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Abstract
Forecasting China’s carbon price accurately can encourage investors and manufacturing industries to take quantitative invest-
ments and emission reduction decisions effectively. The inspiration for this paper is developing an error-corrected carbon 
price forecasting model integrated fuzzy dispersion entropy and deep learning paradigm, named ICEEMDAN-FDE-VMD-
PSO-LSTM-EC. Initially, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) 
is used to primary decompose the original carbon price. Subsequently, the fuzzy dispersion entropy (FDE) is conducted to 
identify the high-complexity signals. Thirdly, the variational mode decomposition (VMD) and deep learning paradigm of 
particle swarm optimized long short-term memory (PSO-LSTM) models are employed to secondary decompose the high-
complexity signals and perform out-of-sample forecasting. Finally, the error-corrected (EC) method is conducted to re-modify 
and strengthen the above-predicted accuracy. The results conclude that the forecasting performance of ICEEMDAN-type 
secondary decomposition models is significantly better than the primary decomposition models, the deep learning PSO-
LSTM-type models have superiority in forecasting China carbon price, and the EC method for improving the forecasting 
accuracy has been proved. Noteworthy, the proposed model presents the best forecasting accuracy, with the forecasting 
errors RMSE, MAE, MAPE, and Pearson’s correlation are 0.0877, 0.0407, 0.0009, and 0.9998, respectively. Especially, the 
long-term forecasting ability for 750 consecutive trading prices is outstanding. Those conclusions contribute to judging the 
carbon price characteristics and formulating market regulations.

Keywords Forecasting carbon price · ICEEMDAN · Secondary decomposition · Deep learning paradigm · Error corrected · 
Fuzzy dispersion entropy

Introduction

Global warming is closely related to carbon emissions, while 
the increasing emissions are originated from rapid economic 
development and industrial advancement (Wu et al. 2021; 
Nazifi and Milunovich 2010). Limiting the rise of global 
warming within 1.5 °C is the most ambitious goal of the 
Paris Agreement signed in 2015; however, this goal is almost 

impossible at the current emission level. According to the 
International Energy Agency (IEA), the global emissions 
of energy-related greenhouse gases in 2022 reached 41.3 
billion tons, while China’s carbon emissions have improved 
from 7.71 billion tons to 11.477 billion tons between 2009 
and 2022. As the global climate issue is getting increas-
ingly severe, China, the world’s largest energy consumer 
and greenhouse gas emitter, is facing severe environmental 
pressure. To solve the environmental constraints on high-
quality development, the Chinese government officially 
implemented the “carbon peak, carbon neutral” strategy in 
September 2020, and the construction of a carbon market 
has become a concrete measure to reduce carbon emis-
sions. The carbon market plays a crucial role in helping 
China reduce industrial pollutant emissions (Byun and Cho 
2013; Zhang et al. 2019). The higher the market efficiency, 
the more obvious the reduction of emissions performance 
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(Chevallier 2009; Schneider et al. 2019); therefore, study-
ing the price formation and driving mechanism of the car-
bon market and forecasting the carbon price accurately are 
the keys to achieving the goals of the proposed strategy. 
However, the mainstream carbon price forecasting models 
based on empirical mode decomposition (EMD) usually pre-
sent the problems of large decomposition errors and signal 
complexity identifying subjectively, which may result in 
low forecasting accuracy. This paper develops a new sec-
ondary decomposition carbon price-forecasting model that 
integrates the fuzzy dispersion entropy and deep learning 
paradigm; noteworthy, we design an error-corrected idea 
to strengthen the deep learning forecasting ability which is 
commonly ignored in most previous studies. The expected 
forecasting accuracy can support valuable market decision 
and contribute to emission reduction at a low cost.

The rest of this paper is organized as follows: the “Lit-
erature review” section is the literature review. The “Meth-
odology” section introduces the basic models and describes 
the logical framework of the proposed model. The “Empiri-
cal discussion” section discusses and analyzes the out-of-
sample forecasting results and analyzes the robustness in 
different forecasting periods. The “Conclusions” section is 
the conclusions.

Literature review

Most studies have found that the carbon price has nonlinear, 
non-stationary, non-normal, and multi-scale characteristics 
(Zhu et al. 2015; Pan et al. 2023; Zhang et al. 2023; Yue 
et al. 2023). Different from the volatility modeling technol-
ogies, the EMD technology has become the main method 
for carbon price forecasting in recent years (Tang et al. 
2017; Mao and Zeng 2023). Based on the decomposition 
differences, existing literature can be divided into primary 
decomposition and secondary decomposition carbon price 
forecasting studies.

Primary decomposition carbon price forecasting 
studies

Conducted the EMD technology to decompose the carbon 
price, used the least squares support vector machine opti-
mized by the particle swarm optimization algorithm (PSO-
LSSVM), and generalized autoregressive conditional het-
eroskedasticity (GARCH) model to take the out-of-sample 
forecasting, the results put that the EMD-PSO-LSSVM and 
EMD-GARCH models have high forecasting accuracy in 
Europe carbon future price (Jianwei et al. 2021; Zhu et al. 
2018; Zhang and Wu 2022). The ensemble empirical mode 
decomposition (EEMD) and complete EEMD (CEEMD) 
are developed to primary decompose the carbon price; the 

autoregressive integrated moving average (ARIMA), local 
polynomial prediction (LPP), and the particle swarm opti-
mized gray neural network (PSO-GNN) are employed for 
forecasting, and it is found that the EEMD-ARIMA-LPP, 
EEMD-LPP, and CEEMD-PSO-GNN models are efficient 
carbon price forecasting tools (Qin et al. 2020; Zhang et al. 
2018). Furthermore, the modified EEMD (MEEMD) and 
variational mode decomposition (VMD) technologies can 
also effectively reduce decomposition errors and improve 
decomposition efficiency (Yang et  al. 2020; Guo et  al. 
2022). The mode reconstruction (MR) method is intro-
duced to identify the contribution of each component, 
and long short-term memory (LSTM) and GARCH mod-
els are used to forecast; the conclusions suggested that the 
model of VMD-MR-LSSVM has the highest forecasting 
accuracy in China’s Hubei and Shenzhen carbon markets, 
while the VMD-LSTM-GARCH model has higher forecast-
ing accuracy in European carbon price (Zhu et al. 2019; 
Huang et al. 2021). Adopted the multi-resolution singular 
value decomposition (MRSVD) technology to decompose 
the original carbon price and utilized the extreme learn-
ing machine (ELM) optimized by the adaptive whale opti-
mization algorithm (AWOA) to forecast the carbon price, 
the findings maintained that the forecasting accuracy of 
MRSVD-AWOA-ELM model in China and European car-
bon market is better than other comparative models such as 
EMD-AWOA-ELM and EMD-AWOA-BP (Sun and Zhang 
2018). The model of complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN), improved 
CEEMDAN (ICEEMDAN), and sample entropy (SE) are 
used to decompose and extract the complex carbon price sig-
nals; the studies suggested that the CEEMDAN-SE-LSTM 
and ICEEMDAN-type models have stronger robustness and 
generalization ability in China short-term carbon price fore-
casting (Wang et al. 2021; Yun et al. 2023; Hao et al. 2020).

Secondary decomposition carbon price forecasting 
studies

Although the EMD-type models can decompose the original 
carbon price into multi-scale time-frequency signals, they 
may produce larger decomposition errors and mode mix-
ing problems theoretically (Nguyen and Phan 2022; Junior 
et al. 2020), while the secondary decomposition technology 
can reduce the decomposition errors effectively by recog-
nizing the high-complexity signals to some extent (Kong 
et al. 2022).

