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Abstract
Current vector control strategies based on synthetic chemicals are not eco-friendly against non-target organisms; hence, 
alternative approaches are highly required. Commercially purchased oil of Mentha spicata (Spearmint) and Eucalyptus 
citriodora (Citriodora) were examined against the medical pest Cx. quinquefasciatus (Say) and their non-toxicity on the 
aquatic species was evaluated. Chemical screening with gas chromatography coupled with mass spectrometry (GC–MS) 
analysis revealed a total of 14 and 11 compounds in Citriodora and Spearmint oils, respectively, with the highest peak (%) at 
carvone (70.44%) and isopulegol (30.4%). The larvicidal activity on the fourth instar larvae of Cx. quinquefasciatus showed 
dose-dependent mortality and significance at a 100 ppm concentration 48 h post-treatment with Citriodora (76.4%, P ≤ 0.001) 
and Spearmint (100%, P ≤ 0.001). Additionally, the photomicrograph of the fourth instar larvae revealed significant physi-
cal abnormalities in the head and midgut tissues post-exposure to Spearmint and Citriodora oils. Moreover, the histological 
assay revealed severe damage in the epithelial cells and gut lumen 2 to 24 h post-treatment. The repellency percentage of 
adult Culex mosquitoes was prominent across both oils at 150 ppm 210 min post-exposure. Non-target toxicity on the aquatic 
predator showed both essential oils (Spearmint oil (17.2%) and Citriodora oil (15.2%)) are safer at the maximum treatment 
(200 ppm) compared to temephos (75.4% at 1 ppm). The in silico screening of phyto-compounds derived by both essential 
oils with BeeTox (online server) showed no contact toxicity to the honey bee Apis mellifera. Overall, the present research 
revealed that Spearmint and Citriodora essential oils and their active phyto-compounds were toxic to Cx. quinquefasciatus 
and harmless to the aquatic predator and honey bee.
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Introduction

Mosquitoes, vectors of diseases like dengue and malaria, 
pose global health and economic challenges (Giunti et al. 
2023). Malaria alone has caused over 247 million cases, 
with a mortality rate exceeding 90%, particularly affecting 
young children in sub-Saharan Africa (Tolle 2009; Benelli 
et al. 2020a; Paton et al. 2021). Moreover, climate change 

is expected to expand the Aedes mosquito species, elevating 
the risk of dengue for 4.7 billion people by 2070 (Mala-
vige et al. 2023). Despite efforts, implementing effective 
mosquito control strategies, especially in the field, remains 
challenging (Benelli and Senthil-Nathan 2019; Benelli et al. 
2020b). Diseases causing mild to severe disorders that are 
transmitted by Culex mosquitoes highlight the need for tar-
geted control measures (Mazzara et al. 2023). Targeting 
aquatic and immobile larval mosquitoes offers a promising 
approach (Fillinger and Lindsay 2011). However, the wide-
spread use of synthetic larvicides faces challenges like envi-
ronmental harm and resistance (Agathokleous et al. 2023a; 
Benelli 2019; Haddi et al. 2023). As resistance grows, the 
effectiveness of commercial pesticides against filarial vec-
tors diminishes, potentially increasing disease transmission 
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(Hafez 2023). These identified challenges prompted us to 
seek an environmentally and health-centered alternative 
for mosquito vector control (Agathokleous et al. 2023b). 
Natural plant-based insecticides have emerged as a promis-
ing solution in the quest for effective alternatives (Benelli 
et al. 2020b). Plant-derived secondary molecules, serving 
as chemical defenses against herbivorous insects, exhibit 
properties such as feeding deterrence, insect growth influ-
ence, and toxic effect induction on mosquitoes (Dubey et al. 
2010; Benelli et al. 2019). Many botanicals with insecticidal 
effects contain volatile oils, known as essential oils (EOs), 
found in plant parts like leaves, flowers, stems, and roots 
(Pavela 2015). These EOs, characterized by their volatility 
and aromatic nature, contribute to the distinctive scent and 
flavor of various plants (Pavela 2013, 2014).

Commercial EOs, versatile for various applications like 
sprays, lotions, candles, and diffusers, offer individuals the 
flexibility to choose the method that aligns with their prefer-
ences and needs (Osanloo et al. 2017; Benelli et al. 2018a, 
b). Possessing natural properties such as antibacterial, leish-
manicidal, and larvicidal effects, as well as repellent activity, 
EOs are not only selectively effective against target organ-
isms but also environmentally degradable and non-toxic 
to non-target species, making them favorable for mosquito 
larvae control (Osanloo et al. 2018). Existing research pre-
sents diverse studies on mosquito vector management using 
EOs (Khanavi et al. 2010; Vasantha-Srinivasan et al. 2017, 
2018; Chellappandian et al. 2018a, b). Due to the qualita-
tive and quantitative variations in chemical content, EOs 
exhibit changing toxicity against different dengue vectors 
(Cheng et al. 2003). The larvicidal actions of EOs are attrib-
uted to complex mixtures of volatile compounds, includ-
ing terpenes, phenols, aldehydes, and esters (Benelli et al. 
2018a, b). Current research emphasizes bio-rational plants 
from diverse regions and their insecticidal properties (Rad-
hakrishnan et al. 2023a, b). While past literature explored 
the larvicidal potential of EOs, mechanistic insights into 
their actions on arthropod vectors remain unclear (Benelli 
and Senthil-Nathan 2019; Aziz et al. 2023; Kalvikkarasan 
et al. 2023; Vasantha-Srinivasan et al. 2024).

