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Abstract
The degradation of biodegradable plastics poses a significant environmental challenge and requires effective solutions. In this 
study, an esterase derived from a phyllosphere yeast Pseudozyma antarctica (PaE) enhanced the degradation and mineraliza-
tion of poly(butylene succinate-co-adipate) (PBSA) film in soil. PaE was found to substitute for esterases from initial degrad-
ers and activate sequential esterase production from soil microbes. The PBSA film pretreated with PaE (PBSA-E) rapidly 
diminished and was mineralized in soil until day 55 with high CO2 production. Soil with PBSA-E maintained higher esterase 
activities with enhancement of microbial abundance, whereas soil with inactivated PaE-treated PBSA film (PBSA-inact E) 
showed gradual degradation and time-lagged esterase activity increases. The fungal genera Arthrobotrys and Tetracladium, 
as possible contributors to PBSA-film degradation, increased in abundance in soil with PBSA-inact E but were less abundant 
in soil with PBSA-E. The dominance of the fungal genus Fusarium and the bacterial genera Arthrobacter and Azotobacter 
in soil with PBSA-E further supported PBSA degradation. Our study highlights the potential of PaE in addressing concerns 
associated with biodegradable plastic persistence in agricultural and environmental contexts.
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Introduction

Agricultural mulch films made from biodegradable plastics 
(BPs) are plowed into soil after use, and eventually degraded 
to water and carbon dioxide (CO2) by soil microorganisms. 
Therefore, they are expected to be useful for post-use dis-
posal in modern crop cultivation systems that benefit greatly 

from the use of plastic polymer-derived products, referred 
to as “Plasticulture” (Mormile et al. 2017). BPs are used 
in mulch films and can also be used in versatile products, 
such as nursery pots, bale wraps, strings, and rope (Guerrini 
et al. 2017).

However, the degradability of BPs depends on the envi-
ronmental conditions. Several abiotic and biotic factors, 
such as humidity, temperature, organic matter content, and 
microbial activity, limited the biodegradation of BP in soil, 
with degradation occurring over several years (Li et al. 2014; 
Brodhagen et al. 2015; Martín-Closas et al. 2016; Sintim 
et al. 2020). Furthermore, manufacturers make BP mulches 
more durable to maintain their strength until harvest; this 
could slow down the degradation, and the remaining BP 
could accumulate in soil when the amount used exceeds the 
biodegradation rates. Accumulation of less biodegradable 
film fragments can adversely affect soil organisms as well as 
the agricultural and global environment by reducing water 
retention and soil permeability, as with non-degradable plas-
tics (Miles et al. 2017).
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It is thus necessary to develop plastics that are stable 
enough to maintain functionality during their use, which 
then biodegrade completely in an appropriate time scale. To 
address this need, we have been developing a new technique 
using a commercial BP-degrading enzyme to accelerate the 
degradation of biodegradable polyesters after use (Kitamoto 
et al. 2023). An esterase from the phyllosphere yeast Pseu-
dozyma antarctia (PaE), which degraded various commercial 
BPs, was isolated, identified, and characterized (Kitamoto 
et al. 2011 and 2018, Shinozaki et al. 2013a and 2013b). 
PaE is an endoesterase that randomly degrades aliphatic and 
aliphatic–aromatic co-polyesters into oligomers and mono-
mers with high activity compared to other known fungal BP-
degrading enzymes (Sato et al. 2017; Kitamoto et al. 2023). 
When PaE was applied to commercial BP mulch films spread 
in a field, the strength of the film decreased the following 
day. After plowing, the size and total weight of the remain-
ing fragments decreased further (Kitamoto et al. 2023). PaE 
pretreatment accelerated the reduction of residual solid com-
mercial BP film, which was confirmed visually. Additionally, 
pretreatment promoted the recovery of soil fungal community 
structure, as depicted by electrophoresis profiles, from the 
impact of BP film addition in laboratory incubation experi-
ments (Sameshima-Yamashita et al. 2019a).

To use PaE in the agricultural field, more information is 
needed regarding the fate of BP films cleaved by PaE, the 
role of PaE in the degradation of BP films, and the specific 
fungal and bacterial groups involved in this degradation pro-
cess in soil. In this study, to address these knowledge gaps, 
we aimed to confirm the promotion of complete minerali-
zation in PaE-pretreated BP films by measuring soil CO2 
production, which is a direct indicator of biodegradation 
(Chinaglia et al. 2018; Francioni et al. 2022). We also aimed 
to investigate the degradation and mineralization processes 
by examining the changes in soil esterase activity and the 
abundance and structure of the soil microbial community.

