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Abstract
Tris (2-chloroethyl) phosphate (TCEP) is a crucial organophosphorus flame retardant widely used in many industrial and 
commercial products. Available reports reported that TCEP could cause various toxicological effects on organisms, includ-
ing humans. Unfortunately, toxicity data for TCEP (particularly on neurotoxicity) on aquatic organisms are lacking. In the 
present study, Danio rerio were exposed to different concentrations of TCEP for 42 days (chronic exposure), and oxidative 
stress, neurotoxicity, sodium, potassium-adenosine triphosphatase  (Na+,  K+-ATPase) activity, and histopathological changes 
were evaluated in the brain. The results showed that TCEP (100 and 1500 µg  L−1) induced oxidative stress and significantly 
decreased the activities of antioxidant enzymes (SOD, CAT and GR) in the brain tissue of zebrafish. In contrast, the lipid 
peroxidation (LPO) level was increased compared to the control group. Exposure to TCEP inhibited the acetylcholinesterase 
(AChE) and  Na+,K+-ATPase activities in the brain tissue. Brain histopathology after 42 days of exposure to TCEP showed 
cytoplasmic vacuolation, inflammatory cell infiltration, degenerated neurons, degenerated purkinje cells and binucleate. 
Furthermore, TCEP exposure leads to significant changes in dopamine and 5-HT levels in the brain of zebrafish. The data in 
the present study suggest that high concentrations of TCEP might affect the fish by altering oxidative balance and inducing 
marked pathological changes in the brain of zebrafish. These findings indicate that chronic exposure to TCEP may cause a 
neurotoxic effect in zebrafish.
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Introduction

Chlorinated organophosphate flame retardants (Cl-OPFRs) 
are extensively used in plastics, furniture, floor polishes, 
daily chemicals, etc. (Lee et al. 2016; Yang et al. 2021) 
due to their plasticiser and additive properties (Yang et al. 
2019). Cl-OPFRs such as tris (2-cholroisopropyl) phosphate 
(TCPP), tris (1,3-dichloro-2-propyl) phosphate (TDCPP) 
and tris (2-chloroethyl) phosphate (TCEP) were widely 

used as alternatives for several toxic brominated flame 
retardants (Mihajlović and Fries 2012; Li et al. 2019a,b). 
As a result, these Cl-OPFRs have been detected at high lev-
els in the aquatic environment (He et al. 2017; Yang et al. 
2021) and are considered new emerging contaminants (Tang 
et al. 2018). In aquatic environments, the concentration of 
Cl-OPFRs has been detected up to 26,000 ng  L-1 (Qi et al. 
2019; Xu et al. 2019).

TCEP, one of the dominant  Cl-OPFRs (Chokwe et al. 
2020), is a ubiquitous environmental contaminant due to its 
overuse and has a high solubility (25 ºC, 7.93 g  L-1) in water 
(Veen and Boer 2012; O'Brien et al. 2015; Arukwe et al. 
2016; Lee et al. 2018; Hou et al. 2019; Hao et al. 2020; Yao 
et al. 2021; Wang et al. 2022). For example, the concentra-
tion of TCEP has been detected at 318 ng  L-1 in groundwater 
(Marklund et al. 2005), in the range of 259–2406 ng  L-1 in 
lakes (Yan et al. 2012), 85±10 ng  L-1 in rivers (García-López 
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et al. 2010), and 99 ng  L-1 in drinking water (Stackelberg et al. 
2004). TCEP is detected in higher concentrations in WWTP 
effluents due to their resistance to biotransformation and 
formation from the precursors (Kim et al. 2019; Yang et al. 
2021, 2022a, b). Furthermore, TCEP has also been detected 
in aquatic organisms such as fish and perch (Sundkvist et al. 
2010; Ma et al. 2013) and human tissues (Zhao et al. 2021).

