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Abstract
The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioac-
tive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 
was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent 
with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid 
adsorption capacity (403.4 mg·g−1) at pH = 6.0 because of abundant holey structure and mighty chelation for oxime groups 
with U(VI) ions. PCN-222-OM also exhibited outstanding selectivity and reusability during the adsorption. The XPS spectra 
authenticated the -NH and oxime groups which revealed a momentous function. Concurrently, PCN-222-OM also possessed 
good antimicrobial activity, antibiofouling activity, and environmental safety; adequately decreased detrimental repercussions 
about bacteria and Halamphora on adsorption capacity; and met non-toxic and non-hazardous requirements for the applica-
tion. The splendid antimicrobial activity and antibiofouling activity perhaps arose from the  Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 
clusters and rich functional groups within PCN-222-OM. Originally proposed PCN-222-OM was one potentially propitious 
material to recover U(VI) in wastewater on account of outstanding adsorption capacity, antimicrobial activity, antibiofouling 
activity, and environmental safety, meanwhile providing a newfangled conception on the construction of peculiar efficient 
adsorbent.
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Introduction

Recently, the energy is very limited, but the demand for 
it is on the increase (Li et al. 2021a; Wang et al. 2021a). 
As a low-carbon and great-density energy, nuclear energy 
is becoming increasingly important, which can fully meet 

the energy demand in the contemporary world and lessen 
environmental destruction (Willauer et al. 2015). With the 
booming advancement of nuclear energy, uranium (U(VI)) 
requirements are also on the rise globally (Yan et al. 2011; 
Lin et al. 2022). While U(VI) plays a vital role in the nuclear 
energy, it is baleful to human health and can cause varied 
environmental problems as a result of strong toxicity and 
radioactivity (El-Din et al. 2018; Singh et al. 2021). Thereby, 
the U(VI) recovery in wastewater is great importance to 
environmental protection, and it is also very essential to seek 
novel adsorbents to efficiently recover U(VI) in wastewater.

Nowadays, numbers of technologies were employed in 
recovering U(VI) ions out of wastewater (Khedr 2015; Li 
et al. 2017a, 2020a; Tolkou et al. 2020; Bi et al. 2021; Liu 
et al. 2021; Chen et al. 2022; Xue et al. 2022). Among 
the many existing technologies, the adsorption has been 
acknowledged as a very efficient means for convenient 
operation, security, practicability, and ecological pro-
tection (Anirudhan and Jalajamony 2013; Arica and 

Responsible Editor: Tito Roberto Cadaval Jr

Highlights 
1. New adsorbent PCN-222-OM was developed based on 
directed molecular structure design.
2. PCN-222-OM had good environmental safety and antimicrobial 
and antibiofouling activity.
3. PCN-222-OM showed outstanding U(VI) adsorption capacity; 
Qe reached 403.4 mg·g−1.
4. Adsorption mechanism was the co-effect of coordination and 
electrostatic interaction.
5. PCN-222-OM possessed great potential to efficiently recover 
U(VI) from wastewater.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-024-32208-1&domain=pdf
http://orcid.org/0000-0001-6068-8140


16555Environmental Science and Pollution Research (2024) 31:16554–16570 

Bayramoglu 2016). Undoubtedly, the key to adsorption 
method is to exploit new and effectual adsorbents to ame-
liorate adsorption performance (Bi et al. 2022). U(VI) 
adsorbents of sorts such as organic polymers, inorganic 
materials, biological materials, covalent organic frame-
works (COFs), and MOFs were utilized in wastewater 
(Yang et al. 2019; Ma et al. 2020; Li et al. 2020b, 2021b; 
Liang et al. 2021). Among them, MOFs attracted wide-
spread interest for its glorious framework stability, specific 
surface area, and regular porousness (Carboni et al. 2013; 
Wang et al. 2015; Li et al. 2017b). Quite a few scholars 
have designed and synthesized various MOF-based adsor-
bents with magnificent U(VI) adsorption performances 
from wastewater (Li et al. 2018; Zhang et al. 2019a; Wang 
et al. 2021b). However, many microorganisms in wastewa-
ter can exert significant detrimental impacts upon adsorp-
tion capacity for MOF-based adsorbents (Park et al. 2016). 
The reason for the greatly reduced adsorption performance 
is that microorganisms can be attached to the adsorbent’s 
surface and multiply in its internal pores, thus blocking 
the pores and covering the active sites of U(VI) adsorp-
tion (Mei et al. 2022; Wang et al. 2022). Consequently, it 
is very necessary to devise an innovative adsorbent with 
conspicuous adsorption capacity and antimicrobial activ-
ity for authentic wastewater treatment.