Mentha spicata (Spearmint), a member of the Lamiaceae 
family and native to Europe and Asia, is now cultivated glob-
ally, favoring temperate climates and thriving in moist habitats 
(Hudz et al. 2023). Known for its aromatic leaves containing 
EOs, including carvone, Spearmint is utilized for culinary and 
medicinal purposes, particularly in treating respiratory and 
digestive issues (de Araujo Moysés et al. 2023). Eucalyptus 
citriodora, part of the Eucalyptus genus in the Myrtaceae fam-
ily and native to Australia, has been introduced and cultivated 
in various climates worldwide, including Asia, Africa, and 
the Americas (Amri et al. 2023). The EO derived from its 
leaves is particularly rich in citronellal and contributes to its 
lemon scent, making it valuable in the fragrance industry and 

as an ingredient in insect repellents (Khedhri et al. 2023). 
Both Spearmint and Citriodora EOs are recognized as envi-
ronmentally friendly alternatives to synthetic insecticides. 
The importance of testing non-target toxicity against benefi-
cial organisms such as Toxorhynchites splendens (commonly 
known as the mosquito fish or gambusia) is crucial in the 
development and use of pesticides or other control methods 
(Pavela et al. 2019; Vasantha-Srinivasan et al. 2023).

Overall, the objectives of the present investigation were as 
follows: (i) the chemical characterization of commercial Spear-
mint (M. spicata) and Citriodora (E. citriodora) oils using the 
gas chromatography-mass spectrometry (GC–MS) technique; 
(ii) exploring the toxic larvicidal action of EOs on the medical 
pest Cx. quinquefasciatus; (iii) detecting the midgut toxicity 
of EOs on the fourth instar larvae of the filarial vector; (iv) 
estimating the repellent actions of EOs on the adult Culex mos-
quito; and (v) In-vitro and in-silico screening of the impact of 
EOs on the aquatic mosquito predator and honey bee.

Materials and methods

Based on the previous research on EOs with insecticidal 
properties, the two vital essential bio-active oils, Citriodora 
(E. citriodora) and Spearmint (M. spicata), were designated. 
These two EOs were obtained commercially from Katyani 
Exports India Pvt. Ltd. (Delhi, India) and studied for their 
larvicidal activity and impact on the histological aspects 
of the midgut of the larval intestine of Cx. quinquefascia-
tus. The commercially purchased oils were cosmetic grade 
(100%), and the volatile oil was acquired through steam dis-
tillation of the herbal leaves and then further packed into 
sterile glass containers.

Rearing of mosquitoes

The Cx. quinquefasciatus mosquito culture for the present 
study was maintained in the lab without exposure to pes-
ticides and vectors. In addition, the cultures were main-
tained at specific laboratory conditions (27 ± 2 °C, relative 
humidity [RH], and 75–85% with a 14 h:10 h light/dark 
(L:D) photoperiod). Brewer’s yeast and dog biscuits in a 
proportion of 1:5 were provided as food to the larvae that 
emerged from the eggs. The pupae that emerged from the 
larvae were collected and placed in a plastic container with 
250 mL of water. This plastic container was then kept in a 
60 cm × 60 cm × 60 cm breeding cage covered with a nylon 
net for adult emergence. Next, Petri dishes with cotton swabs 
containing a 10% sucrose solution and wet raisins (dried 
grapes) were placed in the breeding cages for the emerg-
ing mosquitoes to eat. After 3 days of mosquito emergence, 
the female mosquitoes were fed with sucrose for 6 h and 
then delivered to a hen that was kept inside the mosquito 
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breeding cage for blood feeding throughout the night. The 
fourth instar larvae were then used for conducting experi-
ments. Our earlier research protocol was used for the insect-
rearing methods (Chellappandian et al. 2018b).

Identification of essential oil components by GC–MS

The isolated EOs were dissolved using ethyl alcohol at 
a 1:1 ratio. Next, 2 μL of the samples were dissolved in 
high-performance liquid chromatography (HPLC)-grade 
methanol and subjected to JEOL GC mate II GC–MS (Agi-
lent Technologies 6890N Network GC system (Mumbai, 
India)) equipped with a secondary electron multiplier. The 
column (HP5) was then fused with silica (50 m × 0.25 mm 
ID). The chemical characterization of the EO was adapted 
from the previous methodology (Vasantha-Srinivasan et al. 
2018). The identification of the compounds was assessed 
through GC attached to a mass spectrometer. Afterward, the 
EO chemical structure was investigated by interpreting the 
GC–MS mass spectrum through the National Institute of 
Standard and Technology (NIST) database.

Preparation of test solutions for larvicidal activity

One gram of each test EO was transferred into a 100 mL 
standard volumetric flask and made up with ethanol. From 
this stock solution, serial volumes such as 0.25, 0.5, 0.75, 1, 
2.5, 5, 7.5, and 10.0 mL of the solution were pipetted into 
other flasks and chlorine-free tap water was added to obtain 

25, 50, 75, and 100 ppm of solution. This solution was then 
used for the larvicidal bioassay.