TCEP can persist for a long time in the environment (Zhu 
et al. 2015; Sun et al. 2016a, b; Kim et al. 2017) and may 
cause adverse effects in aquatic organisms. For example, 
TCEP reduced the survival and growth rate of catfish (Zhao 
et al. 2021), thyroxine (T4) levels in zebrafish (Hu et al. 
2021), growth and reproduction of protozoans (Hao et al. 
2020), developmental phenotypes in zebrafish (Wu et al. 
2017), changes in the AChE activity in earthworms (Yang 
et al. 2018), and behavioural effects in zebrafish (Jarema 
et al. 2015). In contrast, Li et al. (2020) have reported that 
TCEP at environmental concentrations promoted the growth 
rate of D. magna. Furthermore, Arukwe et al. (2016) have 
reported that TCEP exposure did not alter the 11-ketotestos-
terone (11-KT) levels in juvenile salmon. However, a few 
authors have reported the neurotoxicity of TCEP on aquatic 
organisms, especially fish (Behl et al. 2015; Sun et al. 2016a, 
b; Xu et al. 2017; Li et al. 2019a, b; Hu et al. 2021).

Vertebrate brain tissue is most sensitive to oxidative 
stress (Li and Li 2020). Most organelles and neurons in 
brain tissues are delicate and easily damaged by reac-
tive oxygen species (ROS) formation due to antioxidant 
defence (Sachett et al. 2018; Barros et al. 2020; Leão-
Buchir et al. 2021). Antioxidant enzymes such as super-
oxide dismutase (SOD) and catalase (CAT) play a vital 
role in oxidative stress in aquatic organisms. Similarly, 
glutathione reductase (GR) protects proteins, lipids and 
nucleic acids against oxidative damage (Carvalho et al. 
2020). In addition, antioxidant enzymes maintain the 
redox status of the cell. However, high production of 
ROS may damage the DNA and proteins and cause lipid 
peroxidation (LPO). In our previous study (Sutha et al. 
2020), the activities of SOD, CAT, GST, GSH and GPx 
and LPO levels were found to be altered in gill, liver, and 
kidney tissues of Cirrhinus mrigala exposed to TCEP 
(0.04, 0.2, and 1 mg  L-1), which indicates that TCEP may 
induce oxidative stress in fish. Changes in the antioxi-
dant parameters are widely used as potential biomarkers 
to assess the toxicity of aquatic pollutants.

Quantification of the enzyme activity can give valuable 
information on the affected organs/tissues. In vertebrates, 
the enzyme acetylcholinesterase (AChE) is essential for the 
normal functioning of the neuromuscular system (Mayer 
et al. 1992). The alteration of acetylcholinesterase (AChE) 
activity is commonly used as a biomarker to assess the toxic-
ity of organophosphorus compounds (Shi et al. 2021). Due 
to their organophosphorus backbone, flame retardants may 

induce neurotoxicity (Jarema et al. 2015). TCEP also inhibits 
the acetylcholinesterase (AChE) activity in aquatic organ-
isms (World Health Organization 1998; Li et al. 2019a, b). 
Likewise, sodium and potassium adenosine triphosphatase 
 (Na+,K+-ATPase) play a vital role in the transport of the 
ions across cell membranes. Changes in the  Na+,K+-ATPase 
activities can be used to assess the physiological integrity 
of aquatic organisms exposed to aquatic toxicants (Agrahari 
and Gopal 2008; Ajima et al. 2021). Furthermore, during 
stress conditions, neurotransmitters such as dopamine (DA) 
and serotonin (5-HT) are released from the brain and play a 
vital role in mediating stress in fish (Backström and Winberg 
2017). Assessment of these neurotransmitter levels indicates 
the toxicity of aquatic pollutants in the central nervous sys-
tem (Da Rochaa et al. 2019). Similarly, histopathological 
anomalies can be used to assess the impact of waterborne 
chemicals on major organs (Ramesh et al. 2018). TCEP-
induced biochemical changes and their consequences are 
well addressed in several organ-specific studies, including 
liver, gill, brain, and kidney at 0.04, 0.2, or 1 mg  L-1(Arukwe 
et al. 2016; Sutha et al. 2020), but its pathological manifesta-
tion in the brain remains elusive.

This work was intended to assess the chronic effects of 
TCEP on oxidative stress, acetylcholinesterase activity, 
and histological biomarkers in the brain tissue of zebrafish 
(Danio rerio).