A Zr-based MOF with the name of PCN-222 was thought 
to be an optimistical MOF to design enormously efficacious 
U(VI) adsorbents because of subsequent superiorities (Feng 
et al. 2012). Firstly, the synthesis procedure of PCN-222 is 
uncomplicated and its preparation process is non-polluting 
to the environment (Liu et al. 2020a). Secondly, PCN-222 
can be easily modified by the introduction of solvent-assisted 
ligands (Li et al. 2019). Thirdly, in comparison with other 
MOFs, PCN-222 has more lasting biggish channels, pre-
ferred metal combining competence and acid–base-resisting 
peculiarities, which can exhibit a good U(VI) adsorption 
performance in a broad range of pH values (Yang et al. 
2021). Fourthly, PCN-222 possessed a certain antimicrobial 
activity at the presence of  Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 
clusters, reducing the damaging impact of microorganism on 
U(VI) adsorption performance (Aguado et al. 2014; Zheng 
et al. 2020). Thus, PCN-222 is a promising MOF with regard 
to high-efficiency U(VI) adsorbent exploitation from waste-
water. Moreover, highly efficient chelating groups are also 
important as to the construction of efficient U(VI) adsor-
bents (Bai et al. 2020a; Zeng et al. 2021; Liu et al. 2022). 
It is well-known that the amidoxime group has excellent 
U(VI) selectivity and has been widely applied to adsorp-
tion, but the synthesis of amidoxime groups required highly 
poisonous cyanide, incurring significant risks for environ-
ment and human health (Paz et al. 2010; Kandre et al. 2013; 
Rahman et al. 2016). In comparison with amidoxime groups, 
the oxime-group raw materials are non-toxic and harmless 

(Damljanovic et al. 2006). More importantly, the oxime 
group also has exhibited outstanding selective adsorption 
performances to U(VI) ions (Tian et al. 2011).

In view of this, a novel adsorbent (PCN-222-OM) with 
outstanding U(VI) adsorption capacity and antimicrobial 
activity was synthesized through PCN-222 oxime func-
tionalization founded on the directed molecular structure 
design to recover U(VI) from wastewater for the environ-
mental protection and pollution control. PCN-222-OM 
with plenteous oxime groups possessed glorious U(VI) 
adsorption capacity and selectivity under weak acid con-
dition, which also had high selective U(VI) removal rate, 
and the residual U(VI) concentration after adsorption 
could meet discharge standards. The potential adsorption 
mechanism was considered to be a comprehensive conse-
quence of coordination and electrostatic interaction; the 
N–H and oxime groups fulfilled a momentous function 
in adsorption process of PCN-222-OM. Simultaneously, 
PCN-222-OM also possessed outstanding antimicrobial 
activities against E. coli and Staphylococcus aureus, which 
effectively reduced negative impacts upon the adsorption 
performances. All in all, PCN-222-OM was an auspicious 
adsorbent to recover U(VI) from wastewater for the envi-
ronmental protection and pollution control, which also 
provides a fresh mind as for the construction of efficient 
adsorbent.

Experimental

PCN‑222‑AD and intermediate synthesization

The activated PCN-222 and PCN-222-NH2 were synthe-
sized throughout solvothermal method based on previ-
ous literatures (He et al. 2018; Li et al. 2019). The course 
was documented in supporting documents (Section S3). 
Thereupon, PCN-222-NH2 (0.05  g) was allocated to 
mixed toluene solution (35 mL) containing racemic-2,2′-
bis(diphenylphosphino)-1,1′-binaphthyl (BINAP) and 
tris(dibenzylideneacetone)dipalladium  (Pd2(dba)3) under 
 N2 condition to acquire an even mixed solution. Whereaf-
ter, 5 mL toluene containing 3-bromopropanal (0.3 g) was 
injected into the mixed solution mentioned above, which 
was warmed to 100 ℃ and reacted under  N2 condition for 
48 h. The suspension was under centrifugation and cleansed 
by toluene, methanol, and deionized water ordinally; PCN-
222-AD was attained after resulting deposition dried out at 
50 °C.

PCN‑222‑OM synthesization

Synthesized PCN-222-AD (0.5 g) had been dispersed to 
methanol/deionized water (1:1, v:v, 30 mL),  NH2OH·HCl 



16556 Environmental Science and Pollution Research (2024) 31:16554–16570

(2.0 g), and  Na2CO3 (0.9 g) continuously added with stir-
ring. After 24 h of refluxing at 70 °C, the suspension was 
separated and cleansed in methanol and deionized water 
ordinally. After drying up the clean deposition at 60 °C 
overnight, PCN-222-OM was achieved.

Batch adsorption and regeneration experiments

The influences of various factors on adsorption perfor-
mances were investigated, which mainly included pH value, 
initial U(VI) concentration, adsorbent dosage, contact time, 
and temperature. Relevant detail was displayed under sup-
porting information file (Section S4). Furthermore, the des-
orption and regeneration experiments were also done and 
the procedures are demonstrated in Section S5 of supporting 
information file.

Adsorption in simulated nuclear industry 
wastewater

The simulated nuclear industry wastewater samples with 
different U(VI) concentrations were prepared in accord-
ance with a shop inspection report about nuclear fuel-ele-
ment-plant wastewater, to evaluate the selective adsorption 
capacity of PCN-222-OM to U(VI) ions. The specific steps 
of adsorption experiments in simulated nuclear industry 
wastewater are displayed in Section S6 of the supporting 
information file.

Antimicrobial activity experiments

PCN-222-OM as well as intermediate antimicrobial activity 
about E. coli and S. aureus were measured in accordance 
with our group’s previous researches (Bi et al. 2023). The 
related experiments conducted in this study mainly included 
minimum inhibitory concentration (MIC), inhibition zone 
test, and inhibition of bacterial growth curve. The specific 

steps of antimicrobial activity experiments are displayed in 
Section S7 of the supporting information file.