Larvicidal bioassay

The larvicidal bioassay of the EOs was conducted follow-
ing the World Health Organization (2005) process with 
minor alterations. The fourth instar larvae were kept inside 
disposable plastic cups (200 mL) containing 100 mL of 
dechlorinated water using 25, 50, 75, and 100 ppm of 
EOs. During the treatment period, the larval diet was sup-
plied in individual treatment cups, specifically if a sig-
nificant mortality rate in the control was recorded. The 
conditions remained uninterrupted for 24 h, and the rate 
of mortality was logged 48 h post-treatment. The dead 
larvae numbers were identified at the initial experiment 
stages (0 and 24 h). The experiments were replicated five 
times, and each replication set included a control treated 
with an aqueous solution of dimethyl sulfoxide (DMSO 
(0.5%)). Larvicidal activity that displayed at least 50% 
mortality (lethal concentration (LC)50) and 90% mortal-
ity (LC90) within 48 h was estimated and considered for 
further experiments. The statistical analyses of the larvi-
cidal assays were conducted based on the methodology of 
Finney (1971) Probit. In addition, the mortality (%) in the 
treatments was calculated with the formula adapted from 
Abbott’s (1925) formula (1 and 2).

(1)
Percentage of mortality =

Number of dead larvae

Number of larvae introduced
× 100

(2)Corrected percentage of mortality =
(

1 −
n in T af ter treatment

n in C af ter treatment

)

× 100

Histological analysis

For the histological tests, the treated and control newly 
ecdysed fourth instar larvae of Cx. quinquefasciatus were 
separated from the laboratory culture raised with the larval 
diet and later incorporated with Citriodora (100 ppm) and 
Spearmint (75 ppm) oil. Twenty-four hours later, larval sur-
vival was observed. Afterward, the larvae were fixed in the 
bouins reagent post-exposure (6, 12, 24, and 48 h) for 24 h. 
Further experiments were conducted following the adapted 
protocol of Senthil-Nathan et al. (2008).

Repellent assay

The repellent activities of both EOs on the adult Culex mos-
quitoes treated with diverse doses (25, 50, 75, and 100 ppm) 

were analyzed with the improved procedure (Chellappandian 
et al. 2019). The whole investigation was reviewed and permit-
ted by the institution ethical committee board (Manonmaniam 
Sundaranar University, Tirunelveli, India). Previously mated 
(5–6 days) post-emerged female gravid mosquitoes (100 total) 
were starved for 1 day without any blood meal in the mosquito 
cages (45 cm × 35 cm × 5 cm). A discernible strike with a 
marker pen was made on a fixed area (4 cm × 12 cm) on the 
forearm of every three human volunteers while the rest of the 
arm was protected with sleeves of paper. As a control, 0.5% 
DMSO was placed on one forearm of the volunteer following 
a similar procedure. The Cx. quinquefasciatus and Ae. aegypti 
mosquitoes were tested from 18.00 h to 02.00 h and 06.00 h 
to 14.00 h, respectively. The mosquitoes that landed on the 
forearm were considered and those on the hands were shaken 
off before they sucked the blood. The percentage of repellency 
was estimated using the following adapted formula (3):
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where Ta represents the mosquito numbers in the control 
group, and Tb represents the mosquito numbers in the treat-
ment group.

BeeTox toxicity prediction

The BeeTox is an artificial intelligence (AI) open online tool 
utilized to predict the acute toxicity of ligands/chemicals 
on honey bees (Moreira-Filho et al. 2021). In the present 
study, the free BeeTox online servers were used to predict 
the bee toxicities of the phyto-compounds of both Spearmint 
(11 chemicals) and Citriodora (14 chemicals) EOs identified 
through the GC–MS technique. Furthermore, the AI tool 
was designed to divide the compounds into two independent 
datasets according to the honey bee exposure type (contact 
and oral). The entire experimental protocol was adapted 
based on that of Moreira-Filho et al. (2021).

Non‑target toxicity assay

The effects of Spearmint and Citriodora EOs on the aquatic 
predator and beneficial species Toxorhynchites splendens 
(Theobald) were determined using the previously adapted 
protocol (Yogarajalakshmi et al. 2020). The authentication 
of the aquatic predator species was given by the zoologist 
of Manonmaniam Sundaranar University, Tirunelveli, India. 
The non-target species were retained in the same ecological 
habitat of the aquatic mosquito larvae (dengue and filarial 
vector), which were isolated in separate tanks with water 
(47 cm diameter and 27 cm depth) at 27 ± 2 °C and 75% 
RH, and fed with the second instar larvae of Cx. quinque-
fasciatus. The aquatic predator (Tx. splendens) was exposed 
to different dosages (50, 100, 150, and 200 ppm) of both 
EOs, and the obtained results were related to the toxicity 
of the synthetic chemical Temephos at the 1.0 ppm dosage. 
In the individual treatment, a total of 20 replications were 
executed, and five replicates were used as a control treatment 
(without any chemicals). The mortality (%) was experimen-
tal 24 h post-treatment.

Statistical analyses

The mortality data of the experiment were assessed using 
analysis of variance (ANOVA of arcsine, logarithmic, and 
square root transformed percentages), and the results were 
expressed as a mean value of five replicates. Similarly, Tuk-
ey’s multiple range test (significance at p < 0.05) was used to 
analyze significant differences between the treatments using 
the Minitab®16 software program. The SigmaPlot version 

(3)% Repellency = [(Ta − Tb)∕Ta] × 100
11 of the MicroCal software was utilized for plotting the line 
and bar graphs. The lethal dosages necessary to develop 50 
and 90% mortality (LC50 and LC90) in the larvae 24 h post-
treatment were examined utilizing Probit analysis with an 
interval dependability (95%) using the Minitab®16 statisti-
cal software.