For example, employed the EMD, EEMD, CEEMD, 
CEEMDAN, and VMD technologies to primary decom-
pose and secondary decompose the carbon price; classified 
high-complexity signals by the sample entropy (SE), multi-
scale fuzzy entropy (MFE), and partial autocorrelation func-
tion (PACF) (Li et al. 2021;Yang et al. 2023a, 2023b); and 
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further built the deep learning models such as PSO-LSSVM, 
backpropagation network (BP), gate recurrent unit (GRU), 
LSTM, and ELM models for out-of-sample forecasting (Li 
et al. 2021; Wang et al. 2022), the results convinced that 
the secondary decomposition EMD-VMD-BP and EMD-
VMD-LSTM models have stable forecasting performance 
in Beijing and Shanghai carbon markets (Sun and Huang 
2020), while VMD-EEMD-GRU, CEEMD-VMD-BP, and 
CEEMDAN-VMD-LSTM models have superior forecast-
ing accuracy in Hubei and Guangdong carbon markets 
(Wu and Liu 2020; Zhou and Wang 2021; Liu et al. 2023). 
Theoretically, ICEEMDAN technology has obvious advan-
tages over other EMD-type models (Liu et al. 2023). The 
research applied the ICEEMDAN and CEEMD technolo-
gies to primary and secondary decompose the carbon price 
and adopted the support vector machine (SVM) and multi-
layer perceptron (MLP) for price forecasting, the findings 
show that the ICEEMDAN-CEEMD-SVM, ICEEMDAN-
CEEMD-SVM, and ICEEMDAN-CEEMD-MLP models 
are significantly superior to other primary decomposition 
models for forecasting China carbon price (Li and Liu 2023; 
Yang et al. 2023a; Yang et al. 2023b).

Research gaps and contributions

In summary, the carbon price forecasting models in previ-
ous studies have developed from primary decomposition 
to secondary decomposition. However, there are still some 
improvements for further study. (1) The EMD-type technolo-
gies have theoretical defects of large decomposition errors, 
mode mixing, endpoint effects, and mode alignment prob-
lems, while the developed CEEMDAN technology may lead 
to false component signals during the initial stage of mode 
decomposition. (2) The complex signals recognized methods 
such as sample entropy and fuzzy entropy algorithm may 
have the problems of discontinuous entropy data, relatively 
sensitive data length and high sensitivity to noise interfer-
ence. A new signal complexity identification method needs 
to be developed. (3) The existing models ignore the fore-
casting performance of the proposed model under different 
forecasting periods, and the reliability of the conclusions 
needs to be strengthened. (4) For convincing the forecasting 
ability, previous studies mainly focus on comparing the gap 
between the predicted price and the real price, while the role 
of predicted errors term in improving the final forecasting 
results has been ignored in most previous studies.

Based on the special carbon price characteristics, this 
article carried out a new logic of “primary decomposi-
tion - complexity recognized - secondary decomposition 
- forecasting and summing - error corrected” for guiding 
the hybrid model construction in forecasting China’s carbon 
price. The contribution is designing a new error-corrected 
secondary decomposition hybrid model integrated fuzzy 

dispersion entropy and deep learning paradigm, named 
ICEEMDAN-FDE-VMD-PSO-LSTM-EC model. Spe-
cifically, initially, the ICEEMDAN technology is used to 
primary decompose the original carbon price to solve the 
common problems of larger decomposition errors and mode 
mixing in traditional EMD-type technologies. Secondly, the 
fuzzy dispersion entropy (FDE) algorithm is conducted to 
identify the high-complexity signal to overcome the dis-
continuous entropy and sensitivity to noise in other entropy 
algorithms. Then, the VMD technology is used to second-
ary decompose the high-complexity signals that are recog-
nized by the FDE algorithm. Fourthly, we conduct the deep 
learning LSTM model that has a time series fitting ability to 
forecast the acquired low complexity signals and further use 
the particle swarm optimization (PSO) algorithm to optimize 
the model parameters and improve the forecasting ability, 
and then the predicted price can be obtained by summing 
up the predicted components. Finally, the error-corrected 
(EC) method is used to forecast the errors of each model 
again, and the final predicted price with the error corrected 
has been calculated by adding up the predicted errors and 
the predicted price.

Methodology

ICEEMDAN model

The improved complete ensemble empirical mode decom-
position with adaptive noise (ICEEMDAN) model is an 
improved adaptive decomposition form based on the tra-
ditional EMD technology (Colominas et  al. 2014). The 
classical EMD and EEMD technologies may cause prob-
lems of larger reconstruction errors and mode mixing (Wu 
and Huang 2009). In contrast, the core of the CEEMDAN 
model is adding positive and negative pairs of white noise 
to the residual of the decomposition process and calculat-
ing the average mode information after obtaining the first-
order intrinsic mode functions (IMF) components (Zhou 
et al. 2022). Those special noise-added styles can solve the 
problem of white noise transfer from high frequency to low 
frequency effectively so that the reconstruction errors can 
be reduced greatly. Different from the CEEMDAN model, 
the significant feature of the ICEEMDAN model is regard-
ing the IMF components as the white noise for adding it to 
the decomposition process, conducting the adaptive empiri-
cal mode decomposition (AEMD) to decompose the multi-
scales signals. The decomposition process of the carbon 
price by ICEEMDAN can be as follows:

Step 1: define the operator Ek(⋅) as the k-th mode com-
ponent, M(⋅) indicate the local mean signal that needs to 
be decomposed, and define 〈〉 as the mean process. Then, 
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add the Gaussian white noise to the original carbon price 
signal x:

Among them, w(i) means that the i-th white noise needs to 
be added and ε0 is the noise standard deviation when the first 
signal is decomposed. E1(⋅) represents the first IMF calcula-
tion process. Then, the residual of the first decomposition is 
expressed as r1 = 〈M(x(i))〉.

Step 2: calculate the first mode component IMF1:

Step 3: calculate the second mode component IMF2:

Step 4: calculate the k-th mode component IMFk:

Step 5: iteration termination condition:

where r2 = 〈M(r1 + α1E2(w(i)))〉, rk = 〈M(rk − 1 + αk − 1Ek(w(i))
)〉, and k = 2, 3, ⋯, N, and σmeans the standard deviation 
between two IMF components. When k ≥ 2, the first mode 
decomposition is completed, and the next decomposition 
is continued until it meets the iteration termination condi-
tion. This paper adopts the Cauchy criterion as the iterative 
convergence condition, that is, when the standard deviation 
σ < 0.2, the iteration terminates. The idea of the ICEEM-
DAN decomposition process is shown in Fig. 1.

(1)x
(i)

1
= x + �0E1

(
w(i)

)

(2)IMF1 = x − r1

(3)IMF2 = r1 − r2

(4)IMFk = rk−1 − rk

(5)� =
‖IMFk − IMF(k − 1)‖2

‖IMFk‖2

Fuzzy dispersion entropy

Fuzzy dispersion entropy (FDE) is a reliable indicator to 
measure the time series complexity by calculating the prob-
ability of new signal generation (Rostaghi et al. 2021). The 
FDE algorithm overcomes the defects of discontinuous 
entropy data, sensitive data length that commonly exists in 
the calculation of sample entropy, fuzzy entropy, and other 
methods. For a given carbon price series x = {x1, x2, ⋯, xN}, 
the FDE can be calculated as follows:

Firstly, map the carbon price series xj(j = 1, 2, ⋯, N) to 
yj(j = 1, 2, ⋯, N) by the standard normal distribution function 
yj =

1

�
√
2�
∫ xj

−∞
e

−(t−�)2

2�2 dt.

Secondly, continue to transmit yj to c × yj + 0.5 by linear 
function of zc

j
=
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)
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ber of categories.
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}
 , i = 1, 

2, ⋯, N − (m − 1)d, and uc
i
= round

(
c × yi + 0.5

)
 . round(⋅) 

indicates the round function, the dispersion pattern consists 
of c-digit numbers, each number has m values, and there are 
cm corresponding patterns.