Result and discussions

Synthetic process of PCN‑222‑OM

A schematic diagram about PCN-222-OM synthesis is exhib-
ited in Fig. 1. First of all,  Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 
clusters within PCN-222 were modified by aminomethyl-
phosphonic acid to obtain PCN-222-NH2 with abundant 
amino  groups. Secondly, 3-bromopropanal was used as a 
modifying agent to convert amino groups into aldehyde 
groups and PCN-222-AD was obtained. Finally, in order 
to produce oxime groups, PCN-222-AD was ulteriorly con-
verted through the oximation reaction and PCN-222-OM 
was triumphantly obtained.

Morphology

TEM images and TEM-EDS mappings for PCN-222 and 
PCN-222-OM are evinced in Fig. 2; PCN-222 had a tubular 
structure at 2.3 μm length and obvious crystal lattices at 
more enormous magnification. After oxime modification, 
PCN-222-OM was much coarser than the initial PCN-222, 
yet its framework structure, crystal lattice, and dimension 
essentially stayed unchanged. TEM-EDS mappings demon-
strated the well-proportioned distribution for C, N, O, Zr, 
and P elements inside PCN-222-OM, and the uniformed P 
element distribution proved PCN-222 oximation modifica-
tion was possibly successful.

Structures

FT‑IR analysis

Figure 3a illustrated the FT-IR spectra about PCN-222-OM 
and its intermediates; PCN-222 characteristic peaks were 

Fig. 1  Schematic diagram of synthetic procedures of PCN-222-OM
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stationed at 2923, 1709, 1641, 1604, 1550, 1403, 965, 800, 
and 720  cm−1 severally, identical to literature data (Jia 
et al. 2019). After PCN-222 amination modification, two 
fresh peaks appeared at 1148 and 992  cm−1 on account of 
-NH2 and P-O group stretching vibrations apart, evincing 
the -NH2 groups which were triumphantly transplanted 
on PCN-222 (Bi et al. 2023). As far as PCN-222-AD was 

concerned, the peak intensity of -NH2 stretching vibration 
at 1148  cm−1 dropped and the one of C = O groups local-
ized at 1603  cm−1 increased, and a fresh peak formed at 
1101  cm−1 because of -C-N–C group stretching vibration, 
betokening a total transition from -C-NH2 to -C-N–C, and 
PCN-222-AD was prepared (Sharma et al. 2005; Yamauchi 
et al. 2013). After the oximation modification, two fresh 

Fig. 2  a TEM image and TEM-
EDS mappings of PCN-222 (O, 
N, Zr, C). b TEM image and 
TEM-EDS mappings of PCN-
222-OM (C, O, N, Zr, P)

Fig. 3  The chemical structure 
characterizations of PCN-
222-OM and its intermediates. 
a FT-IR. b XRD. c XPS. d  N2 
adsorption–desorption isotherm
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peaks arose at 3328 and 1020  cm−1 in PCN-222-OM com-
pared to PCN-222, owing to the stretching vibration of 
the associating -OH and N–O in C = N–OH groups (Mei 
et al. 2021).

XRD analysis

In Fig. 3b, several diffraction peaks were located at 2Theta 
of 4.8°, 7.1°, 8.2°, 9.2°, and 14.4° in PCN-222 XRD pat-
tern, basically in accord with the literature data, proving 
the PCN-222 was successfully synthesized (Zhang et al. 
2016). In comparison with PCN-222, the diffraction peak 
positions of PCN-222-OM and its intermediates were basi-
cally unchanged, demonstrating PCN-222 crystal structure 
was undamaged in multistep modifications.

XPS analysis

In order to prove that the oximation modification on PCN-
222 was successful, the XPS analysis was conducted and 
the results are demonstrated in Fig. 3c. PCN-222 mainly 
comprised of C 1s, N 1s, O 1s, and Zr 3d. After oximation 
modification, PCN-222-OM mainly comprised of C 1s, 
O 1s, N 1s, P 2p, and Zr 3d. P element appearance was 
due to the use of aminomethylphosphonic acid modifier in 
the modification process. After the oxime modifications, 
the main introduced functional groups were C = N–OH 
groups, so the N 1s spectra were detailedly analyzed. As 
indicated in Fig. S1, three peaks in PCN-222 N 1s high-
resolution spectrum originated from C = N groups (397.2 

eV), C-N groups (399.4 eV), and -NH groups (401.3 eV) 
respectively (Yi et al. 2019; Guo et al. 2021). A novel peak 
at 399.3 eV after the oximation modification was the cause 
of newly generated C = N–OH groups (Zhu et al. 2022).

BET analysis

The evident hysteresis phenomena were observed in the 
adsorption/desorption isotherms of PCN-222 and PCN-
222-OM (Fig.  3d), matching with archetypal type IV, 
demonstrating mesoporous structure came into existence 
in PCN-222 and PCN-222-OM (Liu et al. 2015; Bai et al. 
2020b). The related parameters about adsorption/desorption 
isotherms are also summarized in the Table 1 and Fig. S2. 
Specific surface area and main pore size of PCN-222-OM 
were 1160  m2·g−1 and 3.5 nm apart, which were smaller than 
those of PCN-222 (2546  m2·g−1 and 3.7 nm) now that gen-
erated oxime groups occupied and blocked the pore space 
of PCN-222 (Wu et al. 2018; Amini et al. 2021). Although 
the introduction of oxime groups caused a fall for PCN-222 
specific surface area and pore size, it was valuable for pow-
erful adsorption.