Results

Identification of chemical components 
in the essential oils

The EO is screened through GC–MS to identify the major 
components responsible for the insecticidal activity of 
the Cx. quinquefasciatus larvae. In the Spearmint oil, 
the GC–MS analysis of its components revealed about 11 
components (Table 1). Out of these, the major components 
were estragole (22.7%) and carvone (70.44%), and the 
minor components were β-pinene (3.41%) and α-pinene 
(1.43%). The chromatogram is presented in (Fig. 1A). The 
GC–MS analysis of Citriodora oil revealed 14 identified 
compounds (Table 2 and Fig. 1B). The chief ingredients 
of Eucalyptus citriodora oil were citronellal (9.34%), cit-
ronellol (17.39%), isopulegol (30.44%), and 2,6-Octadi-
ene 2,6, dimethyl. The minor components identified were 
x-pinene (1.35%), eucalyptol (1.75%), caryophyllene 
(4.59%), 4-bromo-n-butyl (3.36%), and 2-methylhexa-
cosane (2.88%).

Larvicidal activity

The larvicidal actions of Citriodora EO 24 h post-treat-
ment displayed reliant mortality activity on the fourth 
instar larvae of Cx. quinquefasciatus. The mortality per-
centage was significant at the maximum dosage (100 ppm) 
with 76.4% (F4,20 = 41.31, P ≤ 0.001) 24 h post-treatment, 
whereas 25 ppm caused 30.2% mortality (Fig. 2A). Simi-
larly, at 48 h post-treatment with Citriodora (100 ppm), 
a prominent mortality rate of 83.5% (F4,20 = 18.54, 
P ≤ 0.001) was seen, though it was not significant with the 
other treatment dosages of 75 ppm (73.1%, F4,20 = 13.76, 
P ≤ 0.001) and 50 ppm (67.9%, F4,20 = 19.99, P ≤ 0.001), 
respectively (Fig. 2B). Correspondingly, the larvicidal 
action of Spearmint EO displayed a significant mortality 
rate across 24 and 48 h of treatment against the fourth 
instar larvae. The maximum dosage (100 ppm) only pro-
duced an 18.77% (F4,20 = 19.55, P ≤ 0.001) mortality rate 
24 h post-treatment (Fig. 2C). Despite 100 ppm Spearmint 
oil causing 100% (F4,20 = 17.88, P ≤ 0.001) mortality 48 h 
post-treatment, it was significant with the other treatment 
dosages of 50 ppm (45.21%, F4,20 = 19.33, P ≤ 0.001) and 
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Table 1   Compounds identified 
in the Spearmint essential oil 
through GC-MS analysis

Sl.No. Compound Identified R.T Peak area (%) Structure 
1 α-pinene 5.96 1.43

2 β-Pinene 6.72 3.41

3 β-myrcene 7.31 0.23

4 3-carene 7.40 0.20

5 Estragole 7.68 22.7

6 Isomenthone 10.09 0.09

7 Paramenthasone 10.19 0.08

8 Isomenthol 10.32 0.14

9 Carvone 11.26 70.44

10 δ-cadinene 14.83 0.08

11 Caryophyllene oxide 15.22 0.11
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25 ppm (39.11%, F4,20 = 15.61, P ≤ 0.001), respectively 
(Fig. 2D). The LC50 values of Spearmint oil against the 
fourth instar larvae of the filarial vector were seen at 
51.00 ppm (24 h) and 32.99 ppm (48 h), while the LC90 
values were recorded at 146.5 ppm (24 h) and 133.64 ppm 
(48 h). Correspondingly, the Citriodora oil delivered LC50 
values at 45.36 ppm (24 h) and 29.15 ppm (48 h), and LC90 
values at 214.5 ppm (24 h) and 196.3 ppm (48 h) (Table 3). 
Notably, all EOs tested delivered an LC50 value > 500 ppm 
48 h post-treatment and were considered as effective larvi-
cides. The confidence intervals (95%) of the larvae mortal-
ity percentage were also determined. Overall, the results 
showed that the Citriodora and Spearmint oils were effec-
tive if their confidence interval did not overlap and were 
significantly different.

Photomicrography analysis

The fourth instar larvae of the filarial vector showed signifi-
cant abnormalities in their midgut and head position post-
exposure (24 h) to Citriodora and Spearmint oils (Fig. 3). 
Moreover, the midgut epithelial layer, gut lumen, and anal 
segments were severely damaged by the Citriodora oil treat-
ment (Fig. 3B) as compared to that of the control (Fig. 3A). 
Similarly, the head, anal, and midgut segments collapsed 
following the Spearmint oil treatment (Fig. 3C), whereas the 

control appeared normal with a clear head, midgut tissues, 
and anal segment layers.

Histological studies

The mid-gut of the arthropod larvae was subdivided into two 
different regions, each including one characteristic cell type. 
Depending on their stage of development, the clear cells 
displayed different degrees of apical swelling into the gut 
lumen, reducing intercellular contacts with the neighboring 
cells and displaying nuclei and brush border degeneration, 
as shown in the Cx. quinquefasciatus control (Fig. 4H). Dark 
cells showed normal intercellular contacts along the whole 
lateral plasma membranes, normal nuclei, a well-devel-
oped brush border, and a normal adhesive basal lamina, as 
observed in the control sections of Cx. quinquefasciatus.

Four hours post‑treatment

When compared with the control group (Fig. 4I), the Citrio-
dora-treated larvae did not show much change. In the Spear-
mint-treated larvae, even after the 4-h treatment, there were 
signs of gut wall and epithelial cell degeneration and non-
distinct larval segments when compared with the control. In 
addition, the peritrophic membrane also started to undergo 
degeneration (Fig. 4E and F).