Materials and methods

Ethical statement

The present study was conducted per the OECD guidelines 
for maintaining and handling fish (OECD/OCDE 2013) and 
the Committee for the Control and Supervision of Experi-
ments on Animals (CPCSEA).

Chemicals

Tris (2-chloroethyl) phosphate (TCEP) was purchased from 
Sigma-Aldrich (degree of purity, 97%) (CAS number: 115-
96-8) and the stock solution was prepared by dissolving 1 
g  L-1 of tris (2-chloroethyl) phosphate in Milli-Q water. All 
other chemicals and reagents were procured from S.D Fine 
Chemicals, Chennai, India.

Maintenance of zebrafish

AB strain zebrafish (Danio rerio) weighing 0.6 ± 0.2 g 
and an average length of 2.7 ± 0.4 cm were obtained from 
Siraco Fish Farm in Salem, Tamil Nadu. Fish were main-
tained in a tank of 1000 L capacity with dechlorinated water 
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(temperature 28 ± 1 ºC, pH 7.5 ± 0.5, dissolved oxygen 6.4 
± 0.4, total alkalinity 18.2 ± 1.5, total hardness 18. ± 1.5 
with a 14:10 h (light: dark photo-cycle) and fed with com-
mercial fish feed.

Chronic exposure

After fifteen days of acclimation, the fish were divided into 
three groups and maintained in a glass aquarium containing 
20 L of water. Each group consisted of 20 fish. Two different 
concentrations of TCEP (100 and 1500 µg  L-1) were selected 
and introduced into the respective aquariums. The lowest 
concentration of TCEP (100 µg  L-1) was selected based 
on the reported environmental concentrations (Kawagoshi 
et al. 1999). In ecotoxicological studies, the LC50 value is 
commonly used to test the toxicity of chemicals rather than 
environmentally relevant levels. In this practice, animals 
are exposed to higher concentrations than the ecologically 
relevant concentrations. Hence, in the present study, a high 
concentration of TCEP (1500 µg  L-1) was selected based on 
the LC50 value (Sutha et al. 2022). For each concentration 
and control group, three replicates were maintained. After 
14, 28 and 42 days of exposure, the brain tissue was dis-
sected, washed in saline solution, and stored at -80º C for 
biochemical analysis.

Tissue preparation

The stored brain tissue from control and TCEP (100 and 
1500 µg  L-1) exposed fish was homogenised with PBS buffer 
(pH 7.0), using a mechanical tissue homogeniser coated with 
Teflon. The homogenate samples were centrifuged at 15,000 
rpm for 15 min, and the supernatant was used for the enzy-
mological assay. For pathological observations, additional 
brain tissues were fixed in 10% neutral buffered formalin.

Antioxidant enzyme analysis

SOD activity in the brain tissue was determined following 
the method of Marklund and Marklund (1974). To 50 μl 
enzyme source, Tris-HCl buffer (50 mM, pH 8.4), EDTA (1 
mM) and pyrogallol (2.64 mM) were added, and the absorb-
ance was measured at 420 nm for 5 min in a Spectropho-
tometer. The enzyme activity was expressed as Units/mg 
protein. Catalase (CAT) activity was determined following 
the Aebi method (1984). The decomposition of  H2O2 was 
measured at 240 nm, and the enzyme activity was expressed 
as micromoles of  H2O2 utilised per minute per milligram of 
protein. The activity of glutathione reductase (GR) was esti-
mated using David and Richard’s (1983) method. The assay 
mixture consisted of phosphate buffer (1.0 ml), EDTA (0.1 
mL), sodium azide (0.1 mL), oxidised glutathione (0.1 mL) 
and tissue homogenate (0.1 mL). The absorbance was read 

at 340 nm in a Spectrophotometer, and the enzyme activity 
was expressed as μM of NADPH/oxidised/min/mg protein.