Uranium (VI) adsorption assay

pH effect

As seen from Fig. 4a, the pH values were highly influential 
in adsorption performance over PCN-222-OM and interme-
diates. PCN-222 adsorption capacity cumulated fleetly at 
pH = 2.0–4.0 and fell at pH = 4.0–10.0. PCN-222 maximum 
adsorption capacity was 361.4 mg·g−1. Adsorption capaci-
ties of PCN-222-NH2 and PCN-222-AD registered the same 
trends while pH values made changes. Their adsorption 
capacities increased largely at pH = 2.0–5.0 and afterwards 
fell throughout pH = 5.0–10.0. The maximum adsorption 
capacity of PCN-222-NH2 and PCN-222-AD was 314.5 
and 306.1 mg·g−1 at pH = 5.0 apart. PCN-222-OM maxi-
mum adsorption capacity was 403.4 mg·g−1 at pH = 6.0, 
much larger than its intermediates. Moreover, the main 

Table 1  N2 adsorption/desorption parameters of PCN-222 and PCN-
222-OM

Sample Specific surface area 
 (m2·g−1)

Main pore 
size (nm)

PCN-222 2546 3.7
PCN-222-OM 1160 3.5

Fig. 4  a Effect of pH value on 
the U(VI) adsorption capaci-
ties of PCN-222-OM and its 
intermediates (T = 25 ℃, t = 6 
h, m/V = 0.2 g·L−1, C0 = 100 
mg·L.−1). b The distribution of 
U(VI) hydroxide species under 
different pH values (1–14)
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U(VI) existent forms within pH = 1.0–14.0 were inves-
tigated. In Fig. 4b, major species in U(VI) solution were 
 UO2

2+,  UO2(OH)+, and  (UO2)3(OH)5
+ with positive charge 

at pH ≤ 7.0. With further increase of pH (7.0–10.0), the pre-
dominant U(VI) forms were  (UO2)3(OH)7

−,  UO2(OH)3
−, 

and uranyl carbonates. Simultaneously, PCN-222 and 
PCN-222-OM zeta potential at pH = 2.0–10.0 was tested. 
PCN-222 had a positive surface charge below pH = 3.4 and 
a negative one at higher pH values (Fig. S3). The surface of 
PCN-222-OM was positively charged under pH = 5.2; nev-
ertheless, its surface charge turned negative with pH value 
further rise. Therefore, there appeared a forceful repulsion 
between protonated PCN-222-OM and positive-charge 
U(VI) species in low pH range, resulting in poor adsorp-
tion capacity under low pH (Zhang et al. 2005). Progressive 
deprotonation of the oxime groups with increasing pH val-
ues accounted for increasing adsorption capacity. Yet, PCN-
222-OM adsorption capacity dwindled as pH value appre-
ciated to larger degrees as PCN-222-OM surface charge 
turned positive into negative, creating a big electrostatic 
repulsion with electronegative U(VI) species at high pH (Li 
et al. 2015). Briefly, PCN-222-OM superlative adsorption 
pH value was 6.0 and maximum adsorption capacity was 
403.4 mg·g−1.

Adsorbent dosage effect

Considering U(VI) removal rate and cost performance, it 
was crucial to find the best adsorbent dosage. In our explora-
tion, various PCN-222-OM dosages (m/V = 0.05–0.3 g·L−1) 
were placed inside 50 mL solution with 100 mg·L−1 origi-
nal concentration. In Fig. 5, adsorption capacity was eroded 
with a constant increase in PCN-222-OM dosage. PCN-
222-OM adsorption capacities were 596.6 and 273.2 mg·g−1 

at m/V = 0.05 and 0.3 g·L−1 apart. Additionally, removal rate 
boosted swiftly with PCN-222-OM dosage increase and 
almost remained unchanged at m/V = 0.2 g·L−1. This reason 
for changing trends was that adsorption site quantities rose 
with constant increase in PCN-222-OM dosage when the 
m/V value was under 0.2 g·L−1. However, a big competitive 
effect and spatial site resistance between adsorbents caused 
difficulty binding PCN-222-OM and U(VI) ions together at 
m/V > 0.2 g·L−1, so further increasing PCN-222-OM dosage 
could not help to significantly improve its U(VI) removal 
rate (Wang and Guo 2020; Zhu et al. 2021a). Fig. S4 illus-
trates the influence of PCN-222 dosage upon its adsorption 
ability and removal rate, which had identical trend with 
PCN-222-OM. Therefore, m/V = 0.2 g·L−1 was nominated 
as adsorbent dosage during the following tests.