Fig. 1   GC–MS chromatogram (retention time and peak area) of A Spearmint oil and B Citriodora essential oil



21616	 Environmental Science and Pollution Research (2024) 31:21610–21631

Table 2   Compounds identified in the Citriodora essential oil through GC–MS analysis

Sl. 
No.

Compound Identified R.T Peak 
Area%

Structure 

1 2-Pentanone, 4-hydroxy-4-

methyl-

3.88 4.49

2 Alpha Pinene 5.71 1.35

3 (5S)-6,6-dimethyl-2-

methylidenebicyclo[3.1.1]

heptane

6.53 2.25

4 Eucalyptol 7.54 1.75

5 Isopulegol 9.48 30.44

6 Citronellal 9.57 9.34

7 (1R,2R,5R)-5-methyl -2-

(prop-1-en-2-yl) 

cyclohexanol

9.86 2.41

8 Citronellol 10.73 17.39
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Eight hours post‑treatment

The analysis of the anterior mid-gut showed a progression 
of swollen clear cells, vacuoles, and degenerated nuclei 
in both oil treatments, with the effect being more pro-
nounced in the Citriodora-treated larvae (Fig. 4B). In the 
posterior mid-gut, disruption of the junctional complexes 

among the dark cells progressed apically, together with 
their cytoplasmic and nuclear lysis, local detachment 
from the basal lamina, and degeneration of microvilli. 
In the Spearmint-treated larvae, the epithelial cells were 
collapsed. Moreover, the epithelial cells showed signs 
of degeneration when compared to those of the control 
(Fig. 4B and I).

Table 2   (continued)

9 3-Hydroxypropanenitrile 12.26 2.06

10 2,6 Octadiene 2,6 dimethyl 12.49 11.08

11 Caryophyllene 13.48 4.59

12 5-(1-bromo-1-methyl -ethyl)-

2 methyl cyclo hexanone

19.22 7.24

13 Bicyclononadiene diepoxide 25.13 2.46

14 Crotonic acid methyl ester 25.73 1.81
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Sixteen hours post‑treatment

Treatment with either EO was followed by severe degenera-
tion of the larval gut cells. Additionally, there was complete 
degeneration of the peritrophic membrane and epithelial cells 
in the Citriodora EO treatment (Fig. 4A–C). The epithelial 

cells showed signs of degeneration in the Citriodora EO-treated 
larvae though the peritrophic membrane was visible (Fig. 4C).

Twenty‑four hours post‑treatment

Maximum epithelial cells are vacuolated and degenerated. 
Gut-histological examination results revealed significant 
toxicity with EOs among the two diverse parts of the mid-gut 
epithelium based on the exposure period. The key cyto-path-
ological changes were outsized vacuoles of dissimilar sizes 
with damaged membranes at the epithelial cell’s apical sides, 
wide cellular damage to the peritrophic membrane and gut 
lumen, and disruption of the brush border cells. Additionally, 
larval segmentation was completely lost, indicating heavy 
necrosis, and the nucleus showed complete dissolution.

Repellent activity

The repellency percentage was significant against both the 
Spearmint and Citriodora oil treatments, up to the maxi-
mum protection time of 210 min. The Spearmint oil treat-
ment delivered a maximum protection percentage (98.4%, 
F4,20 = 27.33, P ≤ 0.001) up to the maximum protection 
period of 210 min (Fig. 5A). In addition, the Citriodora 
EO treatment delivered a significant repellent percentage 

Fig. 2   Mortality of different essential oils against IV instar Cx. 
quinquefasciatus. A Citriodora essential oil treatment post 24  h. B 
Citriodora essential oil treatment post 48 h. C Spearmint essential oil 
treatment post 24  h. D Spearmint essential oil treatment post 48  h. 
Means (± SEM) followed by the same letters above bars indicate no 
significant difference (P ≤ 0.05) according to a Tukey’s test

Table 3   LC50 and LC90 value of different essential oil against Cx. 
quinquefasciatus for 24 h (ppm) and 48 h (ppm). Control, nil mortal-
ity. Significant at P < 0.05 level. LC50, lethal concentration that kill 

50% of the larval population; LC90, lethal concentration that kill 90% 
of the larval population; UCL, upper confidence limit; LCL, lower 
confidence limit; × 2, chi-square

Essential oil Exposure 
time (h)

LC50 (ppm) 95% Fiducial 
confidence limit

LC90 (min) 95% Fiducial 
confidence limit

Slope Intercept R2 Chi-test (χ2) sig

Lower Upper Lower Upper

Spearmint 24 51.00 36.30 71.66 146.51 104.27 205.85 2.83 0.16 0.85 0.649
48 32.99 17.83 61.11 47.36 133.64 458.18 1.48 2.76 0.63 0.336

Citriodora 24 45.36 27.66 78.75 214.5 131.39 350.34 1.89 1.86 0.99 0.993
48 29.15 15.85 53.59 196.36 106.8 360.99 1.55 2.72 0.96 0.967
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Fig. 3   Photomicrograph showing the abnormality of 4th instar Cx. 
quinquefasciatus larvae treated with essential oils after 24 h. A Con-
trol untreated larvae. B Citriodora, alimentary canal brown. C Spear-

mint gut necrosis. H, head; EL, epithelial layer; GL, gut lumen; S, 
segments; AS, anal segments
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Fig. 4   Lateral section (LS) of mid gut of fourth instar of Cx. quinque-
fasciatus larvae treated with Citriodora oil (CO). A Four hours after 
treatment. B Eight hours after treatment. C Sixteen hours after treat-
ment. D Twenty-four hours after treatment. E Larvae treated with 

Spearmint oil 4  h after treatment. F Spearmint oil 8  h after treat-
ment. G Spearmint oil 16 h after treatment. H Spearmint oil 24 h of 
treatment. I Untreated control. PM, peritrophic membrane; GL, gut 
lumen; EL, epithelial layer
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(97.3%, F4,20 = 18.93, P ≤ 0.001) until the maximum protec-
tion time of 210 min (Fig. 5B).

