 38, F-statistic = 40.88, P-value < 0.001

(Intercept)  − 1.268 0.269  − 4.718 -  < 0.001
Length 0.006 0.005 1.296 0.01 0.203
Axial Girth 0.018 0.006 3.169 0.69 0.003

I) Ringed seal—cadmium concentrations (µg/g dw) in the musclea, b

R2 = 0.04, n = 29, F-statistic = 1.044, P-value = 0.316
(Intercept) 0.005 0.178 0.025 - 0.980
Length 0.001 0.001 1.022 - 0.316

J) Ringed seal—mercury concentrations (µg/g dw) in the muscleb

R2 = 0.56, n = 30, F-statistic = 35.01, P-value < 0.001
(Intercept)  − 1.252 0.173  − 7.241 -  < 0.001
Length 0.008 0.001 5.917 -  < 0.001
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Fig. 2   A) δ15N and δ13C and 
B) δ13C and δ34S stable isotope 
values of marine biota collected 
from four locations in east 
Hudson Bay, Canada. Values 
are presented as means ± SD

Table 3   Summary of among-
species GLMMs explaining 
differences in log-transformed 
Cd and Hg concentrations (µg/g 
dw) in tissues of 6 species from 
east Hudson Bay. The muscle 
was used for vertebrate species. 
Fish data were not included in 
the Cd GLMM due to > 50% 
of Cd samples being below the 
detection limit. The explanatory 
variables included in the models 
were δ15N, δ13C, and δ34S. 
Location of sample collection 
was included as a random effect. 
Significant results are shown 
in bold

Model Estimate (β coef) SE df t-value P-value Variance SD

A) logCd ~ δ15N + δ13C + δ34S + (1 | location), n = 127
Fixed effects (Intercept)  − 2.638 0.816 121.534  − 3.231 0.002

δ15N  − 0.135 0.019 122.993  − 7.143  < 0.001
δ13C  − 0.164 0.027 121.657  − 6.065  < 0.001
δ34S 0.028 0.033 122.931 0.847 0.399

Random effects Location 0.084 0.290
Residual 0.238 0.488

B) logHg ~ δ15N + δ13C + δ34S + (1 | location), n = 234
Fixed effects (Intercept)  − 1.674 0.232 116.783  − 7.224  < 0.001

δ15N 0.150 0.006 228.230 26.229  < 0.001
δ13C  − 0.007 0.010 228.190  − 0.683 0.495
δ34S  − 0.057 0.008 227.914  − 7.410  < 0.001

Random effects Location 0.025 0.159
Residual 0.066 0.257

Fig. 3   Scatterplots with regres-
sion lines of A) log Cd concen-
tration and B) log Hg concentra-
tion in tissues of sample species 
from east Hudson Bay, Canada, 
in relation to δ15N values. For 
vertebrate animals, muscle 
concentrations are plotted
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between liver Cd concentration and δ15N (Fig. 4). Addi-
tionally, δ13C and δ34S values were significant explanatory 
variables for Cd and for Hg concentrations, indicating influ-
ences of habitat-specific feeding on metal concentrations 
in biota (Table 5). Similar to the other models using the 
muscle (Table 3), liver Cd and liver Hg concentrations were 
negatively correlated with δ13C values, reflecting enhanced 
bioaccumulation associated with feeding on pelagic carbon 
sources. Cadmium and Hg concentrations of biota were 
negatively correlated with δ34S values (Table 5), indicat-
ing an effect of habitat-specific feeding on metal exposure. 
The GLMM we ran using MeHg-corrected values for liver 
data showed the same patterns as the GLMM run using THg 
concentrations in the liver (Table S8).

Table 4   Summary of the trophic magnification slope (TMS) analysis 
for metal biomagnification in an east Hudson Bay arctic marine food 
web. Metal concentrations were log-transformed to meet the assump-
tion of normality. The muscle was used for vertebrate species. Arctic 
cod and sculpin muscle data was not included in the Cd TMS analysis 
due to > 50% of Cd samples being below the detection limit. Signifi-
cant results are in bold

Model Estimate (β coef) SE t-value P-value

A) logCd ~ δ15N
R2 = 0.49, n = 127, F-statistic = 117.9, P-value < 0.001

(Intercept) 1.805 0.184 9.841  < 0.001
δ15N  − 0.192 0.018  − 10.857  < 0.001

B) logHg ~ δ15N
R2 = 0.69, n = 234, F-statistic = 508.8, P-value < 0.001

(Intercept)  − 2.568 0.082  − 31.27  < 0.001
δ15N 0.150 0.007 22.56  < 0.001

Table 5   Summary of among-
species GLMMs explaining 
differences in log-transformed 
Cd and Hg concentrations (µg/g 
dw) in tissues of 6 species from 
east Hudson Bay. Liver was 
used for vertebrate species. 
Tissue concentrations were lipid 
normalized. The explanatory 
variables included in the models 
were δ15N, δ13C, and δ34S. 
Location of sample collection 
was included as a random effect. 
Significant results are in bold