Adsorption isotherms

The adsorption capacities and removal rates of PCN-222 and 
PCN-222-OM at divergent initial U(VI) concentrations (C0) 
were explored. In Fig. 6, adsorption capacities increased rap-
idly with C0 rise. The growth rate of adsorption capacity 
was greater below C0 = 100 mg·L−1. Afterwards, it decreased 
above C0 = 100 mg·L−1, which proved adsorption processes 
of PCN-222 and PCN-222-OM achieved balances. Addition-
ally, the maximum removal rates over PCN-222 and PCN-
222-OM were 56.8% and 92.0% at C0 = 0.5 mg·L−1 accord-
ingly, which progressively fell with C0 further increase. The 
removal rate dropped dramatically in C0 = 100–200 mg·L−1, 
presumably because PCN-222 and PCN-222-OM adsorption 
processes reached saturation (Dan et al. 2016).

Langmuir and Freundlich models, illustrated as Eqs. 
(S3–S4), were also applied to clarify adsorption processes 
of PCN-222 and PCN-222-OM. Involved constants are 

Fig. 5  Effect of PCN-222-OM dosage on the U(VI) adsorption capac-
ity and removal rate (T = 25 ℃, t = 6 h, V = 50 mL, C0 = 100 mg·L.−1, 
pH = 6.0)

Fig. 6  Effect of initial concentration on the U(VI) adsorption capacity 
and removal rate of PCN-222 and PCN-222-OM (T = 25 ℃, t = 6 h, 
m/V = 0.2 g·L.−1, pH = 6.0)
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summarized in Table 2. As for PCN-222-OM, the R2 values of 
Langmuir and Freundlich models were 0.991 and 0.984 at 25 
℃ singly. Langmuir model’s R2 value was bigger than Freun-
dlich model’s, denoting monolayer adsorption brought U(VI) 
adsorption process under control. Furthermore, the Langmuir 
model (R2 = 0.995) of PCN-222 was more fit than the Fre-
undlich model (R2 = 0.985), saying the PCN-222 adsorption 
process was also a monolayer adsorption (Chen et al. 2021).

Adsorption kinetics

With an advance of contact time, adsorption capacities for 
PCN-222 and PCN-222-OM considerably escalated and 
attained equilibrium at 360 min (Fig. 7a). The maximum 
adsorption capacities for PCN-222 and PCN-222-OM were 
221.5 and 403.4 mg/g separately. Pseudo-first-order and 
pseudo-second-order models (Eqs. (S8–S9)) were put into 
practice to explore mechanisms. Simultaneously, correla-
tive coefficients are also generalized in Table 3, which dem-
onstrated pseudo-second-order model (R2

PCN-222 = 0.965, 
R2

PCN-222-OM = 0.992) more precisely abided by the data than 

the other model (R2
PCN-222 = 0.819, R2

PCN-222-OM = 0.876), 
proving the chemical adsorption was a controllable step in 
PCN-222 and PCN-222-OM adsorption processes (Shi et al. 
2020).

Adsorption thermodynamics

In Fig.  8, adsorption capacities of PCN-222 and PCN-
222-OM progressively aggrandized as the temperature went 
up, proving the high temperature was valuable for PCN-
222-OM adsorption (Xie et  al. 2017). Thermodynamic 
parameters are numerated by Eqs. (S5–S7) and recorded in 
Table S1. Positive ΔH and ΔS values indicated the process 
was endothermic and randomness increased within solid-
solution interface (Liu et al. 2018). When temperatures 
increased, the ΔG values turned more negative, demonstrat-
ing a spontaneous process (Akkaya 2013).

Selectivity of PCN‑222‑OM

U(VI) selectivity of PCN-222-OM was explored in 
complex multiple-metal-ion environment. The primary 

Table 2  Langmuir and 
Freundlich isotherm parameters 
for U(VI) adsorption on 
PCN-222 and PCN-222-OM 
(C0 = 100 mg·L−1, T = 25 ℃, 
m/V = 0.2 g·L−1, pH = 6.0)

Sample Langmuir model Freundlich model

Qm (mg·g−1) KL (L·mg−1) R2 KF (mg·g−1)·(L·mg−1)1/n n R2

PCN-222 97.7 0.067 0.995 e1.66 1.199 0.985
PCN-222-OM 238.5 0.240 0.991 e3.37 1.262 0.984

Fig. 7  a Effect of contact time on the U(VI) adsorption capacities of PCN-222 and PCN-222-OM. b Pseudo-first-order model fitting curve. c 
Pseudo-second-order model fitting curve (T = 25 ℃, C0 = 100 mg·L−1, m/V = 0.2 g·L.−1, pH = 6.0)

Table 3  Pseudo-first-order kinetic and pseudo-second-order kinetic coefficients for U(VI) adsorption on PCN-222 and PCN-222-OM (C0 = 100 
mg·L−1, m/V = 0.2 g·L−1, pH = 6.0, T = 25 ℃)

Sample Pseudo-first-order Pseudo-second-order

Qe (mg·g−1) k1  (min−1) R2 Qe (mg·g−1) k1 (g·mg−1·min−1) R2

PCN-222 1085.8 0.019 0.819 518.1 3.2 ×  10−6 0.965
PCN-222-OM 1556.2 0.021 0.876 543.5 1.3 ×  10−5 0.992
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concentrations of applied co-existing cations were 
all 10 mg·L−1. PCN-222-OM possessed very high 
U(VI) selectivity when other cations were co-existing 
(Fig. 9). PCN-222-OM owned still higher removal rate 
for U(VI) ions (80.9%) than for other cations, prov-
ing PCN-222-OM had the highest U(VI) selectivity. 
Meanwhile, the influences of various co-existing anions 
 (NO3

−,  CO3
2−,  PO4

3−, and  SO4
2−) on U(VI) removal rate 

were also under investigation and results are evinced 
in Fig. S5. The presence of anions brought about lit-
tle impact upon U(VI) removal rate for PCN-222-OM, 

which also reflected the excellent U(VI) selectivity of 
PCN-222-OM.