Fourthly, calculate each dispersion pattern probability 
�v0v1⋯vm−1

.
Finally, based on the Shannon entropy definition, the FDE 

is defined as

(6)

FDE = Fuzzy_DismEN(x,m, c, d) = −
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�=1

p
(
�v0v1⋯vm−1

)

× ln
(
p
(
�v0v1⋯vm−1

))

Fig. 1  The mode decomposition framework of the ICEEMDAN model
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Theoretically, if the entropy value is greater than 1, it 
means that the input signal has a strong complexity and 
the signal noise is relatively large that needs to conduct 
the secondary decomposition process to reduce the noise 
complexity (Wang et al. 2022).

VMD model

The typical advantages of VMD are determining the mode 
number of the original carbon price signals flexibly and 
effectively avoiding the common problems of endpoint effect 
and mode mixing that are presented in traditional recursive 
algorithms (Dragomiretskiy and Zosso 2013). So, the VMD 
model is suitable for dealing with complex, nonlinear, and 
non-stationary time series theoretically. Assuming the car-
bon price is composed of a signal with a specific center fre-
quency and finite width, the VMD model applies the Wiener 
filter method to adaptively search for the best center and 

width during the variational search and solution process. The 
decomposition steps of the VMD are as follows:

Firstly, decompose the carbon price signal S into K IMF 
components and ensure the decomposed signals are mode 
components with a specific center frequency and limited 
width, the signal variation expression is defined as:

where {IMFk} = {IMF1, IMF2, ⋯, IMFk} is the obtained 
carbon price multi-scale signals, {wk} = {w1, w2, ⋯, wk} is 
the center frequency of each mode signal, and δ(t) means 
the pulse signal.

Secondly, introduce the second-order penalty coefficient 
α and Lagrangian function L to solve the above optimiza-
tion and variational problems:

(7)

⎧
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where τ is the Lagrange multiplier.
Finally, update each mode component and its center 

frequency and calculate the final optimal solution by the 
following formula:

In the above formula, w represents the fluctuation fre-
quency and ÎMFkn+1(w) , v̂i(w) , and 𝜏i(w) are the Fourier 
transforms of IMFkn +1(w), vi(w), and τi(w) respectively. 
IMFkn +1(w) is the residual after Wiener filtering of 
Ŝ(w) −

∑
i≠k

v̂i(w).

According to the obtained IMF components, the center 
frequency w of the current mode can be updated by the fol-
lowing transformation:

(9)ÎMFkn+1(w) =

Ŝ(w) −
∑
i≠k

v̂i(w) + 𝜏i(w)∕2

1 + 2𝛼
�
w − wk

�2

(10)wn+1
k

=
∫ ∞

0
w
|||IMFkn+1(w)

|||
2

dw

∫ ∞

0

|||IMFkn+1(w)
|||
2

dw

PSO algorithm

Particle swarm optimization (PSO) is an improved algo-
rithm with low parameter dependence for searching global 
solutions (Wang et al. 2018). The hidden layers, neurons, 
and learning rate of a neural network are important factors 
affecting the training performance. So, we use the PSO algo-
rithm to optimize those parameters. According to the theory, 
any particle only has two attributes of movement speed and 
position; each particle conducts a separate optimization 
movement to search for the local optimal values. During 
this process, individual extreme value is shared with other 
particles to determine the global optimal value. Similarly, 
other particles also adjust their search speed and position 
accordingly. The optimization process of the PSO algorithm 
is as follows:

(11)
vi,t+1 = w × vi,t + c1 × rand() ×

(
pbesti − xi,t

)
+ c2 × rand() ×

(
gbesti − xi,t

)

(12)xi,t+1 = xi,t + �vi,t+1
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Among them, vi, t indicates the current movement speed, 
rand() represents a random number between 0 and 1, pbest 
and gbest are the local and global optimal solutions, respec-
tively, w represents the inertia coefficient, c1 and c2 are the 
learning factors, vi, t + 1 denotes the maximum value of vi, t, 
and λ is the speed coefficient.

PSO‑LSTM forecasting model

Based on the research design, the deep learning LSTM 
model is used for the nonlinear fitting of each low-complex 
component after the VMD process. One reason for choos-
ing the LSTM model is that the model can effectively filter, 
screen, and update input information by a specially designed 
gate structure and retain the memory characteristics of the 
sample series (Hochreiter and Schmidhuber 1997). The 
training process of the LSTM is as follows:

The function of the forget gate is to screen each carbon 
price mode component to obtain the filtered output.

The input gate updates the forgetting output, so as to cal-
culate the updated characteristics of each mode component 
by the following function:

The output gate determines the mode component charac-
teristics that need to be memorized. Thus, the output of this 
network can be acquired by the activation function.

Among them, ft represents the data output screened by the 
forget gate, it and C̃t are the update features of the input gate 
and candidate cell vector, Ct indicates the updated vector, ot 
means the output information of the cell, ht is the network 
output, w and b represent the weight and bias, and σ is the 
sigmoid activation function.

This article takes the hidden layers, neurons, and learn-
ing rate of the LSTM model as the optimization variables 
for PSO particles. By updating the speed and position of the 
particles, the fitness value of carbon price forecasting is min-
imized, and the optimal model parameters can be obtained. 
The forecasting steps of the PSO-LSTM are as follows:

(13)ft = �
(
Wf ×

[
ht−1, xt

]
+ bf

)

(14)it = �
(
Wi ×

[
ht−1, xt

]
+ bi

)

(15)C̃t = tanh
(
WC ×

[
ht−1, xt

]
+ bC

)

(16)Ct = ft × Ct−1 + it × C̃t

(17)ot = �
(
Wo ×

[
ht−1, xt

]
+ bo

)

(18)ht = ot × tanh
(
Ct

)

Firstly, initialize the particle swarm. We need to set the 
initial position and speed for each particle (that is the hid-
den layers, neurons, and learning rate of the LSTM model). 
Those initial values are usually randomly generated, and the 
range is determined by the constraint conditions. Secondly 
is fitness assessment. For each particle, construct an LSTM 
model using the current parameters, and then use this model 
to forecast. The forecasting errors are recognized as the fit-
ness value of the particle. Thirdly, update particle position 
and speed. Update the position and speed of the particles 
based on their global optimal positions. Fourthly is iterative 
optimization. Repeat the above steps until the stop condition 
is met. In each iteration, the position and speed of particles 
are updated, and the fitness values are re-evaluated. Finally, 
model forecasting. After the parameters training steps above, 
use the obtained global optimal parameter to construct the 
final LSTM model and forecast the test data.

The proposed ICEEMDAN‑FDE‑VMD‑PSO‑LSTM‑EC 
model

To adapt the special carbon price characteristics of nonlin-
ear, non-stationary, and non-normal, this paper designs an 
error-corrected secondary decomposition hybrid model inte-
grated fuzzy dispersion entropy and deep learning paradigm. 
That is integrating the advantages of ICEEMDAN, FDE, 
VMD, PSO-LSTM, and EC methods to improve the fore-
casting accuracy of carbon prices. The idea of the proposed 
model is shown in Fig. 2.

Step 1: adopt the ICEEMDAN technology to decompose 
the original carbon price signals, so as to obtain several IMF 
signals and a residual term. Step 2: employ the FDE algo-
rithm to calculate the signal complexity of the IMF that is 
acquired by the ICEEMDAN technology. Step 3: conduct 
the VMD technology to perform secondary decomposition 
on the high-complexity signals identified in step 2 to reduce 
the signal noise and decomposition errors. Step 4: apply the 
deep learning paradigm of PSO-LSTM to perform one-step-
forward forecasting on the low-complexity signals. The pre-
dicted price can be obtained by summing up the predicted 
values of each IMF component. Step 5: re-modify the final 
predicted results with the error-corrected method. Specifi-
cally, (1) subtract the real carbon price from the predicted 
price obtained in step 4 to acquire the real errors and (2) use 
the PSO-LSTM model to forecast the errors to obtain the 
predicted errors, and (3) the final predicted price with the 
error corrected can be calculated by summing the predicted 
errors and predicted price.