Non‑target toxicity

BeeTox (in silico) screening of EOs

The in silico toxicological screening of the major metabo-
lites of Spearmint and Citriodora EOs showed that all com-
pounds were non-toxic against the honey bee Apis mellifera 
under acute contact toxicity. Despite this, all compounds 
(except isomenthol, eucalyptol, 3-hydroxypropanenitrile, 
5-(1-bromo-1-methyl-ethyl)-2-methyl-cyclohexanone, and 
bicyclononadiene diepoxide) induced acute oral toxicity 
against the bees with a maximum LD50 from caryophyllene 
oxide (194.8894 μg/bee), isomenthone (100.7472 μg/bee), 
and paramethasone (95.2246 μg/bee), respectively (Table 4).

Aquatic predator (in vitro) toxicity screening

The aquatic mosquito predator (Tx. splendens) toxicity test 
showed that the maximum treatment dosage of temephos 
(1 ppm) caused the highest morality rate in the aquatic 
predator (75.4%) and it is significant on other dosages of 
EOs and the control (F4,20 = 14.73, P ≤ 0.001). The highest 
treatment dosage (200 ppm) of the EOs, however, caused 
minimal toxicity in the mosquito predator (Spearmint oil 
(17.2%) and Citriodora oil (15.2%)), respectively) (Fig. 6).

Discussion

Botanical compounds displayed higher ovicidal, larvicidal, 
and repellent actions towards the initial or adult phases of the 
arthropod vectors, disturbing respiratory, endocrine, water 
balance, and nervous systems (Benelli and Cornara 2021; Şengül 

Demirak and Canpolat 2022). Alkaloids, aromatic chemicals, 
and EOs derived from herbs are frequently utilized for botanical-
based natural repellents (Pavela and Benelli 2016). Traditionally, 
EOs have been competently utilized against diverse medically 
challenging insects and crop pests across nations (Sedaghat 
et al. 2011; Sánchez-Gómez et al. 2022). Additionally, they 
are possible replacements for synthetic chemicals generally 
utilized on mosquitoes. EOs are intricate natural blends of 
phyto-compounds that contain volatile molecules, which 
are usually terpenes and sesquiterpenes (hydrocarbons), 
phenylpropenes, and oxygenated hydrocarbons, in different 
ranges (Moemenbellah-Fard et al. 2020; Noorpisheh Ghadimi 
et al. 2020; Osanloo et al. 2020). With the ever-growing interest 
in the use of EOs as an alternative for successful vector control, 
the present study is aimed at understanding and drawing a 
meaningful comparison between the impact of different EOs on 
mosquito larvicidal action, their toxicity, and their effect on the 
histological profile of the hindgut of Cx. quinquefasciatus larvae. 
Based on the LC50 values of the 24-h and 48-h treatments, of 
the different oils studied, Spearmint oil showed an LC50 value 
of 51.38 ppm during the 24-h exposure while that of Citriodora 
was 45.36 ppm. Additionally, in the 24-h treatment, Citriodora 
showed mortality rates of 68% and 74% at 50 and 100 ppm, 
respectively, while Spearmint oil showed the least mortality 
(16%) at a 100 ppm concentration.

To select an efficient EO, two criteria should be met: (i) 
the EOs need to deliver significant mortality rates across the 
standard larvicidal examinations (WHO 2009) to attain a lethal 
concentration (LC50) ≤ 100 ppm, and (ii) phyto-chemicals and 
their peak area percentages should be screened (Pavela 2015). 
Based on these criteria, all EOs tested showed good larvicidal 
potential with a LC50 less than 100 ppm. Comparable studies have 
been conducted by Chaiphongpachara et al. (2020) in screening 
seven marketable herbal oils (East Indian lemongrass, cassia, 
bay, cinnamon, holy basil, ginger, and sweet basil) for their 
larvicidal actions on the Ae. aegypti dengue larvae.
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Table 4   Toxicity of essential oils (Spearmint and Citriodora) ligands against honey bee Apis mellifera using BeeTox free online server. The 
color-coded maps indicate the fragment contributions to toxicity adapted from (BeeTox AI: http://​beeto​xai.​labmol.​com.​br/)

Ligand name Acute oral
Toxicity
(LD50)

Acute contact
toxicity

Contribution Mapping

Spearmint
α-pinene 8.6581 µg/bee Non-toxic (60%)

β-Pinene 12.9874 

µg/bee

Non-toxic (61%)

β-myrcene 3.7208 µg/bee Non-toxic (70%)

3-carene 14.522 µg/bee Non-toxic (65%)

Estragole 5.5982 µg/bee Non-toxic (72%)

http://beetoxai.labmol.com.br/
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Table 4   (continued)

Isomenthone 100.7472 

µg/bee

Non-toxic (86%)

Paramenthasone 95.2246 

µg/bee

Non-toxic (82%)

Isomenthol - Non-toxic (88%)

Carvone 11.6566 

µg/bee

Non-toxic (58%)

δ-cadinene 12.9268 

µg/bee

Non-toxic (71%)