Model Estimate (β coef) SE df t-value P-value Variance SD

A) logCd ~ δ15N + δ13C + δ34S + (1 | location), n = 255
Fixed effects (Intercept)  − 1.125 0.387 243.797  − 2.910 0.004

δ15N 0.027 0.010 250.985 2.746 0.006
δ13C  − 0.150 0.017 250.994  − 9.038  < 0.001
δ34S  − 0.089 0.013 250.660  − 6.601  < 0.001

Random effects Location 0.008 0.087
Residual 0.224 0.474

B) logHg ~ δ15N + δ13C + δ34S + (1 | location), n = 240
Fixed effects (Intercept)  − 1.511 0.507 125.951  − 2.980 0.003

δ15N 0.171 0.013 234.460 13.668  < 0.001
δ13C  − 0.117 0.021 234.119  − 5.539  < 0.001
δ34S  − 0.189 0.017 234.857  − 11.398  < 0.001

Random effects Location 0.113 0.335
Residual 0.336 0.579

Fig. 4   Scatterplots with 
regression lines of A) log Cd 
concentration and B) log Hg 
concentration in tissues of sam-
ple species from east Hudson 
Bay, Canada, in relation to δ15N 
values. For vertebrate animals, 
liver concentrations are plotted
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Discussion

Trophic transfer patterns for Cd depended on the verte-
brate tissue examined. We observed food web biodilution 
for muscle Cd concentrations of marine vertebrates. This 
finding was consistent with Cd biodilution reported in other 
aquatic food webs (Campbell et al. 2005; Cardwell et al. 
2013; Pantoja-Echevarría et al. 2023; Sun et al. 2020) and 
contrasts with Cd biomagnification reported for Arctic 
seabirds (Øverjordet et al. 2015) and for a benthic coastal 
food web (Croteau et al. 2005). Liver Cd concentrations of 
marine vertebrates showed a weak positive correlation with 
trophic position, though only for some species. In contrast, 
we observed strong Hg biomagnification in the food web for 
both the muscle and liver. The contrasting trends observed 
for Cd and Hg transfer in the EHB food web suggest that 
biomagnification is not a likely explanation for elevated Cd 
concentrations in the liver of some Arctic marine vertebrates 
(e.g., Dietz et al. 1998; Mallory et al. 2004, 2014, 2017). 
Rather, our findings suggest that tissue- and species-specific 
physiology may more accurately explain Cd concentration 
patterns. Our study indicates that tissue type and the inclu-
sion of lower trophic level biota are important for investigat-
ing food web processes, and caution is warranted when inter-
preting Cd biomagnification in marine biota over a narrow 
range in trophic position (Chevrollier et al. 2022; Øverjordet 
et al. 2015; Tian et al. 2022).

Tissue- and species-specific physiology can explain the 
patterns of Cd concentrations in this Arctic marine food web. 
The discrepancy in trends observed between the liver and 
muscle is likely due to Cd detoxification in the vertebrate 
study species (Gao et al. 2021). The muscle consistently has 
lower Cd concentrations than the liver and kidney in fish and 
in wildlife (Dietz et al. 1996; Wayland and Scheuhammer 
2011). This difference may be due to higher Cd depuration 
rates in the muscle relative to the liver, at least for fishes 
(de Conto Cinier et al. 1999; Pavlaki et al. 2021; Soegianto 
et al. 2022). In vertebrate animals, Cd is detoxified through 
binding to metallothionein proteins and storage in the liver 
and in the kidney (Wayland and Scheuhammer 2011). Sub-
cellular measurements of Cd indicate that this metal is 
largely bound as stable metallothionein complexes in the 
liver (Desjardins et al. 2022; Monteiro et al. 2019). These 
findings explain why we observed such low Cd concentra-
tions in fish muscle but detected Cd in fish liver and why we 
found the highest Cd concentrations in the liver of ringed 
seal and common eider. Elevated liver Cd concentrations 
likely reflect greater detoxification and storage of this metal, 
instead of greater dietary exposure to top predators due to 
biomagnification. The differences in Cd concentrations that 
we observed between Arctic marine vertebrates may also 
be due to species-specific physiology, such as differences 

in metallothionein production and the rate of detoxification 
in the liver (Le Croizier et al. 2019; Lucia et al. 2012). In 
contrast, we found higher concentrations of Hg in both the 
liver and muscle of vertebrate species, which in this case is 
attributed to biomagnification because of the strong positive 
correlations with trophic position.