For estimating the carbon price forecasting performance 
of the proposed model, this paper also constructed hybrid 
and single comparative models based on the decomposition 
technologies of CEEMDAN, EEMD, EMD, and machine 
learning models such as GRU and BP.



16536 Environmental Science and Pollution Research (2024) 31:16530–16553

Evaluation criteria

The error evaluation indicators root mean squared error 
(RMSE), mean absolute error (MAE), mean absolute percent-
age error (MAPE), and the Pearson correlation (Corr) are con-
ducted as criteria for evaluating the forecasting performance 
of the proposed model and its comparative models. Among 
them, the smaller the error indicators, the better the model’s 
superiority. The Corr reflects the correlation between the final 
predicted price and the real price. The greater the correlation, 
the model forecasting accuracy is commonly recognized as 
higher; otherwise, the forecasting ability is poor.

(19)RMSE =

�∑N

i=1

�
yi − ŷi

�2
N

(20)MAE =
1

N

∑N

i=1
||yi − ŷi

||

Among them, yi and ŷi are the real carbon price and the 
predicted price, respectively, σy and 𝜎ŷ represent the vari-
ance, μy and 𝜇ŷ indicate the mean value, and N represents 
the sample.

Empirical discussion

Data and basic statistics

Since October 2011, the Chinese government has carried 
out carbon trading pilots in Beijing, Tianjin, Shanghai, 
Chongqing, Hubei, Guangdong, Shenzhen, and Fujian. Due 

(21)MAPE =
1

N

∑N

i=1

||||
yi − ŷi

yi

||||

(22)Corry,ŷ =
cov (y, ŷ)
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to the large differences in economic development, energy 
consumption, and market regulation among pilot regions, 
the trading volume and trading price of each market show 
differences correspondingly. Especially, the Hubei carbon 
market has become the most representative and active trad-
ing pilot. For example, at the end of 2022, the Hubei car-
bon market had a total trading volume of 375 million tons, 
accounting for 44.6% of China’s whole share. Furthermore, 
as the official establishment of China’s unified carbon market 
in 2021, the Hubei carbon market plays a guiding role in 
market registration and trading settlement of the proposed 
market (Zhou and Li 2019; Zhang et al. 2020). Therefore, 
we select the Hubei carbon market as the research object.

The data are sourced from the Hubei carbon emissions 
trading center (https:// www. hbets. cn), and the sample is the 
daily transaction price from April 28, 2014, to May 31, 2023, 
and the totaling 2174 samples are obtained. Additionally, 
after the decomposition of the original price by the EMD-
type technologies, the first 80% of the obtained components 
are used for the parameter optimization of the neural network, 
and the last 20% are used for the one-step forecasting.

According to Fig. 3, the carbon price volatility is high, the 
nonlinear characteristics are obvious, and its distribution his-
togram and probability density do not conform to the normal 
distribution. Specifically, firstly, the average carbon price is 
28.14, and the standard deviation and skewness are 10.76 
and 0.624 according to Table 1. A positive right skewed 
distribution means that the carbon price has a right “outlier” 

(Hubert and Vandervieren 2008), and its density function 
is different from the normal distribution form. Secondly, 
the ADF statistical value is 1.714, which is not statistically 
significant, which means that the carbon price rejects the 
stationary assumption, it has non-stationary characteristics. 
Thirdly, the critical values of BD statistics are significant 
at the 1% level, suggesting that carbon price has nonlinear 
characteristics. Therefore, the original carbon price signal 
has non-normal, non-stationary, and nonlinear characteris-
tics, which make it suitable for multi-scale decomposition 
by the mode decomposition technology.

Decomposition of the carbon price signal

Primary decomposition by the ICEEMDAN technology

During the carbon price decomposition process of ICEEM-
DAN, the ratio of noise deviation to decomposed signal 
deviation is set to 0.3, the number of noise addition is set to 
100, and the maximum iteration is set to 1000.

The results present that IMF9 components and 1 residual 
term can be obtained, as depicted in Fig. 4, and the signal 
frequency, average period, and time-frequency characteris-
tics of the proposed IMF signals are significantly different. 
Specifically, the variance contribution, average period, and 
correlation of IMF1 are all the smallest according to Table 2, 
with values of 0.002, 2.812, and 0.059, respectively. Those 
findings mean that the IMF1 signal has a higher fluctuation 

Fig. 3  The carbon price and its probability density

Table 1  Descriptive statistics 
(2014.4.28–2023.5.31)

*** indicates the significance level under the 1%

Mean Std. dev. Skewness Kurtosis ADF JB-Stat BDS(10)-Stat

28.14 10.76 0.624 2.478 1.714 168.74*** 357.29***

https://www.hbets.cn
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frequency and a shorter fluctuation period that may hide more 
decomposition noise, while the variance contribution of the 
residual is the highest at 0.796, with a sample period of 2174 
days, and the highest correlation at 0.873. Those indicate 
that the decomposition noise of the residual term is low, as a 
result, we regard it as a long-term trend with low complexity. 
Furthermore, for other mode signals from IMF1 to IMF9, the 
variance contribution, average period and correlation gradu-
ally improve, which indicates a decrease in signal noise and 
an improved ability to explain the carbon premium.

Additionally, as a comparison, this article also employs 
CEEMDAN, EEMD, and EMD to decompose the original 

carbon price (as shown in Appendix 1 of Figs. 13, 14, and 
15). Especially, the variance contribution, average period, and 
correlation of the obtained IMF signals gradually increase, 
that means the volatility of the signal components gradually 
decreases (as shown in Appendix 2 of Tables 9, 10, and 11). 
Those findings are completely consistent with the decomposi-
tion results of the ICEEMDAN technology mentioned above.

Secondary decomposition by the ICEEMDAN‑FDE‑VMD 
technology

The obvious advantage of FDE is focusing on the threshold 
determination and mapping probability of complex fuzzy 
signals (Rostaghi et al. 2021). This article conducts the 
FDE to measure the entropy values of obtained IMF signals. 
The results show (the last column of Table 2) that only the 
entropy value of the IMF1 is greater than 1, which is 1.486, 
while other IMF signal entropy is less than 1. Therefore, we 
conclude that the IMF1 series hides more chaotic and com-
plex information compared with other IMF signals.

Based on this, we further adopt the VMD model to second-
ary decompose the IFM1, empirically setting the number of 
decomposed signals to 9, as a result, 8 mode components and 
1 residual term can be obtained (as shown in Fig. 5). Although 
the mode decomposition numbers of the ICEEMDAN model 
have increased after secondary decomposition (as shown in 
Fig. 6), the FDE value of the high complexity IMF1 has been 
greatly reduced. The entropy values of the secondary decom-
position signals are all less than 1, and the whole sample 

Fig. 4  The primary decomposition of carbon price based on the ICEEMDAN model

Table 2  The mode statistic of carbon price signal after the ICEEM-
DAN primary decomposition

IMFs VarR Average period Pearson cor-
relation

FDE

IMF1 0.002 2.812 0.059 1.486
IMF2 0.002 5.721 0.082 0.882
IMF3 0.002 11.323 0.080 0.614
IMF4 0.003 23.890 0.085 0.534
IMF5 0.006 43.480 0.079 0.358
IMF6 0.012 94.522 0.156 0.223
IMF7 0.015 197.636 0.150 0.200
IMF8 0.059 543.500 0.417 0.052
IMF9 0.065 724.667 0.249 0.027
res 0.796 2174.000 0.873 0.002
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Fig. 5  The VMD secondary 
mode decomposition after the 
ICEEMDAN primary decom-
position (IMF0 means the high-
complexity mode signal that 
needs to be decomposed)

Fig. 6  The curve of fuzzy dispersion entropy based on the ICEEMDAN and other EMD-type models

Table 3  Comparison of the 
FDE value before and after the 
secondary decomposition

Decomposition model IMF numbers Average FDE Maximum 
value of 
FDE

Primary mode 
decomposition

ICEEMDAN 10 0.4378 1.4855
CEEMDAN 11 0.7600 2.0514
CEEMD 11 0.3485 1.4299
EEMD 11 0.3022 1.3870
EMD 10 0.3957 1.0814

Secondary mode 
decomposition

ICEEMDAN-VMD 18 0.3350 0.8822
CEEMDAN-VMD 16 0.3270 0.6481
CEEMD-VMD 19 0.2896 0.8186
EEMD-VMD 19 0.2859 0.7074
EMD-VMD 18 0.3200 0.7362
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complexity has been reduced greatly. For example, according 
to the results in Table 3, the IMF number of the ICEEMDAN 
primary decomposition is 10, with a maximum FDE value of 
1.4855 and an average FDE value of 0.4378. After secondary 
decomposition, the maximum and average FDE values are 
only 0.8822 and 0.3350. Thus, the secondary decomposition 
process effectively reduces the signal complexity.