Materials and methods

Preparation of soil and film samples

The soil used in this study (Andosol, loam, pH: 7.55, total 
carbon: 4.4%, weight ratio of organic carbon to total nitro-
gen: 11.9) was the same sample used by Yamamoto-Tamura 
et al. (2020), which was collected from the test field of the 
National Agricultural and Food Research Organization 
(36°01′22N, 140°06′52). The soil sample was sieved through 
a 2-mm mesh without air drying, and visible plant residues 
were carefully removed and stocked at 4 °C before use. In 
this investigation, a poly(butylene succinate-co-adipate) 
(PBSA) film was chosen due to its faster degradation in soil 
compared to other commonly used biodegradable polyesters 

for agricultural mulch films (Francioni et al. 2022; Tsuboi 
et al. 2022), making it suitable for the efficient evaluation of 
CO2 production. The PBSA film (provided by UNYCK Co., 
Ltd., Tokyo, Japan) was 15.0 ± 1.3 μm thick. The polyethyl-
ene film was also tested as a non-biodegradable plastic. The 
polyethylene film “Tenchi” (17 ± 2 μm thick) was purchased 
from Narutō Kasei K. K. (Tokyo, Japan). Both films were 
manually cut into 1 cm × 1 cm squares by the Heart Care 
Center Hitachinaka, Social Welfare Corporation Hamagiku-
no-kai. The PBSA film pieces were stored at 4 °C after cut-
ting to prevent unintended hydrolysis until they were used.

Enzyme production

Pseudozyma antarctica L1-S12 was cultivated in a jar fer-
mentor (Sameshima-Yamashita et al. 2019b), and the culture 
filtrate was used to prepare the PaE solution. The strain was 
constructed as described in our previous study (Sameshima-
Yamashita et al. 2019b), with slight modifications. The PaE 
gene expression cassette with a selective marker was ampli-
fied by polymerase chain reaction (PCR) and introduced into 
lysine auxotroph mutant GB-4(0)-L1 cells by electropora-
tion, as described previously (Watanabe et al. 2016). The 
culture filtrate was diluted with sterilized water to 3.0 U and 
used as a PaE solution. Enzyme activity was evaluated based 
on the decreased turbidity of emulsified PBSA. As described 
previously (Shinozaki et al. 2013b), one unit (U) of PBSA 
degradation activity was defined as a 1 OD660 decrease per 
min in the reaction mixture (20 mM Tris–HCl, pH 6.8).

Experimental setup and PaE pretreatment of films

The four soil treatments used for further analysis over 167 days 
were as follows: (1) soil without any film or PaE treatment 
(control soil); (2) soil with non-degradable polyethylene film 
pretreated using PaE (soil with PE-E); (3) soil with PBSA film 
pretreated using PaE (soil with PBSA-E); and (4) soil with 
PBSA film pretreated using inactivated PaE (soil with PBSA-
inact E). The PaE solution was autoclaved at 121 °C for 15 min 
to prepare the inactivated PaE solution (Ueda et al. 2015). 
Calcium carbonate (2% final concentration; SOFTON3200, 
Shiraishi Calcium Kaisha, Ltd., Osaka, Japan) was added to 
the PaE solution and the inactivated PaE solution to maintain a 
stable soil pH (Bache 1984). Although the optimum pH for the 
esterase activity of PaE is under alkaline conditions (Shinozaki 
et al. 2013b), the enzymatic degradation of PBSA produced 
oligomers and monomers with carboxylic acid ends, which 
lowered the pH of the reaction system. When the surface of 
a commercial biodegradable mulch film placed in the field is 
treated with PaE, the film decomposes more efficiently when 
combined with calcium carbonate (Kitamoto et al. 2023).