We observed variation in feeding habitats: benthic versus 
pelagic, indicated by variation in δ13C values, and sulfate-
reducing versus oxidizing environments, indicated by vari-
ation in δ34S values. Foraging behavior influenced metal 
concentrations in sampled biota. Pelagic feeding was asso-
ciated with higher Cd concentrations in the Hudson Bay 
food web. This finding is consistent with studies of another 
Arctic marine food web (Campbell et al. 2005) and of pin-
nipeds on the Uruguayan coast (De María et al. 2021). Polar 
crustaceans can have elevated Cd concentrations and may 
be an important dietary source of Cd to marine vertebrates 
(Lischka et al. 2020; Macdonald et al. 2000; Macdonald and 
Sprague 1988). However, our findings differ from a study 
that measured Cd in ringed seal across the Canadian Arctic, 
where liver concentrations increased with relative carbon 
source, indicating benthic feeding enhanced Cd bioaccu-
mulation (Brown et al. 2016). Nevertheless, the same study 
found that seals which fed primarily on pelagic amphipods 
near one of the communities in our study area (Inukjuak) 
had the highest measured Cd concentrations (Brown et al. 
2016). Thus, it could be the case that some fish and some 
ringed seal in our study were feeding more on pelagic inver-
tebrates leading to overall higher concentrations of Cd in 
their tissues. We similarly observed that pelagic feeding was 
associated with greater Hg concentrations in vertebrate spe-
cies, which has also been reported for other Arctic marine 
food webs (Campbell et al. 2005; Hilgendag et al. 2022). In 
the Arctic Ocean, Hg methylation occurs in the water col-
umn and the highest seawater methylmercury concentrations 
occur at subsurface depths where planktonic uptake may be 
important (Jonsson et al. 2022; Wang et al. 2018).

We found a negative relationship between metal con-
centrations and δ34S values, which indicates an effect of 
foraging habitat on exposure. The pattern we observed is 
consistent with another Hg study conducted in northern 
Hudson Bay on Arctic seabird prey (Góngora et al. 2018). 
However, positive and non-significant correlations between 
metal concentrations and δ34S values in marine biota have 
also been reported (García Barcia et al. 2021; Lippold et al. 
2020), which may be due to the influence of multiple pro-
cesses on environmental δ34S gradients. The δ34S values of 
marine wildlife can be influenced by foraging in estuarine 
to saline transitions, benthic or pelagic habitats, and sul-
fate-reducing environments (Chételat et al. 2020). In our 
study, biota were collected from an entirely marine environ-
ment; therefore, we make the assumption that variation in 
δ34S values is more likely due to differences in degrees of 
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sulfate reduction across foraging habitats rather than due 
to terrestrial or estuarine influences. Amiraux et al. (2023) 
observed high variability in δ34S values among benthic 
invertebrates sampled from Hudson Bay and noted lower 
δ34S values in species that fed within the sediment layer 
where sulfate reduction occurs. A similar trend was observed 
in species sampled from the Baltic Sea, where δ34S values 
helped further distinguish between epibenthic and infaunal 
food sources of the benthic-feeding velvet scoter (Melanitta 
fusca) (Morkūnė et al. 2018). We observed higher δ34S val-
ues in blue mussel and sea urchin which are both epibenthic 
species that feed above the sediment layer and lower δ34S 
values in eider and ringed seal which feed to some extent on 
infaunal taxa. Ringed seal may also feed on benthic fish such 
as sculpin that feed on infaunal taxa. Therefore, the negative 
relationship between metal concentrations and δ34S values 
we observed may suggest that feeding on fauna inhabiting 
sulfate-reducing environments may enhance metal exposure. 
Sulfate reduction is associated with greater MeHg produc-
tion (Gilmour et al. 1992); therefore, biota feeding in areas 
where sulfate reduction occurs may be exposed to higher 
levels of MeHg. However, the relationship between forag-
ing in habitats with higher degrees of sulfate reduction and 
increased cadmium bioaccumulation is unclear and warrants 
further investigation. Overall, sulfur isotope ratios provide 
complementary information to carbon isotope ratios because 
they help further distinguish benthic feeding by tracing con-
sumption of infaunal versus epibenthic food sources.