Similarly, the mode number of other mode decomposi-
tion technologies also significantly increases after second-
ary decomposition, while the signal complexity gradually 
decreases. The corresponding results are shown in Appendix 
3 of Figs. 16, 17, and 18.

Out‑of‑sample carbon price forecasting based 
on the proposed model

Parameter optimization

The PSO algorithm is designed to optimize the network 
structure of the LSTM-type hybrid carbon price forecast-
ing models. Based on experience, we set the initial particle 
swarm to 20, the initial population to 2, the iterations num-
ber to 100, the learning factors c1 and c2 to 2, and the maxi-
mum and minimum weight to 1.2 and 0.8, respectively.

For the network design of the LSTM, more hidden layers 
and neurons can improve the training and forecasting per-
formance but may lead to over-fitting or high training costs, 
while fewer hidden layers and neurons may lead to defects of 
weak predictive ability (Bengio et al. 2013; Shen et al. 2015). 
Therefore, we use the step-by-step experimental method to 
select the optimal parameters calculated by the PSO-LSTM 
experiment and empirically preset the number of hidden lay-
ers to 2, that is, test the validation errors of each neuron with 
2, 4, 8, 16, 32, 64, 128, and 256, respectively. The parameter 
optimization is operated on the training set data that is clas-
sified above, with the first 90% of the training data for param-
eter optimization of the PSO-LSTM model, and the last 10% 
used to verify the forecasting performance. The results sug-
gest (Table 4) that, when the hidden layer neurons are 2 and 
256, the loss errors MAE and RMSE are the smallest, with 
1.043 and 1.512, respectively. The correlation coefficient is 
0.895, which is the biggest of the whole sample. The learning 
rate is 0.15. Therefore, we select the neurons of the PSO-
LSTM model to 2 and 256 for out-of-sample forecasting.

Analysis on the superiority of ICEEMDAN‑type secondary 
decomposition models

Secondary decomposition is re-decomposing the high-
complexity signals, and its purpose is to reduce the signal 
complexity and improve the potential forecasting ability. The 
findings regarding the ICEEMDAN secondary decomposi-
tion are as follows:

(1) The forecasting errors of the secondary decomposition 
hybrid carbon price forecasting models are generally 
lower than those of the primary decomposition, and 
the correlation is also high. Therefore, the forecasting 
accuracy and reliability of the secondary decomposi-
tion models are relatively satisfactory, and the reduc-
tion of signal complexity and decomposition errors can 
improve the model’s out-of-sample forecasting perfor-
mance; these findings have been proved in the research 
of Li and Liu (2023) and Yang et al. (2023a, 2023b). 
For example, the forecasting errors RMSE, MAE, and 
MAPE of the secondary decomposition model ICEEM-
DAN-FDE-VMD-LSTM are 0.2431, 0.1692, and 
0.0038, respectively, which are significantly lower than 
the errors of the corresponding primary decomposi-
tion model ICEEMDAN-LSTM. The forecasting errors 
of the secondary decomposition model CEEMDAN-
FDE-VMD-LSTM are 0.3361, 0.2476, and 0.0058, 
respectively, which are also lower than the errors of 
the corresponding primary decomposition model 
CEEMDAN-LSTM. Similarly, the forecasting errors 
of EEMD-FDE-VMD-LSTM and EMD-FDE-VMD-
LSTM models are also lower than their corresponding 
primary decomposition model. Furthermore, accord-
ing to Table 5, the forecasting ability of the secondary 
decomposition carbon price-forecasting model based 
on GRU and BP is also significantly better than their 
corresponding primary decomposition models.

(2) The carbon price forecasting models based on ICEEM-
DAN technology have better forecasting performance, 
especially the secondary decomposition ICEEMDAN-
type models present higher forecasting accuracy. The 
superiority of the ICEEMDAN-type hybrid models has 
been proved in previous studies of forecasting China’s 
carbon prices (Li et al. 2022; Zhu et al. 2023). For exam-
ple, for the secondary decomposition hybrid forecasting 
models based on LSTM, GRU, and BP, the forecasting 
errors of the ICEEMDAN-type models are significantly 
lower than those of other CEEMDAN-type, EEMD-
type, and EMD-type models. As shown in Fig. 7, the 
deviations between the predicted price and the real price 
of the ICEEMDAN-FDE-VMD-LSTM, ICEEMDAN-
FDE-VMD-GRU, and ICEEMDAN-FDE-VMD-BP 
models are relatively low. The predicted price is basi-
cally consistent with the actual one, and the difference 
is small. So, the forecasting performance of ICEEM-
DAN-type models is superior to other CEEMDAN-type, 
EEMD-type, and EMD-type forecasting models.

(3) It is interesting to note that although the forecasting per-
formance of the secondary decomposition hybrid models 
is better than that of the primary decomposition models, 
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the evidence does not show the forecasting results of 
the primary decomposition models are completely bet-
ter than the single models. For example, the forecast-
ing errors RMSE, MAE, and MAPE of the EEMD-BP 
model are 3.4916, 2.9202, and 0.0618, respectively, and 
the forecasting errors of the EMD-BP model are 4.2496, 
3.4595, and 0.0730, respectively. In contrast, the fore-
casting performance of the single model LSTM, GRU, 
and BP are significantly better than the EEMD-BP and 
EMD-BP primary decomposition models. Especially, the 
forecasting errors of the single model LSTM are lower 
than most primary decomposition models. One reason 
is that the primary decomposition process may lead to 
high-complexity signals and easily result in lower out-
of-sample forecasting accuracy.

Analysis on the superiority of PSO‑LSTM hybrid models

(1) Compared with GRU-type and BP-type hybrid and sin-
gle models, the LSTM-type hybrid models and single 
models have relatively low forecasting errors, which 
suggests high forecasting accuracy and high correla-
tion with the real price. For example, the forecasting 
errors RMSE, MAE, and MAPE of the ICEEMDAN-
FDE-VMD-LSTM model are 0.2431, 0.1692, and 
0.0038, respectively, which are significantly lower 
than the errors of ICEEMDAN-FDE-VMD-GRU and 

Table 4  The parameter training of the proposed ICEEMDAN-FDE-
VMD-PSO-LSTM model

Hidden 
layer1

Hidden 
layer2

MAE RMSE Corr Learning rate

2 2 3.1870 3.7947 0.8309 0.1132
4 5.2242 5.7620 0.6924 0.1166
8 9.1572 10.4020 0.0007 0.0886
16 2.7895 3.1606 0.7323 0.1253
32 7.7908 8.7560 0.2222 0.1101
64 5.4095 6.1841 0.2685 0.1128
128 9.9165 11.0546 0.0002 0.1080
256 1.0434 1.5121 0.8945 0.1500

4 2 4.8227 5.3985 0.6451 0.0812
4 2.6987 3.1431 0.7948 0.1189
8 6.4924 7.1835 0.5467 0.0559
16 3.0601 3.4667 0.7222 0.0779
32 5.5428 6.2877 0.2311 0.0863
64 1.9079 2.5335 0.7108 0.0537
128 2.7740 3.5905 0.6799 0.1164
256 5.8056 6.5174 0.5583 0.1482