To determine LPO level, thiobarbituric acid (TBA) react-
ing species for malondialdehyde (MDA) concentrations were 
measured using the method of Devasagayam and Terachand 
(1987). The assay consisted of Tris HCL buffer (0.5 mL), 
 KH2  PO4 (10 mM) (0.15 mL), distilled water (0.25 mL) and 
tissue homogenate (0.1 µL). After incubation (37 °C for 20 
mins), TCA (1.0 µL) and TBA (0.75 µL) were added, and 
the formation of a pink-coloured complex was read at 532 
nm. The LPO level was expressed as nmol of MDA formed 
/mg protein. Protein concentration in the brain tissue was 
assayed using bovine serum albumin as a standard described 
by Lowry et al. (1951).

Acetylcholinesterase activity quantification

AChE activity in the brain tissue was estimated using the 
method of Ellman et al. (1961). 0.1 mL of 0.015 M acetylthi-
ocholine iodide and 0.1 mL of 0.01 M DTNB (5,5-dithiobis-
2-dinitrobenzoic acid) were used as a substrate along with 
2.55 mL of buffer (0.1 M Phosphate buffer) and 0.2 mL of 
tissue homogenate. The AChE activity was expressed as μ 
moles/min/mg protein.

Na+/K+‑ATPase activity

Na+,  K+-ATPase activity was estimated as described by Shio-
saka et al. (1971). Tissue extract and the assay mixture (0.3 mL 
of Tri-HCl buffer (pH 7.5), 0.1 mL of 0.02 M ATP, 0.1 mL of 
100 mM NaCl and 0.1 mL of KCl solution) were incubated at 
37 °C for 15 min and 2.00 mL of 5% TCA was added and kept 
at 4 °C for 30 min. After centrifugation, 1 mL of ammonium 
molybdate and 0.4 mL of ANSA (8-Anilino-1-naphthalene-
sulfonic acid) reagent were added, and the absorbance was 
read at 680 nm. The enzyme activity was expressed as μg/h/g.

Neurotransmitters levels

The concentrations of dopamine (DA) and serotonin (5HT) 
were measured using enzyme-linked immunosorbent assay 
(ELISA) kits (Kings Lab, India). The thawing process of the 
brain samples was carried out on the ice to ensure that the 
ambient temperature was not higher than 4 °C. Samples were 
weighed, homogenised in hydrochloric acid buffer, centri-
fuged at 4000 g for 10 min at 4 °C and the supernatant was 
retained and stored at -80 °C. The supernatant was used for 
assays according to the manufacturer's instructions.

Histological examination

The formalin-fixed brain tissue was dehydrated in ascending 
grades of alcohol, cleared with xylene, embedded in paraffin 
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wax, and sectioned at a thickness of 5 µm. Sections were 
stained with haematoxylin and eosin stains and observed 
under a light microscope (Aksm et al. 2020).

Statistical Analysis

The obtained values were expressed as mean ± S.E and ana-
lysed statistically by SPSS 19.0 software. The significant 
differences between the control and TCEP-treated groups 
were tested using one-way-ANOVA (analysis of variance) 
followed by Duncan’s multiple range test (DMRT). The sig-
nificant difference was analysed statistically at p < 0.05.

Results

We observed general stress-related behavioural changes 
(rapid swimming, movement around the wall of the tank, 
and spending time at the bottom) in the highest (1500 µg 
 L-1) TCEP-exposed group. The observed changes can be 
due to the direct neurotoxicity of TCEP or alterations in 
AChE activity.

Antioxidant activity induced by TCEP

SOD and CAT activity was significantly (p < 0.05) 
decreased in the brain tissue of fish exposed to high con-
centration (1500 µg  L-1) of TCEP (Fig. 1A, B). However, 

a significant statistical decrease (p < 0.05) was found in 
SOD and CAT activity only after 42 days of exposure to 
low concentration (100 µg  L-1) of TCEP (Fig. 1A, B). We 
found that TCEP caused a significant (p < 0.05) decrease 
in GR activity in brain tissue (Fig. 1C) in both treatments 
(except on the  14th day at 100 µg  L-1 of TCEP-treated 
groups) (Fig. 1C). In the present study, a dose-dependent 
decrease was observed in both concentrations.

Oxidative damage induced by TCEP

The MDA content in the brain of fish at both concentra-
tions was significantly increased when compared with the 
control group (p < 0.05) (Fig. 1D). On the  14th day, there 
was no significant difference in MDA content between 
the 100 µg  L-1 of the TCEP-treated group and the control 
group.