Recyclability of PCN‑222‑OM

For continuable development, the recyclability of PCN-
222-OM was explored. The experimental procedures about 
recyclability are itemized in supplemental file. In Fig. 10, 
the adsorption capacity declined only marginally in the 
fifth cycle in comparison with the first cycle. PCN-222-OM 
adsorption capacity still remained 391.8 mg·g−1 in the fifth 
cycle, demonstrating the eminent U(VI) recyclability of 
PCN-222-OM. Meanwhile, XRD and TEM results (Figs. S6 
and S7) revealed that PCN-222-OM-U crystalline and mor-
phology were well maintained through adsorption, reflecting 
marvelous stability and recyclability of PCN-222-OM.

Simulated nuclear industry wastewater test

For evaluating U(VI) selectivity of PCN-222-OM, simulated 
nuclear industrial waste samples of different U(VI) concentra-
tions were prepared in accordance with a report about fuel-
element-plant wastewater (Table S2). As illustrated in Fig. 11, 
PCN-222-OM possessed excellent U(VI) adsorption perfor-
mances in the simulated fuel-element-plant wastewater sam-
ples of dissimilar U(VI) concentrations (10, 50, and 500 μg/L) 
and removal rates accomplished 48.0%, 54.2%, and 78.6% 
respectively, which proved the PCN-222-OM was prospec-
tive U(VI) adsorbent in complex nuclear industry wastewater.

Adsorption mechanism

Various characterizations were used for reconnoitering PCN-
222-OM adsorption mechanism. In Fig. S6, PCN-222-OM 

Fig. 8  Effect of adsorption temperature on U(VI) adsorption capaci-
ties of PCN-222 and PCN-222-OM (t = 6 h, C0 = 100 mg·L−1, 
m/V = 0.2 g·L.−1, pH = 6.0)

Fig. 9  Effect of co-existing cations on the U(VI) removal rate of 
PCN-222-OM (T = 25 ℃, C single cation = 10 mg·L−1, m/V = 0.2 g·L.−1, 
pH = 6.0, t = 6 h)

Fig. 10  The recyclability of PCN-222-OM in the U(VI) adsorption 
(T = 25 ℃, C0 = 100 mg·L−1, m/V = 0.2 g·L.−1, pH = 6.0, t = 6 h)
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XRD diffraction pattern remained essentially unchanged 
through U(VI) adsorption, manifesting crystalline struc-
ture did not show any considerable change in adsorption. 
As described in the FT-IR spectra (Fig. S8), compared with 
the original PCN-222-OM, the PCN-222-OM-U showed a 
characteristic vibration of O = U = O at 927  cm−1, probably 
because of the interaction between the adsorption active 
sites and U(VI) ions. Furthermore, the XPS spectra and 
adsorption energy simulation calculations were carried out 
for elucidation adsorption mechanism of PCN-222-OM in 
depth. Figure 12a emerged the U 4f peaks arose through 

PCN-222-OM U(VI) adsorption, which could be farther 
diverged into miscellaneous peaks. Two peaks in the U 4f 
high-resolution spectrum for PCN-222-OM-U were ascribed 
to U  4f5/2 (392.9 eV) and U  4f7/2 (382.1 eV), demonstrating 
PCN-222-OM successfully sorbed U(VI) ions (Perry 2015). 
Meanwhile, four peaks manifested in N 1s high-resolution 
spectrum for PCN-222-OM (Fig. 12c) were C = N  (H2TCPP) 
(397.2 eV), C-N (399.3 eV), C = N–OH (399.4 eV), and -NH 
(401.6 eV). After adsorption equilibrium, binding energy 
position for C = N–OH and -NH migrated approximately 1.6 
eV and 0.3 eV apart, indicating C = N–OH and -NH groups 
were essential within adsorption process.

Meanwhile, adsorption energy calculations were car-
ried out to explore interactions between functional groups 
within PCN-222-OM and U(VI) ions. Grounded on XPS 
analysis, C = N–OH and -NH groups were studied. In Fig. 13, 
their adsorption energies to U(VI) ions were − 9.527 eV 
and − 4.674 eV severally. In comparison with the -NH groups, 
the C = N–OH groups had stronger adsorption energy, proving 
they were dominating adsorption sites to U(VI) ions in PCN-
222-OM. The -NH groups were secondary adsorption sites in 
the adsorption process of PCN-222-OM.