8 2 12.5457 14.6143 0.0084 0.1500
4 5.1572 6.4172 0.2103 0.1017
8 4.9779 5.4816 0.7368 0.1148
16 2.9772 3.3113 0.8504 0.0770
32 6.9300 7.8116 0.2717 0.1246
64 10.9621 11.9490 0.0563 0.0829
128 7.3115 8.3651 0.2576 0.0305
256 4.8301 5.7070 0.5469 0.0372

16 2 6.3904 7.1249 0.5156 0.0829
4 2.0481 2.4756 0.8184 0.1203
8 6.6193 6.9793 0.7720 0.1111
16 3.9331 4.6887 0.5117 0.0874
32 6.8521 7.6048 0.4719 0.0539
64 3.6241 4.0166 0.7376 0.0819
128 4.7044 5.4078 0.6077 0.0769
256 7.7709 8.3073 0.5961 0.1500

32 2 1.8292 2.0845 0.9194 0.0737
4 14.5265 16.3173 0.0002 0.1219
8 1.3816 2.0578 0.8691 0.0794
16 4.6863 5.2192 0.6973 0.1114
32 4.9282 6.2662 0.4439 0.1126
64 4.1376 4.4019 0.8718 0.1039
128 4.7220 5.8850 0.8829 0.0383
256 3.0483 3.5860 0.7334 0.0222

64 2 6.9378 7.1383 0.8716 0.1037
4 8.3434 9.5272 0.0971 0.0305
8 6.5729 7.2587 0.5059 0.0649
16 2.5246 5.5927 0.5794 0.0750
32 10.4071 12.0477 0.1712 0.1269
64 7.2255 8.0758 0.3681 0.0388
128 9.4055 10.2049 0.3152 0.0805
256 7.6821 8.2508 0.5710 0.0486

Bold numbers mean the optimal neural network parameter results

Table 4  (continued)

Hidden 
layer1

Hidden 
layer2

MAE RMSE Corr Learning rate

128 2 3.9435 4.1816 0.9009 0.0223

4 4.7129 5.1602 0.6922 0.1130

8 4.9992 5.2850 0.8605 0.0870

16 8.1082 8.6965 0.5819 0.0726

32 5.0178 5.5292 0.7049 0.1183

64 1.6790 3.4544 0.6967 0.0294

128 13.2428 16.2507 0.3994 0.0290

256 5.5271 6.1242 0.6590 0.0540
256 2 4.0970 4.4851 0.8536 0.0673

4 8.2356 8.8939 0.4763 0.0255
8 3.2214 4.5801 0.5730 0.1372
16 4.0611 4.3460 0.8431 0.0877
32 10.8633 11.2055 0.7007 0.0290
64 9.9711 10.1360 0.8460 0.0100
128 8.7590 9.2300 0.6085 0.0220
256 6.2200 7.1273 0.0914 0.1086
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ICEEMDAN-FDE-VMD-BP models. The forecasting 
errors of the ICEEMDAN-LSTM model are also lower 
than the corresponding errors of the ICEEMDAN-GRU 
and ICEEMDAN-BP models. Similarly, the forecasting 
errors of LSTM-type models based on other CEEM-
DAN, EEMD, and EMD technologies are also lower 
than those of GRU-type and BP-type models. Those 
findings proved that the LSTM-type models are more 
suitable for out-of-sample price forecasting in China’s 

carbon market, which is generally consistent with the 
conclusion of Zhou et al. (2022).

(2) The forecasting performance of the LSTM model opti-
mized by the PSO algorithm is obviously better than 
other models that have not been optimized. This indi-
cates that the optimization of network parameters has 
played a positive role in improving the carbon price 
forecasting accuracy, that is, consistent with the opti-
mization results proposed in the studies of Jianwei 

Table 5  The carbon price forecasting errors and Pearson correlation of the ICEEMDAN-FDE-VMD-PSO-LSTM-EC hybrid model and its com-
parative models

Bold numbers mean the optimal forecasting results with the smallest errors and the biggest correlation

Model Abbre. RMSE MAE MAPE Corr

Hybrid forecasting models Panel A: secondary decomposition models for carbon price forecasting
ICEEMDAN-FDE-VMD-PSO-LSTM-EC M1 0.0877 0.0407 0.0009 0.9998
CEEMDAN-FDE-VMD-PSO-LSTM-EC M2 0.1337 0.0616 0.0013 0.9996
EEMD-FDE-VMD-PSO-LSTM-EC M3 0.1394 0.0645 0.0014 0.9996
EMD-FDE-VMD-PSO-LSTM-EC M4 0.1624 0.0678 0.0014 0.9994
ICEEMDAN-FDE-VMD-PSO-LSTM M5 0.2167 0.1529 0.0034 0.9989
CEEMDAN-FDE-VMD-PSO-LSTM M6 0.3111 0.2229 0.0050 0.9977
EEMD-FDE-VMD-PSO-LSTM M7 0.3084 0.2365 0.0053 0.9977
EMD-FDE-VMD-PSO-LSTM M8 0.3321 0.2604 0.0059 0.9967
ICEEMDAN-FDE-VMD-LSTM M9 0.2431 0.1692 0.0038 0.9988
CEEMDAN-FDE-VMD-LSTM M10 0.3361 0.2476 0.0058 0.9976
EEMD-FDE-VMD-LSTM M11 0.3498 0.2674 0.0060 0.9974
EMD-FDE-VMD-LSTM M12 0.3981 0.2835 0.0064 0.9963
ICEEMDAN-FDE-VMD-GRU M13 0.3677 0.2568 0.0057 0.9967
CEEMDAN-FDE-VMD-GRU M14 0.4474 0.3502 0.0078 0.9976
EEMD-FDE-VMD-GRU M15 0.3869 0.2764 0.0062 0.9964
EMD-FDE-VMD-GRU M16 0.4495 0.3165 0.0071 0.9952
ICEEMDAN-FDE-VMD-BP M17 0.4294 0.2813 0.0061 0.9961
CEEMDAN-FDE-VMD-BP M18 0.7184 0.5233 0.0116 0.9881
EEMD-FDE-VMD-BP M19 0.5487 0.3705 0.0082 0.9927
EMD-FDE-VMD-BP M20 0.8121 0.3167 0.0119 0.9840
Panel B: primary decomposition models for carbon price forecasting
ICEEMDAN-LSTM M21 0.4557 0.3256 0.0161 0.9964
CEEMDAN-LSTM M22 0.7112 0.5229 0.0115 0.9879
EEMD-LSTM M23 0.5699 0.3676 0.0081 0.9923
EMD-LSTM M24 0.7645 0.5410 0.0122 0.9839
ICEEMDAN-GRU M25 0.4592 0.3865 0.0083 0.9990
CEEMDAN-GRU M26 1.1338 0.9947 0.0211 0.9965
EEMD-GRU M27 1.0623 0.9349 0.0198 0.9970
EMD-GRU M28 0.7669 0.5863 0.0125 0.9946
ICEEMDAN-BP M29 1.5222 1.3265 0.0287 0.9875
CEEMDAN-BP M30 1.8872 1.4476 0.0315 0.9328
EEMD-BP M31 3.4916 2.9202 0.0618 0.9129
EMD-BP M32 4.2496 3.4595 0.0730 0.8295

Single forecasting models LSTM M33 0.7032 0.5842 0.0125 0.9957
GRU M34 1.2518 0.8172 0.0183 0.9643
BP M35 1.2554 0.7933 0.0178 0.9630
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et al. (2021) and Zhang and Wu (2022). For example, 
the secondary decomposition model ICEEMDAN-
FDE-VMD-PSO-LSTM, CEEMDAN-FDE-VMD-
PSO-LSTM, EEMD-FDE-VMD-PSO-LSTM, and 
EMD-FDE-VMD-PSO-LSTM have lower forecasting 
errors than other comparative models that do not be 
optimized. Especially the forecasting errors RMSE, 
MAE, and MAPE of the ICEEMDAN-FDE-VMD-
PSO-LSTM model are 0.2176, 0.1529, and 0.0034, 
respectively, which are the lowest among all non-error 
corrected hybrid models.