A total of 126 plastic film pieces (polyethylene 0.235 g or 
PBSA 0.3 g) were soaked in the PaE solution (24 μL/piece) 
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in a 500 mL beaker for 3 min. Film pieces treated with inacti-
vated PaE for 3 min were also prepared. Subsequently, 18 g dry-
equivalent soil was added to each beaker containing the PaE-
pretreated film pieces. The contents were thoroughly mixed and 
transferred to a plastic case with a lid (inner diameter: 50 mm, 
inner depth: 18 mm; Shiga Insect Promotion Company, Tokyo, 
Japan). For each treatment, triplicates were prepared for micro-
biological assays, and 3 − 5 replicates were prepared for CO2 
measurement. The plastic cases were incubated at 25 °C in the 
dark, and the water content was adjusted and maintained at 
60% (w/w) of the maximum water-holding capacity (MWHC) 
by weekly refilling of water decrements. In this study, we chose 
a small case containing 18 g of dry-equivalent soil to allow for 
a wider variety of treatments and replicates. This decision was 
informed by prior research on organic matter decomposition in 
soil, specifically referencing Wagai et al. (2013).

Soil samples were collected from three plastic cases for 
microbiological assays for each treatment on days 0, 1, 4, 
7, 14, 19, 26, 55, 112, and 167 after the start of incubation. 
The sampled soil from each case was transferred to a 500 mL 
beaker and thoroughly mixed. Portions of the soil mixture 
were stored at − 20 °C for DNA analysis and at − 80 °C for 
esterase activity measurement until analysis. After sampling, 
the remaining soil from all three cases was combined and 
mixed well, and the visually discernible PBSA film pieces 
were picked up from a 40 g (wet weight) portion of the 
merged mixture, as shown in Fig. 1.

Evaluation of CO2 production from incubated soil

The CO2 measurement was conducted using the closed 
chamber method (Bekku et al. 1995) with a high-precision 
infrared gas analyzer (IRGA) (Li-7000, LiCor, Inc., Lin-
coln, NE, USA). The Li-7000 system consisted of closed 
chambers (diameter: 125 mm, height with lid: 120 mm) 
equipped with a butyl rubber septum and a pressure adjust 
bag attached to the lid. During each measurement, three 
plastic cases representing one replicate for each treatment 
were placed inside the chamber. The chamber was then her-
metically sealed with water placed in an indent at the base 
of the chamber.

To measure CO2, after closing the chamber with a lid, a 
0.5 mL headspace gas sample was taken from the chamber 
and injected into a N2 gas stream flow (500 mL min−1) 
connected to the Li-7000 system. The signal output of 
each injection was recorded by a CDS analyzer, and the 
area was calculated using CDS-Lite software ver. 5.0 
(LAsoft, Ltd., Chiba, Japan). The CO2 concentration of the 
headspace gas was determined by comparing it to the area 
of standard CO2 gas (1.61%, air balance) using a linear 
regression relationship. The increase in CO2 concentra-
tion in each chamber was monitored at regular intervals (4 
sampling points, 30 min apart) and expressed as a function 
of time (Bekku et al. 1995). The CO2 flux in each chamber 
was calculated using the following equation:

Fig. 1   Time course of PBSA 
film degradation in soil with 
pretreatment using PaE (PBSA-
E) and inactivated PaE (PBSA-
inact E)

Day 1 Day 4 Day 7 Day 55

Day 0 Day 167

Day 14 Day 55

PBSA-E 

Day 167

PBSA-inact E
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where P is the atmospheric pressure, Vc is the volume of 
the camber, Vp is the volume of the plastic case, R is the 
ideal gas constant, T is the absolute temperature, a is the 
CO2 slope, and W is the soil weight. CO2 emission rates for 
each treatment were measured on days 1, 4, and 7, and then 
on a weekly or monthly basis until the end of incubation. 
The CO2 production resulting from the degradation of films 
(PBSA-E and PBSA-inact E) was estimated by comparing 
the difference between the soil with films and the control 
(soil only).

Evaluation of soil esterase activity using 
p‑nitrophenyl valerate (pNP‑C5) and p‑nitrophenyl 
laurate (pNP‑C12)

To investigate the temporal variation in esterase activi-
ties for different acyl chain lengths in the soil, the activity 
of soil samples was determined by hydrolyzing p-nitro-
phenyl valerate (C5, Sigma-Aldrich, St Louis, MO, USA) 
and p-nitrophenyl laurate (C12, Tokyo Chemical Industry 
Co., Ltd., Tokyo, Japan) according to our previous study 
(Tsuboi et al. 2018) using Tris-maleate buffer, pH 6.0 
(Sakai et al. 2002).