Neurotoxicity induced by TCEP

Exposure of fish to TCEP (100 and 1500 µg  L-1) resulted 
in an inhibition of AChE activity compared to that of the 
control group (Fig. 2A). The AChE activity was inhibited 
significantly (p < 0.05) in treated groups, except for the 100 
µg  L-1 dose of TCEP on the  14th day. A concentration-related 

Fig. 1  Activities of (A) super-
oxide dismutase (SOD, U/mg 
protein), (B) catalase (CAT, μ 
moles  H2O2 utilized/min/mg 
protein), (C) glutathione reduc-
tase (GR, μmoles of NADPH 
oxidized/min/mg protein) and 
(D) lipid peroxidase (LPO, 
nmole of MDA formed /mg pro-
tein) in the brain of Danio rerio 
exposed to tris (2-chloroethyl) 
phosphate (TCEP). The data are 
presented as mean ± SE. One-
way ANOVA with Duncan's 
multiple range test was used; 
* indicates p < 0.05 and ** 
indicates p < 0.01
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inhibition of AChE activity was observed in both experi-
mental groups.

Na+,  K+‑ATPase activity induced by TCEP

In the TCEP-exposed groups, no significant difference in 
 Na+,K+-ATPase activity was found after 42 days of exposure 
at both concentrations (100 and 1500 µg  L-1) (Fig. 2B).

Neurotransmitter concentration induced by TCEP

The concentrations of DA and 5-HT (except on 14 and 
28th day) levels were significantly increased in the brain of 
zebrafish treated with 100 and 1500 µg  L−1 of TCEP, com-
pared with control groups (Fig. 3A and B).

Histopathological alteration induced by TCEP

Brain tissues from the control group showed typical nor-
mal histological structures (Fig.  4A). Compared to the 
control group, TCEP-treated groups showed significant 
histopathological lesions such as cytoplasmic vacuolation, 
inflammatory cell infiltration, degenerated neurons, degen-
erated Purkinje and binucleate after 42 days (Fig. 4B, C). 
The severity of the histopathological changes was higher 

in fish exposed to the highest concentrations (1500 µg  L-1) 
of TCEP.

Discussion

TCEP, a well-known endocrine disruptor in the aquatic 
environment causes adverse health issues, and ecological 
and biological risks (Yang et al. 2022a, b; Macedo et al. 
2023). The brain has high oxygen consumption, moderate 
antioxidant defence, and lipid-rich properties and is also 
susceptible to oxidative stress (Halliwell 2006; Wu et al. 
2019). Therefore, oxidative stress is the primary reason 
for brain injury (Liu et al. 2017; Sugiyama et al. 2018). 
The formation of reactive oxygen species (ROS) in fish 
species exposed to aquatic pollutants can be prevented by 
antioxidant enzymes such as SOD, CAT and GR. Altera-
tions of these enzyme activities can be used to determine 
the oxidative stress caused by the toxicants (Paravani et al. 
2019; Qiao et al. 2019). SOD plays a vital role in main-
taining the level of active electron transfer chain and free 
radical chain reaction processes (Capolupo et al. 2016). 
The cellular antioxidant mechanism used for removing and 
degrading  H2O2 into  H2O and  O2 in vivo is one of the most 
crucial enzyme systems, CAT (Espín et al. 2014). In the 
antioxidant defence system, GR is an auxiliary enzyme 

Fig. 2  Activities of (A) acetyl-
cholinesterase (AChE, µmoles/
min/mgprotein) and (B) sodium/
potassium adenosine triphos-
phate  (Na+,K± ATPase, mg/h/g) 
in the brain of Danio rerio 
exposed to tris (2-chloroethyl) 
phosphate (TCEP). The data are 
presented as mean ± SE. One-
way ANOVA with Duncan's 
multiple range test was used; 
* indicates p < 0.05 and ** 
indicates p < 0.01