Discussions on the advantages of the error‑corrected 
secondary decomposition models

The error-corrected process improves the final forecasting 
performance by playing the role of the predicted error term. 
The results in Table 5 show that the forecasting errors of 
the error-corrected secondary decomposition models are 
relatively lower compared with other models, and the cor-
relation is also high, consequentially, the effectiveness of 
the error-corrected carbon price forecasting models can be 
proven. For example, the forecasting errors RMSE, MAE, 
and MAPE of the EMD-FDE-VMD-PSO-LSTM-EC model 
are 0.1624, 0.0678, and 0.0014, respectively; the forecasting 
errors of the EEMD-FDE-VMD-PSO-LSTM-EC model are 

0.1394, 0.0645, and 0.0014, respectively; and the forecast-
ing errors of the CEEMDAN-FDE-VMD-PSO-LSTM-EC 
model are 0.1337, 0.0616, and 0.0013, respectively, which 
are significantly lower than the forecasting performance of 
other comparative models without error corrected.

Discussions on the forecasting results 
of the ICEEMDAN‑FDE‑VMD‑PSO‑LSTM‑EC model

Based on the above discussion, we find that, firstly, the hybrid 
carbon price forecasting models based on secondary decom-
position technology have better forecasting accuracy and 
price correlation than other primary decomposition hybrid 
models. Especially, the ICEEMDAN-type hybrid models 
have higher forecasting ability, demonstrating the necessity 
of selecting ICEEMDAN and VMD technologies for the pri-
mary and secondary decomposition of original carbon price 
in this paper. Secondly, the forecasting performance of the 
deep learning LSTM-type secondary decomposition models 
is relatively better than the GRU-type and BP-type models, 
especially the LSTM-type secondary decomposition mod-
els optimized by the PSO algorithm have higher accuracy. 
Thirdly, the forecasting errors of the error-corrected hybrid 
forecasting models are significantly lower than other com-
parative models. Noteworthy, the forecasting errors of the 
proposed ICEEMDAN-FDE-VMD-PSO-LSTM-EC model 

Fig. 7  The carbon price forecasting performance of the proposed ICEEMDAN-FDE-VMD-PSO-LSTM-EC model and its comparative models
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constructed in this article are the smallest among all the 
comparative models, and the correlation is also the maxi-
mum value. As shown in Fig. 8, the proposed model has 
relatively fewer forecasting errors, and the error deviation 
is relatively stable.

Retesting of the proposed model based 
on forecasting term differences

To test the stability of the proposed model on different fore-
casting periods, this paper readjusts the test set and retests 

the out-of-sample forecasting performance of the proposed 
model. That is, the data from the last 750, 500, and 250 
consecutive trading days of the carbon price are intercepted 
as the test set, and the rest samples are used for training. 
Several models with better forecasting performance are con-
ducted to test the long-term, medium-term, and short-term 
carbon price forecasting effects. The forecasting results are 
shown in Tables 6, 7, and 8, respectively.

The results show that, firstly, as for the secondary 
decomposition hybrid models, the long-term forecasting 
performance has better forecasting performance, while 

Fig. 8  The dynamic MAPE carbon price forecasting errors of the proposed ICEEMDAN-FDE-VMD-PSO-LSTM-EC model and its comparative 
models

Table 6  The carbon price 
forecasting errors and Pearson 
correlation of the proposed 
ICEEMDAN-FDE-VMD-
PSO-LSTM-EC model and 
its comparative models in the 
long-term periods (750 daily 
trading data)

Bold numbers mean the optimal forecasting results with the smallest errors and the biggest correlation

Model Abbre. RMSE MAE MAPE Corr

ICEEMDAN-FDE-VMD-PSO-LSTM-EC M1 0.0696 0.0286 0.0006 0.9998
ICEEMDAN-FDE-VMD-PSO-LSTM M5 0.2322 0.1615 0.0044 0.9997
ICEEMDAN-FDE-VMD-LSTM M9 0.3278 0.2311 0.0063 0.9993
ICEEMDAN-FDE-VMD-GRU M13 0.3769 0.269 0.0074 0.9992
Average errors 0.2516 0.1726 0.0047 0.9996
ICEEMDAN-LSTM M21 0.6941 0.5236 0.0122 0.9993
ICEEMDAN-GRU M25 0.4374 0.3131 0.0084 0.9991
LSTM M33 1.1503 0.9314 0.0217 0.9991
GRU M34 1.2211 0.755 0.0204 0.9908
Average errors 0.8757 0.6308 0.0157 0.9971
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the short-term forecasting is relatively poor (the fore-
casting performance of each period is shown in Figs. 9, 
10, and 11). For example, the average forecasting errors 
RMSE, MAE, MAPE, and the correlation of the second-
ary decomposition models in the long-term period are 
0.2516, 0.1726, 0.0047, and 0.9996, respectively (as 

shown in Table 6); the average errors and correlation of 
the secondary decomposition models in the medium-term 
period are 0.2728, 0.3255, 0.0060, and 0.9943, respec-
tively (as shown in Table 7); and the average errors and 
correlation of the secondary decomposition models in the 
short-term period are 0.7645, 0.6656, 0.0228, and 0.9143 

Table 7  The carbon price 
forecasting errors and Pearson 
correlation of the proposed 
ICEEMDAN-FDE-VMD-
PSO-LSTM-EC model and 
its comparative models in the 
medium-term periods (500 daily 
trading data)

Bold numbers mean the optimal forecasting results with the smallest errors and the biggest correlation

Model Abbre. RMSE MAE MAPE Corr

ICEEMDAN-FDE-VMD-PSO-LSTM-EC M1 0.072 0.0714 0.0009 0.9992
ICEEMDAN-FDE-VMD-PSO-LSTM M5 0.3505 0.2578 0.0062 0.9983
ICEEMDAN-FDE-VMD-LSTM M9 0.3116 0.2816 0.0081 0.9897
ICEEMDAN-FDE-VMD-GRU M13 0.3571 0.6911 0.0088 0.9899
Average errors 0.2728 0.3255 0.0060 0.9943
ICEEMDAN-LSTM M21 0.4862 0.3192 0.0076 0.9969
ICEEMDAN-GRU M25 0.636 0.4645 0.01 0.996
LSTM M33 0.5518 0.5781 0.0085 0.9788
GRU M34 0.2382 0.1657 0.004 0.9992
Average errors 0.4781 0.3819 0.0075 0.9927

Table 8  The carbon price 
forecasting errors and Pearson 
correlation of the proposed 
ICEEMDAN-FDE-VMD-
PSO-LSTM-EC model and 
its comparative models in the 
short-term periods (250 daily 
trading data)

Bold numbers mean the optimal forecasting results with the smallest errors and the biggest correlation

Model Abbre. RMSE MAE MAPE Corr

ICEEMDAN-FDE-VMD-PSO-LSTM-EC M1 0.1797 0.1217 0.0168 0.9659
ICEEMDAN-FDE-VMD-PSO-LSTM M5 0.294 0.214 0.0045 0.9801
ICEEMDAN-FDE-VMD-LSTM M9 1.3084 1.0897 0.0229 0.7529
ICEEMDAN-FDE-VMD-GRU M13 1.2758 1.237 0.0469 0.9581
Average errors 0.7645 0.6656 0.0228 0.9143
ICEEMDAN-LSTM M21 0.2987 0.1619 0.0072 0.9959
ICEEMDAN-GRU M25 0.4655 0.3679 0.0077 0.948
LSTM M33 0.9137 0.5988 0.0126 0.7946
GRU M34 0.3797 0.3217 0.0068 0.9659
Average errors 0.5144 0.3626 0.0086 0.9256

Fig. 9  The one-step-forward out-of-sample forecasting performance of the proposed model in the long-term periods (750 daily trading data)
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respectively (as shown in Table 8). This evidence reflects 
that the secondary decomposition hybrid models are better 
for performing price forecasting in long-term periods. One 
possible reason is that the secondary decomposition pro-
cess can reduce the decomposition errors and signal noise 
effectively (Li et al. 2022; Sun et al. 2022), especially the 
large amount of IMF predicted data can maximally offset 
the forecasting errors during the price integration stage, 
so as to improve the forecasting accuracy.