Caryophyllene 

oxide

194.8894 

µg/bee

Non-toxic (73%)
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The results showed that cinnamon oil induced signifi-
cant larvicidal actions with an LC50 (0.03 ppm) and LC90 
(0.04 ppm). The mortality increased with the concentration, 
which was also observed in our study where the mortality 
was dose-dependent. When the treated larvae were visible 

for 48 h in our study, the EOs tested showed low LC50 values 
(less than 50 ppm), indicating progressive toxicity through-
out exposure. Interestingly, when the LC90 values were com-
pared, Spearmint and Citriodora oils showed LC90 values 
of 68.68 and 50.61 ppm, respectively, in a 24-h exposure 

Table 4   (continued)

Citriodora
2-Pentanone, 4-

hydroxy-4-

methyl-

12.8657 

µg/bee

Non-toxic (76%)

(5S)-6,6-

dimethyl-2-

methylidenebicyc

lo[3.1.1]  heptane 

12.9874 

µg/bee

Non-toxic (61%)

Eucalyptol - Non-toxic (70%)

Isopulegol 5.4564 µg/bee Non-toxic (86%)
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period, indicating highly active EOs against mosquito larvae 
(Pavela 2009). The LC90 value is also considered important, 
which most researchers have failed to recognize even though 

it indicates the dosage that delivered the determined decline 
towards the ensuing generations of mosquitoes. When we 
compare the LC90 values between the two EOs, though the 

Table 4   (continued)

Citronellal 15.301 µg/bee Non-toxic (69%)

(1R,2R,5R)-5-

methyl -2-(prop-

1-en-2-yl) 

cyclohexanol

5.4564 µg/bee Non-toxic (86%)

Citronellol 4.8696 µg/bee Non-toxic (65%)

3-

Hydroxypropane

nitrile

- Non-toxic (65%)

2,6 Octadiene 2,6 

dimethyl

7.5822 µg/bee Non-toxic (63%)
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Table 4   (continued)

Caryophyllene 19.3759 

µg/bee

Non-toxic (64%)

5-(1-bromo-1-

methyl -ethyl)-2 

methyl cyclo 

hexanone

- Non-toxic (78%)

Bicyclononadien

e diepoxide

- Non-toxic (72%)

Crotonic acid 

methyl ester

4.4691 µg/bee Non-toxic (71%)

Fig. 6   Non-target toxicity 
of spearmint and citriodora 
essential oils against non-target 
predator Tx. splendens. Means 
(± SEM) followed by the same 
letters above bars indicate no 
significant difference (P ≤ 0.05) 
by using Probit analysis
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24-h LC50 values are quite close for the Citriodora (45.36) 
and Spearmint (51 ppm) oils, the LC90 values are remark-
ably different (146.51 ppm for Spearmint oil and 214.5 ppm 
for Citriodora oil). This indicates that Spearmint oil has a 
greater potential as a larvicide. It is well-proven that larvi-
cidal efficacy, a minimal LC50 value that does not always 
require minimal concentration, is adequate to induce mor-
tality. Likewise, this is true in our case for all EOs, which is 
in agreement with other studies where the estimated LC50 
and LC90 values for EOs derived from Thymus vulgare 
and Satureja hortensis for the Culex larvae were not the 
same (de Morais et al. 2007). In addition, Rattan (2010) 
revealed that the LC50 (36 ppm) and LC90 (47 ppm) dos-
ages were determined for Ae. aegypti larvae post-treatment 
with Piper permucronatum-derived volatile oils. Also, the 
LC50 and LC90 values of the EO derived from Cinnamo-
mum osmophloeum were 36 ppm and 79 ppm, respectively, 
when used against the mosquito vector (Cheng et al. 2004). 
Similarly, the dosages required to attain larval mortality in 
the EO can be determined by diverse aspects including the 
selection of the larval instar, cuticle penetration ability of the 
selected compounds, and ambient temperature, along with 
the mechanistic actions (Tripathi et al. 2003, 2009; Pavela 
et al. 2009; Rattan 2010). These underlying factors could 
explain the difference in mortality of the larvae.

The bioactivity of the EOs towards the arthropod mos-
quito larvae is related to their chemical composition. In 
our study, the major constituents of the selected EOs were 
estragole and carvone for Spearmint oil and citronellal for 
Citriodora oil. Carvone is reported to possess larvicidal 
action, which is similar to the Spearmint oil action in our 
study. These chemicals have also been reported to have 
insecticidal properties (Santos et al. 2011; Govindarajan 
et al. 2012; Bullangpoti et al. 2018). The Eucalyptus spe-
cies, which belongs to the Myrtaceae family, is a prevalent 
harvesting plant in South Asian countries including India, 
South Korea, and Vietnam. Amid the different Eucalyptus 
species, Eucalyptus citriodora-derived EOs are enriched 
with a higher percentage of the bio-active molecule citronel-
lal. Similarly, our phyto-chemical screening of E. citriodora 
oil also revealed a higher peak area percentage in citronellal 
(7.47%), citronellol (4.11%), dl-isopulegol (40.42%), and 
isopulegol (12.14%). Recent studies by Kweka et al. (2016) 
reported the mosquito larvicidal activity of carvone. Earlier 
studies by Rahuman et al. (2008) and Nasir et al. (2015) have 
reported the mosquito larvicidal activity of ( −)-isopulegol 
and other monoterpenes against An. gambiae. Additionally, 
the mosquito larvicidal potential of β-sitosterol was illus-
trated by Ryan and Byrne (1988). The two monoterpenes, 
carvone and ( −)-isopulegol, are among the chemical con-
stituents identified by GC–MS analysis in Spearmint and 
Citriodora oils and they have contributed towards the larvi-
cidal activity of these EOs. While the insecticidal activity 