Fig. 3  (A) Serotonin (5HT) and 
(B) Dopamine (DA) contents in 
the brains zebrafish exposed to 
tris (2-chloroethyl) phosphate 
(TCEP) for 42 days. The data 
are presented as mean ± SE. 
One-way ANOVA with Dun-
can's multiple range test was 
used; * indicates p < 0.05 and 
** indicates p < 0.01
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used to reduce oxidised glutathione (GSSG) to its active 
form, reduced glutathione (GSH) (Lushchak 2014). The 
lower values of SOD and CAT in the brain tissue of fish 
exposed to TCEP (1500 µg  L-1) might be due to oxida-
tive stress and the depletion of antioxidant enzymes in 
brain tissue (Issac et al. 2021; Ran et al. 2021). Similar to 
our study, a decrease in CAT and SOD activities has been 
reported in clams exposed to tributyl phosphate (TBP) and 
tris (2-butoxyethyl) phosphate (TBEP) (Yan et al. 2017). 
Furthermore, TCEP exposure also causes inhibition of 
the transcription of antioxidant defence genes in adult 
zebrafish (Hu et al. 2021).

In the present study, a significant decrease in SOD, CAT 
and GR activity in the brain of fish exposed to TCEP (100 
and 1500 µg  L-1) indicated that TCEP induced oxidative 
stress through the generation of ROS and damaged the anti-
oxidant defence system of fish. The significant decrease 
in SOD and CAT activity may be a protection mechanism 
against the stress caused by the TCEP (Issac et al. 2021; 
Ran et al. 2021). Alterations of SOD, CAT, and GR activ-
ity in the brain tissue of D. rerio exposed to TCEP may be 
due to the failure of these enzymes to protect against the 
damaging action of hydrogen peroxide and hydroxyl radical 
(Sutha et al. 2022). The level of ROS generally increased in 
organisms exposed to OPFRs (Wang et al. 2019a, b). The 
present study observed a dose-dependent decrease in both 
experimental groups. The significant reduction of SOD 
activity in higher concentrations may be due to excess pro-
duction of ROS due to TCEP toxicity. Likewise, the signifi-
cant decrease in CAT activity might have resulted from its 

inactivation by the superoxide radical triggered by TCEP 
exposure. Furthermore, the observed decrease in SOD and 
CAT activity in low concentrations indicates prolonged 
exposure to TCEP might have damaged the antioxidant 
defence system of fish.

It has been reported that the extreme production of ROS 
in organisms will increase LPO levels (Wu et al. 2015). The 
assessment of end-product malondialdehyde (MDA) is com-
monly used to evaluate lipid peroxidation (Lushchak 2011). 
The elevation of MDA levels indicates oxidative damage to 
cell membranes. The significant increase in MDA content 
in the TCEP-exposed group indicates excessive production 
of ROS facilitated by TCEP. An increase in LPO levels sug-
gests the potential of toxicants to induce a redox imbalance, 
which results in cellular damage (Leão-Buchir et al. 2021). 
In this study, liver tissue necrosis was noticed in the TCEP-
exposed groups, indicating the oxidative stress caused by 
TCEP. Higher levels of MDA have been reported in fish 
species treated with organophosphate compounds (Arukwe 
et al. 2016; Sutha et al. 2020), and this reveals that TCEP 
can generate free radicals and act on the lipid profile. An 
increase in lipid peroxidation in TCEP-exposed salmon fish 
may be due to the high expression of antioxidant enzyme 
genes (Arukwe et al. 2016). Peng et al. (2023) reported that 
the mRNA expression of antioxidant-related genes in TCEP-
treated zebrafish may be due to activation of the Nrf2-Keap1 
pathway to protect the oxidative stress caused by TCEP. 
These findings suggest that chronic exposure to TCEP could 
cause physiological effects by disturbing the gene expression 
levels of the antioxidant enzyme.