Secondly, the ICEEMDAN-FDE-VMD-PSO-LSTM-EC 
model constructed in this paper has the best forecasting 
performance and accuracy in all the periods, especially 
in the long-term period, which is significantly superior to 
other comparative models. This conclusion is completely 
consistent with the findings in the “Discussions on the 
forecasting results of the ICEEMDAN-FDE-VMD-PSO-
LSTM-EC model” section above. From the error curve 
depicted in Fig. 12, it is obvious that the dynamic errors 

of the proposed model are relatively small compared with 
other comparative models; this finding reflects the higher 
fitting ability between the predicted price and the real 
price.

Thirdly, as for the primary decomposition models and 
the single models, the long-term forecasting performance 
is the worst. For example, in the long-term forecasting 
period, the average errors RMSE, MAE, and MAPE of 
the ICEEMDAN-LSTM, ICEEMDAN-GRU, LSTM, and 
GRU are 0.8757, 0.6308, 0.0157, and 0.9971, respectively. 
Those errors are significantly higher than the medium-
term and short-term forecasting performance, and the cor-
relation is also lower than other periods. This evidence 
maintains that compared with the long-term forecasting 
advantage of the secondary decomposition models, the 
primary decomposition carbon price forecasting mod-
els are more suitable for medium and short-term price 
forecasting.

Fig. 10  The one-step-forward out-of-sample forecasting performance of the proposed model in the medium-term periods (500 daily trading data)

Fig. 11  The one-step-forward out-of-sample forecasting performance of the proposed model in the short-term periods (250 daily trading data)
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Conclusions

The carbon price not only reflects the supply and demand 
of market allowances but also reveals the nonlinear price 
formation mechanism. As of July 2023, it has been 2 years 
since China’s power industry was formally included in the 
national carbon emissions trading system (ETS). With the 
development of the carbon market, more and more Chinese 
companies have begun to incorporate the emissions cost into 
their daily business decision. Therefore, this study focuses 
on the emerging China carbon market and constructs a novel 
error-corrected secondary decomposition hybrid model inte-
grated fuzzy dispersion entropy and deep learning paradigm 
to forecast the carbon price. The main conclusions are as 
follows:

Firstly, the forecasting performance of the ICEEMDAN-
type secondary decomposition hybrid carbon price forecast-
ing models is significantly better than primary decomposi-
tion models, and other CEEMDAN, EEND, and EMD-type 
secondary decomposition hybrid models. These findings 
show the signal decomposition efficiency of ICEEMDAN 
technology is relatively high, which can reduce the decom-
position errors and improve the forecasting accuracy. Fur-
thermore, the FDE algorithm plays a positive role in iden-
tifying high-complexity signals for price forecasting. These 
conclusions provide modeling ideas for revealing the forma-
tion mechanism of complex carbon prices. Secondly, the 

deep learning paradigm of LSTM-type models optimized 
by the PSO algorithm has obvious advantages in fitting 
and forecasting China’s carbon price, the advantage of the 
LSTM model in dealing with financial time series has been 
proved. Thirdly, the error-corrected method for improving 
the forecasting accuracy has achieved satisfactory results. 
Especially, the ICEEMDAN-FDE-VMD-PSO-LSTM-EC 
model presents the best forecasting ability, which can pro-
vide more accurate modeling technology for investors to take 
carbon market trading. Finally, the proposed model has obvi-
ous superiority in different forecasting periods, particularly, 
the long-term forecasting for 750 consecutive trading prices 
is outstanding. This result shows that the proposed model 
is more suitable for long-term price forecasting in China’s 
carbon market.

The above conclusions provide a valuable reference for 
judging the price characteristics of China’s carbon market 
and formulating effective market regulations. However, as 
for the applied aspect, there are some limitations. (1) Due 
to the limited trading data of China’s national carbon emis-
sions trading system, we only use the Hubei carbon price to 
represent the situation of the whole China’s carbon market, 
and future studies can be developed as the enrichment of the 
representative price. (2) More additional factors, such as the 
price and consumption of fossil fuels, the trading volume of 
carbon allowance, and the air pollution index, can also be 
included in future price forecasting studies.

Fig. 12  The dynamic MAPE carbon price forecasting errors of the proposed model in the long-medium short-term periods
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Appendix 1. Primary decomposition 
of the carbon price signals based 
on the EMD‑type technologies

Fig. 13  The primary decomposition of carbon price based on the CEEMDAN model

Fig. 14  The primary decomposition of carbon price based on the EEMD model
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Appendix 2. The mode statistic of carbon 
price signal after the primary decomposition

Fig. 15  The primary decomposition of carbon price based on the EMD model

Table 9  The mode statistic of carbon price signal after the CEEM-
DAN primary decomposition

IMFs VarR Average period Pearson cor-
relation

FDE

IMF1 0.002 2.812 0.059 1.5865
IMF2 0.003 3.755 0.046 1.9978
IMF3 0.003 3.490 0.041 2.0514
IMF4 0.004 6.194 0.064 1.2452
IMF5 0.004 12.282 0.069 0.6481
IMF6 0.005 24.156 0.099 0.4744
IMF7 0.010 48.311 0.148 0.1886
IMF8 0.015 108.700 0.168 0.1056
IMF9 0.015 310.571 0.309 0.0417
IMF10 0.083 724.667 0.512 0.0177
res 0.707 2174.000 0.901 0.0026

Table 10  The mode statistic of carbon price signal after the EEMD 
primary decomposition

IMFs VarR Average period Pearson cor-
relation

FDE

IMF1 0.002 2.791 0.057 1.387
IMF2 0.002 5.924 0.076 0.7074
IMF3 0.003 12.213 0.085 0.4953
IMF4 0.003 25.576 0.085 0.3549
IMF5 0.006 51.762 0.121 0.1856
IMF6 0.013 127.882 0.198 0.1057
IMF7 0.012 241.556 0.278 0.0536
IMF8 0.142 1087.000 0.548 0.0168
IMF9 0.013 1087.000 0.496 0.0121
IMF10 0.005 1837.219 0.590 0.0053
res 0.532 2174.000 0.846 0.0005
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Appendix 3. The VMD secondary 
mode decomposition process 
of the high‑complexity signals 
that recognized by the primary 
decomposition

Table 11  The mode statistic of carbon price signal after the EMD pri-
mary decomposition

IMFs VarR Average period Pearson cor-
relation

FDE

IMF1 0.003 3.106 0.049 1.0814
IMF2 0.004 6.141 0.049 0.7362
IMF3 0.004 12.282 0.047 0.6618
IMF4 0.006 23.630 0.027 0.5736
IMF5 0.010 47.261 0.044 0.3459
IMF6 0.014 86.960 0.158 0.2223
IMF7 0.022 181.167 0.139 0.2251
IMF8 0.017 434.800 0.133 0.0872
IMF9 0.183 724.667 0.525 0.0217
res 0.672 2174.000 0.857 0.0017

Fig. 16  The VMD secondary 
mode decomposition after the 
CEEMDAN primary decom-
position (IMF0 means the high 
complexity mode signal that 
needs to be decomposed)

Fig. 17  The VMD secondary 
mode decomposition after the 
EEMD primary decomposition 
(IMF0 means the high complex-
ity mode signal that needs to be 
decomposed)
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