DNA extraction from soil samples

Total DNA was extracted from each soil sample (approx. 
0.5 g) using a FastDNA SPIN Kit for Soil (Q-Biogene, 
Carlsbad, CA, USA) according to the manufacturer’s pro-
tocol, with a minor modification, as follows. In soil sam-
ples with buried PBSA films, DNA was extracted from 
the soil matrix and two film pieces until the films were 
observed. To enhance DNA recovery, a 10% casein solu-
tion (w/v) was added to the extraction buffer (Takada-
Hoshino and Matsumoto 2004; Ikeda et al. 2008). The 
extracted DNA was further purified using a DNA Clean 
and Concentrator-25 kit (ZYMO RESEARCH, Irvine, 
CA, USA) according to the manufacturer’s protocol. The 
purified DNA samples were utilized for further molecular 
analyses to determine the microbial community structure 
and quantify fungi and bacteria.

Real‑time quantitative PCR (qPCR)

Fungal and bacterial abundance in the soil samples was 
quantified using qPCR of the large subunit (LSU) rDNA 

CO
2
flux =

P(Vc − Vp)

RT
a
1

W

copy numbers and 16S rDNA copy numbers, respectively. 
Each standard sample was generated using PCR amplicons 
from the Saccharomyces cerevisiae S288c genome using 
ITS1-LR3 primers (White et al. 1990; Vilgalys and Hes-
ter 1990) and the Escherichia coli DH5α genome using 
63F-1492R primers (Marchesi et al. 1998; Lane 1991). 
The DNA concentration of the standards was determined 
using the Qubit BR dsDNA kit (Thermo Fisher Scientific, 
Waltham, MA, USA) according to the manufacturer’s 
instructions. qPCR was conducted using SYBR Premix 
ExTaq II (TaKaRa BIO, Shiga, Japan) with the NL1F-
LS2R primer pair for fungi and the 338f-518r primer pair 
for bacteria (Barnard et al. 2013) according to the manufac-
turer’s instructions on the StepOne Plus Real-Time System 
(Thermo Fisher Scientific).

Analysis of the fungal and bacterial communities

The fungal and bacterial communities were investigated 
with Miseq using a dual-index two-step approach. The ITS2 
region for fungi and the 16S rDNA V4 region for bacteria 
were amplified using modified ITS3-Mix and ITS4-Mix 
primers (Keiblinger et al. 2018) and the 515f and 806r prim-
ers (Caporaso et al. 2012), respectively. These primers com-
prised an Illumina sequencing primer region. To improve 
sequencing quality (Lundberg et al. 2013), 6 mer Ns and 3–6 
mer Ns were fused for fungal primers and bacterial prim-
ers, respectively, between the sequencing primer region and 
the target-specific region. The PCR mixture contained 25 
μL of 2 × Q5 High-Fidelity Master Mix (New England Bio-
labs Japan, Tokyo, Japan), 1 μL (bacteria)/2.5 μL (fungi) of 
each primer (10 μM), 1 μL of the purified template DNA 
sample (1 ng/μL for bacteria and 25 ng/μL for fungi), and 
nuclease-free water added to a total volume of 50 μL. The 
thermal conditions for the first PCR are shown in Table S1 
(Supplementary information). The first PCR products were 
purified, followed by the second PCR and purification of its 
products, in accordance with the Nextera library protocol 
from Illumina (2013).