Antimicrobial activity appraisement

Minimum inhibitory concentration (MIC)

The antimicrobial activities for PCN-222-OM against E. 
coli and S. aureus were assessed via MIC tests. Bacterial 

Fig. 11  The U(VI) adsorption performance of PCN-222-OM from 
simulated nuclear industry wastewater samples with different U(VI) 
concentrations (10, 50, and 500 μg·L.−1)

Fig. 12  a The full-scale XPS 
spectra of PCN-222-OM before 
and after U(VI) adsorption. b U 
4f spectrum of PCN-222-OM 
after U(VI) adsorption. (c) N 
1s spectrum of PCN-222-OM 
before U(VI) adsorption. (d) N 
1s spectrum of PCN-222-OM 
after U(VI) adsorption
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suspension and solvent of the selfsame concentration were 
regarded as positive and negative control correspondingly. 
Figure 14 demonstrates that PCN-222-OM had evidence 
about great antimicrobial activity against E. coli and S. 
aureus. MIC values of PCN-222-OM against E. coli and S. 
aureus were 39.1 and 19.6 μg·mL−1 accordingly, evincing 
the outstanding antimicrobial activities of PCN-222-OM, 
providing assurance for efficient U(VI) extraction from com-
plex environments.

Inhibition zone test

As displayed in Fig. 15, most samples possessed signifi-
cant inhibition zones against E. coli and S. aureus after a 
24-h incubation. PCN-222-OM zone diameters for E. coli 

and S. aureus were 15.9 and 14.1 mm apart. By contrast, 
PCN-222-NH2 and PCN-222-AD had larger inhibiting zones 
against E. coli and S. aureus than PCN-222, demonstrating 
introduced functional groups could improve the antimicro-
bial activity and permeability to a certain extent. Simultane-
ously, PCN-222-OM possessed the largest inhibition zone 
diameters compared with other intermediates, demonstrating 
its eminent permeabilities and antimicrobial activities over 
E. coli and S. aureus.

Inhibition of bacterial growth

PCN-222-OM inhibitions against E. coli and S. aureus 
multiplication were evaluated via  OD600 values within 
different dosage concentrations (20–320 μg·mL−1). 

Fig. 13  Adsorption energy 
calculations between U(VI) 
ions and multifarious functional 
groups in PCN-222-OM (a) 
C = N–OH groups and (b) -NH 
groups

Fig. 14  The MIC values of PCN-222-OM and its intermediates against a E. coli and b S. aureus 
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Lower  OD600 values indicated lower bacterial concen-
trations and better antimicrobial activity. As seen from 
Fig. 16, there were no significant inhibitions against 
E. coli and S. aureus build-up while the PCN-222-OM 
concentration was below 20 μg·mL−1. PCN-222-OM did 
not produce significant inhibitions against E. coli and S. 
aureus multiplication until concentration range further 
increased to 40–160 μg·mL−1. Subsequently, they nearly 

stopped growing until the concentration was increased 
to 320 μg·mL−1. Bacteria growth curves proved that the 
PCN-222-OM had good antibacterial property as the 
concentration was high enough. Meanwhile, Fig.  S9 
was the SEM image of E. coli and S. aureus around 
PCN-222-OM treating E. coli and S. aureus. Their sur-
faces were partially damaged throughout PCN-222-OM 
treating, possibly because of the interaction between the 

Fig. 15  The inhibition zone determinations of PCN-222-OM and its 
intermediates against E. coli and S. aureus. a Images of punch well 
agar diffusion test. (b, c) Zone of inhibition diameters against E. coli 

and S. aureus apart (sample 1 = PCN-222, sample 2 = PCN-222-NH2, 
sample 3 = PCN-222-AD, and sample 4 = PCN-222-OM)

Fig. 16  The bacterial growth 
curves treated with PCN-
222-OM against a E. coli and b 
S. aureus 
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 Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 clusters and bacterial 
membrane.

Environmental safety and antibiofouling activity

Environmental safety

It is very momentous for environmental safety of adsorbents 
in practical adsorption. The minnow viability experiments 
were made to appraise the environmental and biological 
hazards from PCN-222-OM. As illustrated in Fig. S10, all 
minnows kept excellent zoological activities through 48-h 
PCN-222-OM treatment, proving PCN-222-OM had splen-
did environmental safety.

Antibiofouling activity

In general, the biological contamination showed signifi-
cant impacts on U(VI) adsorbent capability. Halamphora 
was used to assess PCN-222-OM antibiofouling activity. 
In Fig. S11(a), PCN-222-OM had great inhibition against 
Halamphora growth and cell mortality nearly achieved 
81.3% a week later, possibly because of the synergistic role 
of  Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 clusters and affluent 

groups within PCN-222-OM. Biological colonization on 
the adsorbent surface was also a major contributor to bio-
logical contamination. Halamphora cell viabilities are also 
investigated in Fig. S11(b). The minority of viable cells were 
noticed on PCN-222-OM surface a week later, demonstrat-
ing the PCN-222-OM could kill Halamphora cells as well 
as inhibit the adhesion.

Contrast about adsorption capacity 
and antimicrobial activity between PCN‑222‑OM 
and reported adsorbents

As illustrated in Table 4, PCN-222-OM was in possession 
of conspicuously finer adsorption capacity (403.4 mg·g−1) 
in proportion to already reported adsorbents, such as ZIF-
90-AO, MOF-5, UiO-66-NH2, UiO-66-AO, and MIL-101 
PCN-222-OM was a heartening U(VI) adsorbent. Mean-
while, the antimicrobial activity was also vital to sufficiently 
utilise the porous adsorbent performance. In Table 5, MICs 
of PCN-222-OM against E. coli and S. aureus were 39.1 and 
19.6 μg·mL−1 severally, smaller than other adsorbents, which 
certified the antimicrobial activities of PCN-222-OM against 
E. coli and S. aureus were superior to reported absorbents. 