Fig. 4  Histopthology of brain 
of zebrafish exposed to tris 
(2-chloroethyl) phosphate. 
A. Control, B. 100 µg  L-1, C. 
1500 µg  L-1 of TCEP. CV—
cytoplasmic vacuolation, II—
inflammatory cell infiltration, 
DN—degenerated neurons, DP- 
degenerated purkinje, B-binu-
cleate. Scale bar—20 μm
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AChE is a key nervous system enzyme responsible for 
hydrolysing acetylcholine into choline and acetic acid 
(O’Brien 1967). Inhibition of AChE activity is widely used 
to indicate exposure and effects. Inhibition of AChE activ-
ity has been reported in medaka larvae exposed to TPHP 
(Sun et al. 2016a, b) and in the brain tissue of Chinese rare 
minnows exposed to TDCPP (Yuan et al. 2016). Similarly, 
Shi et al. (2018) reported inhibition of AChE activity in 
zebrafish exposed to OPFRs. Inhibition of AChE activity in 
the brain tissue of fish exposed to TCEP might have resulted 
from the accumulation of acetylcholine in the brain due to 
TCEP toxicity. Accumulation of TCEP has been reported in 
the brain tissue of zebrafish (Wang et al. 2017). Generally, 
OPFRs may cause tissue damage and inhibit neurotransmit-
ter transmission, which results in neurotoxicity (Yao et al. 
2021). The potential neurotoxicity of TCEP has also been 
reported in many organisms (Sun et al. 2016b; Yang et al. 
2018). Furthermore, the inhibition of AChE may also be due 
to the down-regulation of the AChE coding genes, induced 
by TCEP (Yang et al. 2018).

Accumulating acetylcholine at the cholinergic synapses 
may cause adverse effects such as behavioural and physi-
ological abnormalities (Tilton et al. 2011). A high accumu-
lation of OPFRs has been detected in the brain tissue of 
aquatic organisms (Wang et al. 2016) and in Cyprinus car-
pio exposed to organophosphorus flame retardants (OPFRs) 
(Tang et al. 2019). Triphenyl phosphate-induced oxidative 
stress and neurotoxicity in Labeo rohita (Umamaheswari 
et al. 2021). Likewise, hexabromobenzene and pentabro-
mobenzene induced oxidative stress and neurotoxicity 
in zebrafish (Chen et al. 2021). ROS could inhibit AChE 
effects on neurotransmission in cholinergic synapses (Chen 
et al. 2021). Consequently, in this study, chronic exposure to 
TCEP can induce oxidative stress responses in fish. Oxida-
tive stress negatively affects the nervous system and physi-
ological development (Kim et al. 2021).

Ion-dependent ATPases are essential in intracellular func-
tions and are widely used as biomarkers in toxicological stud-
ies (Agrahari and Gopal 2008; Ajima et al. 2021). In aquatic 
organisms, the transport of  Na+ and  K+ ions across the cell 
membrane is usually mediated by  Na+,K+-ATPase enzymes 
(Li et al. 2010; Ajima et al. 2021).  Na+,K+-ATPase are critical 
transmembrane enzymes that regulate the central nervous sys-
tem’s intracellular pH, cell volume, and calcium ion concen-
tration (Adefegha et al. 2016).  Na+,K+-ATPase are potential 
biomarkers of oxidative stress (lipid peroxidation or protein 
carbonylation) in organisms (zebrafish and rats) under chemi-
cal affront (Cassol et al. 2022; Gupta et al. 2023). In this study, 
 Na+,K+-ATPase activity in fish brains was inhibited upon 
exposure to TCEP. The inhibition of  Na+,K+-ATPase activ-
ity may be due to the direct toxicity of TCEP on the enzyme. 
Inhibition of  Na+,K+-ATPase indicates neuronal damage in 
the brain tissue of zebrafish under TCEP insult. Excessive 

production of ROS due to toxicant stress may also cause inhi-
bition of  Na+,K+-ATPase activity (Adefegha et al. 2016; Bald-
issera et al. 2019). Furthermore, toxicants-induced excessive 
LPO levels may alter the integrity of the plasma membrane, 
leading to inhibition of  Na+,K+-ATPase (Oruc et al. 2002). 
According to the above study, perturbations in the ATPase 
system and disturbances in the movement of  Na+,  K+ ions due 
to TCEP toxicity may cause the inhibition of  Na+,K+-ATPase 
activity. It was reported that inhibition of  Na+,K+-ATPase and 
elevation of lipid oxidation levels in the brain resulted in trau-
matic brain injury in the mammalian model (Silva et al. 2011). 
We also noticed a reduction in  Na+,K+-ATPase and increased 
LPO levels in zebrafish treated with TCEP. Notably, the AChE 
activity was also inhibited. The responses of these biomarkers 
indicate that TCEP could affect the CNS and cause neuro-
toxicity. Further,  Na+,K+-ATPase activities are potential bio-
markers for oxidative stress (LPO), ion-homeostasis, and neu-
rotoxicity in aquatic models exposed to emerging chemicals.