is attributable to the chemical constituents of the EO tested, 
in most cases, as EOs are complex mixtures of several com-
pounds, the mechanism that causes this activity against 
immature larvae is often difficult to identify because the 
biological effects are due to the individual components act-
ing as synergic mixtures of these components (Maggi and 
Benelli 2018). Previous screenings in the literature mostly 
concluded that CVOs were more active against the insect 
pests as compared to their isolated phyto-compounds. Phe-
nylpropanoids and monoterpene hydrocarbons, recognized 
as the significant compound classes, induced higher larval 
mortality. In our study, carvone and estragole, which are 
present in Spearmint oil, and citronellal and isopulegol, 
present in Citriodora oil, showed good larvicidal activity 
with an LC50 less than or equal to 50 ppm, thus confirm-
ing the constituents responsible for larvicidal performance. 
It is hypothesized that (Enan 2001; Moola et al. 2023) the 
lipophilicity of the components plays an important role in 
larvicidal action, which enhances the passage through the 
cuticle of the insect, thereby generating toxicity as evidenced 
by the greater activity of these EOs in our present study. 
When mosquitoes are exposed to EOs or their constituents, 
the compounds can disrupt their normal nervous system 
function. This disruption can lead to hyperactivity, causing 
the affected insects to exhibit abnormal and erratic behaviors 
(Patrick et al. 2006).

Histopathological observations on the larvae treated with 
the EOs tested showed greater damage to mid-gut cells that 
was progressive over different exposure periods (4-, 8-, 16-, 
and 24-h treatments) compared to no damage in the control. 
In all EOs tested, the damage to the peritrophic membrane, 
epithelial membrane, and foregut, midgut, and hind-gut 
basement membrane regions was well-illustrated. The struc-
tural breakdown resulted in gut lumen leakage and led to 
major functional malformations. These were mainly due to 
the volatile constituents present in the EOs such as carvone 
in Spearmint, and citronellal and dl-isopulegol in Citrio-
dora. Moreover, our results are similar to those of previous 
reports (Thanigaivel et al. 2018; Chellappandian et al. 2019; 
Karthi et al. 2020). The degenerative effect of the midgut 
cells in all Spearmint- and Citriodora-treated larvae seems 
to agree with the study of intense degenerative reactions 
in the anterior, posterior, and thorax midgut regions of Ae. 
aegypti larvae caused by targeting ion transporting cells in 
the gastric caeca of the thorax region and the posterior and 
anterior midgut of the epithelial cells where osmoregulation 
connected machineries including H + V-ATPase are signifi-
cantly expressed in the dengue mosquito larvae (Volkman 
and Peters 1989). Overall, the essential components (mainly 
terpenes and sesquiterpenes) act against larvae in modulat-
ing the detoxification enzyme coupled with a cytotoxic effect 
in the immature stages, bringing about greater susceptibility 
to Spearmint and Citriodora EOs.
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By examining various biological endpoints, includ-
ing different species and life stages, non-target toxicity 
screening provides a more comprehensive understanding of 
the potential risks associated with a chemical (Vasantha-
Srinivasan et al. 2016; Ponsankar et al. 2016). Non-target 
toxicity screening helps assess the impact of chemicals on 
ecosystems, including aquatic and terrestrial environments. 
This is crucial for protecting biodiversity and maintaining 
the health of natural ecosystems (Pisa et al. 2015; Sten-
rod et al. 2016). Our present screening of Spearmint and 
Citriodora EOs against the non-target mosquito predator 
had less impact or harmless actions as compared to that of 
the commercial chemical. This information can be used for 
understanding the non-target effects of botanical oils and 
allows for the development of appropriate risk mitigation 
measures to minimize environmental impact. Moreover, in 
silico toxicity predictions enable the early identification of 
potentially hazardous compounds, allowing researchers and 
regulators to prioritize chemicals for further investigation 
or regulatory scrutiny (Zulkifli et al. 2023). The present in 
silico predictions of the major metabolites of Spearmint and 
Citriodora using the BeeTox server offer a valuable and effi-
cient approach to assessing the potential non-toxic impact 
of phyto-chemicals, thus contributing to advancements in 
safety assessment, regulatory compliance, and ethical con-
siderations in scientific research and product development.

Conclusions

The two EOs studied for their larvicidal effects indicated 
that Spearmint oil is more toxic to larval stages due to its 
larvicidal action as well as its considerable mortality rate 
when the larvae are exposed for longer periods (48 h). In 
search of alternative strategies for mosquito larval control, 
the use of plant-based EOs like Spearmint and Citriodora 
oils, along with integrated mosquito management strategies, 
will provide a sustainable solution. Moreover, the EOs deliv-
ered minimal or less toxicity against the aquatic predator Tx. 
splendens (in vitro) and honey bees (in silico). Moving for-
ward, exploring the mechanisms of action of these EOs and 
their individual components can provide valuable insights. 
Furthermore, investigating the toxicity of individual chemi-
cals within the EOs and their impact on key detoxifying 
enzymes in dengue larvae can deepen our understanding 
of the intricate interactions involved in mosquito control. 
This avenue of research holds significant promise for the 
development of targeted and efficient mosquito control 
strategies. Overall, the study highlights the potential use of 
natural commercial oils as effective larvicidal agents and 

emphasizes the importance of integrating plant-based EOs 
into mosquito management practices.
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