Table 4  Contrast of U(VI) 
absorption capacity between 
PCN-222-OM and reported 
adsorbents

Absorbents Experimental conditions Qe
max (mg·g−1) References

ZIF-90-AO pH = 5.0, C0 = 100 mg·L−1 382.5 Mei et al. 2022
MOF-5 pH = 5.0, C0 = 300 mg·L − 1 237.0 Wang and Guo 2020
UiO-66-NH2 pH = 5.5, C0 = 100 mg·L−1 115.0 Luo et al. 2016
UiO-66-AO pH = 5.5, C0 = 160 mg·L−1 194.8 Liu et al. 2019
MIL-101 pH = 6.0, C0 = 100 mg·L−1 91.0 Liu et al. 2020b
MIL-101-ED pH = 5.5, C0 = 100 mg·L−1 200.0 Bai et al. 2015
MOF-76 pH = 3.0, C0 = 140 mg·L−1 298.0 Yang et al. 2013
ZIF-8 pH = 4.5, C0 = 80 mg·L−1 64.9 Zhang et al. 2019b
PCN-222-OM pH = 6.0, C0 = 100 mg·L−1 403.4 This study

Table 5  Contrast about 
antimicrobial activity between 
PCN-222-OM and reported 
adsorbents

Antimicrobial agents Bacterial species MIC (μg·mL−1) References

ZIF-90-AO E. coli 250 Mei et al. 2022
UiO-66-NH2 E. coli Infinite Zhu et al. 2021b
MIL-101 E. coli 40,000 Hajibabaei et al. 2020
MOF-5 E. coli 200 Bhardwaj et al. 2018
ZIF-8 E. coli 256 Wang et al. 2016
PCN-222-OM E. coli 39.1 This study
ZIF-90-AO S. aureus 62.5 Mei et al. 2022
UiO-66-NH2 S. aureus Infinite Zhu et al. 2021b
MIL-101 S. aureus 80,000 Hajibabaei et al. 2020
MOF-5 S. aureus 200 Bhardwaj et al. 2018
ZIF-8 S. aureus 256 Wang et al. 2016
PCN-222-OM S. aureus 19.6 This study
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To sum up, PCN-222-OM was one golden U(VI) adsor-
bent due to eminent adsorption capacity and antimicrobial 
activity.

Conclusion

One newfangled and efficient U(VI) adsorbent named 
PCN-222-OM with glorious antimicrobial activity, envi-
ronmental safety, and antibiofouling activity was designed 
and synthesized grounded on PCN-222 directed molecu-
lar structure design. PCN-222-OM possessed outstand-
ing U(VI) adsorption capacity at a maximum of 403.4 
mg·g−1 at pH = 6.0, owing to interactions between U(VI) 
ions and abundant porous structures and oxime groups 
in PCN-222-OM. Meanwhile, PCN-222-OM also dis-
played splendid recyclability and selectivity in U(VI) 
adsorption, whose selective removal rate was 78.6% in 
the simulated nuclear industry wastewater with 500 μg/L 
U(VI) concentration. Kinetic and isothermal constants 
attested that PCN-222-OM adsorption process was pre-
dominantly in the charge of chemisorption and monolayer 
adsorption. XPS spectra and adsorption energy calcula-
tion results proved C = N–OH and -NH groups occupied 
key roles during the adsorption process and adsorption 
mechanism was considered to have synergy function 
about coordination and electrostatic interaction. PCN-
222-OM presented eminent antimicrobial activity against 
E. coli and S. aureus due to the interaction between 
 Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 clusters and bacterial 
membrane, which effectively reduced the damaging impact 
from bacteria upon U(VI) adsorption capacity. Mean-
while, PCN-222-OM disclosed fine environmental safety 
and antibiofouling activity, avoiding side impact about 
biological contamination on U(VI) adsorption capacity 
and meeting non-toxicity request in applications. In sum-
mary, PCN-222-OM became an inspiriting adsorbent in 
wastewater U(VI) recovery and engendered one valuable 
thought for effective adsorbent advancement.

The recommendations for future work

In comparison with the reported U(VI) adsorbents, the 
synthesized PCN-222-OM has a number of characteristic 
advantages in adsorption performance. Although PCN-
222-OM has the advantages in large adsorption capacity, 
high adsorption efficiency, strong selective adsorption 
ability, strong resistance to biological contamination, and 
easy recycling, it still has a lot of room for improvement in 
the future work. On the one hand, in order to advance the 
practical engineering application of U(VI) adsorbents, the 

cost consumption in the preparation of U(VI) adsorbents 
can be further reduced in future research work. The prepa-
ration of MOF-based U(VI) adsorbents can be conducted 
with simpler group modification methods in future work. 
On the other hand, it is best to use real nuclear indus-
trial waste samples in the possible future adsorption per-
formance test work to make the adsorption performance 
results closer to the actual application.
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