We observed location effects in this study, specifically 
common eider livers and blue mussels sampled at Kuujjuar-
aapik had approximately half the average Cd concentrations 
of those biota sampled at the other three sites. The lower Cd 
concentrations observed in eider and in blue mussel suggest 
that there may be spatial differences in the bioavailability of 
Cd in east Hudson Bay. Uptake and depuration rates of Cd 
in marine invertebrates can be influenced by water quality 
variables including salinity, temperature, and pH (Pavlaki 
et al. 2017; Rainbow and Luoma 2011). Therefore, pos-
sible differences in water chemistry between sites may be 
contributing to the observed differences in blue mussel Cd 
concentrations, though further research is needed to evalu-
ate the environmental drivers of spatial patterns in metal 
bioaccumulation.

Trophic magnification slopes have been widely meas-
ured to evaluate Hg biomagnification in food webs (Lavoie 
et al. 2013). Biomagnification rates of Hg, based on TMS 
values, can differ by latitude, environment (e.g., marine 
and fresh water), and even between habitats connected to 
the same food web (Hilgendag et al. 2022; Lavoie et al. 
2013). The Hg TMS measured in this study (0.15 ± 0.01) is 
within the range of other studies of Arctic marine food webs 
(0.10–0.25) that included seabirds and marine mammals (as 
summarized in Hilgendag et al. (2022)). Few TMS values 

have been reported for Cd in Arctic marine food webs, and 
the value of − 0.19 ± 0.02 measured in this study is compara-
ble, though steeper than the TMS (− 0.09) of Campbell et al. 
(2005). Signa et al. (2017, 2019) reported Cd TMS values 
of − 0.08 and − 0.07 for a Mediterranean food web and an 
Antarctic food web, respectively. The ecotoxicological sig-
nificance of this variation in Cd biodilution rate is unclear.

Dietary exposure to Cd can be harmful to both humans 
and wildlife leading to kidney, bone, and/or reproductive 
damage (ATSDR 2012; Marettová et al. 2015; Thévenod 
and Lee 2013; Wayland and Scheuhammer 2011). In the 
Hudson Bay food web, average Cd concentrations in tissues 
were below adverse effect thresholds for sampled species 
(birds, 45–70 µg/g ww in the liver (Wayland and Scheu-
hammer 2011); marine mammals, 200 µg/g ww (AMAP 
2005)). Exposure to the organic form of mercury (MeHg) is 
hazardous to human and to wildlife health. Methylmercury 
may pass the blood–brain barrier and cause neurological 
damage via oxidative stress, neuro-inflammation, cell death, 
neurogenesis impairment, calcium imbalance, DNA dam-
age, changes to glutamate metabolism, and/or changes to 
neurotransmission (summarized in Novo et al. 2021). In the 
Hudson Bay marine food web, average Hg concentrations in 
tissues of sampled species were below wildlife adverse effect 
thresholds (fish, 0.5 µg/g ww in the muscle (Sandheinrich 
and Wiener 2011); birds, 20 µg/g ww in the liver (Shore 
et al. 2011); marine mammals, 61 µg/g ww in the liver 
(Rawson et al. 1993)). Overall, our data suggest that Arctic 
marine wildlife were at low risk of experiencing sublethal 
toxicological effects of Cd and Hg exposure, consistent with 
earlier assessment (Dietz et al. 1998; Fisk et al. 2005). How-
ever, our comparison with tissue burden thresholds provides 
only a preliminary scoping of toxicological risk, and more 
subtle subchronic effects, such as suppression of the immune 
system, may occur at lower tissue concentrations (Desforges 
et al. 2016).

Conclusions

This study contributes to broader research on trophic 
transfer of Cd in marine food webs by presenting find-
ings for the understudied Arctic Ocean. Large variation in 
Cd and Hg concentrations, which ranged three orders of 
magnitude in the Arctic marine food web of east Hudson 
Bay, was related to trophic position and foraging habitat. 
Mercury biomagnified predictably through the food web, 
whereas the trophic transfer patterns of Cd differed by 
vertebrate tissue type. Biodilution of Cd in the food web 
(based on vertebrate muscle) indicated that elevated Cd 
in the liver of ringed seal and common eider could not be 
explained by greater dietary exposure. Rather, elevated 
Cd concentrations in some Arctic marine mammals and 
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seabirds are likely due to Cd detoxification and storage in 
the liver. Species-specific physiology may also play a role 
in controlling Cd tissue burdens, and future research could 
characterize detoxification processes for Arctic marine 
vertebrates, focusing on metallothionein production and 
subcellular partitioning of Cd.
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