Neurotransmitters such as dopamine (DA) and serotonin 
(5HT) play an important role in the regulation and action of 
neurons (Tort 2011). Dopamine is a monoamine neurotrans-
mitter primarily involved in neurochemical and hormonal 
actions in vertebrates (Soares 2017). Similarly, serotonin 
(5-hydroxytryptamine; 5-HT) is also involved in physiologi-
cal and behavioural functions (Abreu et al. 2018). Aquatic 
pollutants may interfere with the central nervous system 
and disturb brain neurotransmitters (Gaworecki and Klaine 
2008; Yu et al. 2021; Huang et al. 2022). In the present 
study, the significant increase in dopamine levels in the brain 
of zebrafish exposed to TCEP indicates the neurotoxicity 
of TCEP. Previous authors have reported that dopamine may 
modulate the neurotoxic effects of aquatic pollutants (Sousa 
and Nunes 2020). Furthermore, TCEP may affect the syn-
thesis of dopamine through oxidative damage to dopamine 
neurons (Wang et al. 2019a, b). Serotonin (5-HT) gener-
ally acts as a neurotransmitter and neuromodulator, main-
taining homeostasis under stressful conditions (Thilagam 
et al. 2014). The serotonin system in fish is also regulated 
by chemical substances (Prasad et al. 2015). In the present 
study, the observed increase in serotonin (5-HT) levels in 
the brains of zebrafish treated with TCEP indicates protec-
tion against TCEP toxicity or direct action of the TCEP on 
the brain. The observed decrease in serotonin (5-HT) level 
indicates neuronal dysfunction due to TCEP toxicity. Many 
neurotransmitters may be released from the brain during 
stressful conditions to avoid or cope with the stressful con-
ditions (Sousa and Nunes 2020). We concluded that TCEP 
at 100 and 1500 µg  L−1 induced neurotoxicity in fish.

In the present study, TCEP induced cytoplasmic vacu-
olation, inflammatory cell infiltration, degenerated neu-
rons, degenerated Purkinje and binucleate in the brain of 
zebrafish. Similarly, pyknosis of the nucleolus and cavitation 
of cytoplasm have been reported in the brain and spinal cord 
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of zebrafish exposed to TCPP (Xia et al. 2021). The patho-
logical changes in the brain tissue caused by toxicants may 
alter the behavioural and physiological functions of the fish 
(Yuan et al. 2015). These changes could further affect the 
individual’s health and, ultimately, the population and eco-
system. Histopathological anomalies have also been reported 
in the gill, liver, and kidney tissues of fish Cirrhinus mrigala 
exposed to TCEP (Sutha et al. 2020) and in the gill of catfish 
Pelteobagrus fulvidraco (Zhao et al. 2021).

Conclusion

Findings reported in the present study revealed that chronic 
exposure to high concentrations (1500 μg  L-1) of TCEP 
caused oxidative stress, neurotoxicity, and damage to the 
brain tissue of zebrafish. The altered acetylcholinesterase, 
and  Na+,K+-ATPase activities were strongly correlated 
with the increased oxidative stress in zebrafish brain. These 
results indicate that TCEP is neurotoxic to fish, and the other 
parameters may provide valuable information for assessing 
TCEP toxicity in aquatic organisms. Neurotoxicity could 
affect the organism’s normal physiological, behavioural 
(swimming, mating, eating), and biochemical activities 
leading to an ecological imbalance in the ecosystem or the 
aquatic community. Hence, strict regulations are warranted 
on discharging Cl-OPFRs (TCEP) in the water systems. 
The biomarkers studied in this study could help evaluate 
the potential toxicity of Cl-OPFRs on non-target organisms.
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