Paired-end sequencing was conducted using Illumina 
Miseq, and the resulting demultiplexed fastq files cor-
responding to each sample were obtained directly. We 
removed adaptor sequences from the fastq files using Cuta-
dapt (Martin 2014). Following this, low-quality regions in 
the sequences were trimmed using Trimmomatic (Bolger 
et al. 2014), applying the parameters “SLIDINGWIN-
DOW:20:20 MINLEN:50”. Subsequently, forward and 
reverse reads were merged using fastq-join (Aronesty 
2013). Data analyses, including assembly and quality fil-
tering, were performed using QIIME ver. 1.9.1 (Caporaso 
et al. 2010). The chimera sequences were removed from 
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the filtered sequences using VSEARCH (Rognes et al. 
2016) based on the UCHIME algorithm (Edgar et al. 2011) 
using the UNITE database (https://​doi.​org/​10.​15156/​BIO/​
587476) (Kõljalg et al. 2013) for the fungal ITS2 region 
sequences and the SILVA database (release 128) (Quast 
et al. 2013) for the bacterial 16S rDNA sequences. These 
sequences were then clustered into operational taxonomic 
units (OTUs) with a cut-off of 97% sequence similarity 
using QIIME. The taxonomic assignment of each OTU 
was carried out based on the UNITE database for fungal 
ITS2 region sequences and the SILVA database for bacte-
rial 16S rRNA gene sequences. All sequences of the par-
tial fungal ITS2 and bacterial 16S rDNA amplicon have 
been deposited into DDBJ/EMBL/GenBank databases 
under accession numbers DRR492222-DRR492332 and 
DRR491506-DRR491616, respectively.

Statistical analyses

Statistical differences in CO2 production, pNP-C5 and 
pNP-C12 hydrolytic activities, and copy numbers of fungal 
LSU rRNA and bacterial 16S rRNA genes among the four 
soil systems were calculated using a Tukey–Kramer test 
in “R” statistics software version 3.5.2 (R Development 
Core Team 2018).

PBSA film‑degrading potential of fungal strains

Eight fungal strains, including seven of the genus Arthro-
botrys (Arthrobotrys oligospora MAFF425031 and 
MAFF425032; A. superba MAFF236540; Arthrobotrys 
sp. MAFF243669, MAFF243670, MAFF243671, and 
MAFF243672) and one of the genus Tetracladium (Tetra-
cladium setigerum MAFF425374) were obtained from the 
MAFF Genebank project culture collection at the Genetic 
Resources Center of the National Agriculture and Food 
Research Organization (NARO). These fungi were used 
to evaluate PBSA-degrading potential because the fungi 
belonging to these genera became dominant after bury-
ing the PBSA film in the soil in the present study. The 
degradation of emulsified PBSA (Bionolle® EM-301; 
Showa Denko K. K., Tokyo, Japan) on an agar plate and 
solid PBSA film (Bionolle® 3001 G, Showa Denko K. 
K., 20 ± 3 μm thick) was evaluated as described by Koita-
bashi et al. (2012) with slight modification as follows. In 
this study, potato dextrose agar medium (PDA, Nissui Co., 
Tokyo, Japan) was used for the preculture of the strains 
instead of the FMZ medium (a fungal minimal medium in 
the original method) to enhance the hyphae growth of the 
tested strains.

Results

Evaluation of CO2 production from soil 
and degradation of PBSA film pieces

Pieces of visible film were periodically recovered from the 
soil (Fig. 1). Only a few pieces of PBSA-E films could be 
collected from the day after they were buried in the soil, 
and none could be recovered after 55 days. Meanwhile, the 
PBSA-inact E films in the soil were partially degraded, but 
most remained over time (Fig. 1).

To evaluate PBSA film mineralization in the soil, the 
soil CO2 flux was measured in parallel (Fig. 2a and b). 
Intense CO2 production was observed for the first 7 days in 
all experiments. CO2 production was the highest among all 
treatments from day 1 to 55 (p < 0.05) in soil with PBSA-
E (Fig. 2a), which then decreased and maintained values 
lower than those in the soil with PBSA-inact E but higher 
than those in the control soil (Fig. 2b). In soil with PBSA-
inact E, CO2 production showed significantly higher val-
ues (p < 0.05) than those in control soil from days 4 to 167, 
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Fig. 2   Temporal variations in CO2 production from the four soil treat-
ments: the control soil and soils with PE pretreated using PaE (PE-E), 
PBSA pretreated using PaE (PBSA-E), and PBSA pretreated using 
inactivated PaE (PBSA-inact E). The whole view (a) and enlarged 
view from 0 to 0.08 mg CO2 g−1 dry soil day−1 in the CO2 flux (b) are 
shown. Means (n = 3) are presented with standard errors as black bars
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except on days 7, 26, 132, and 146 (Fig. 2b). CO2 production 
in the soil with PE-E showed no significant differences from 
that in the control soil (Fig. 2b).

Temporal variation in soil esterase activity 
hydrolyzing pNP‑C5 and pNP‑C12

In soil with PBSA-E, both pNP-C5 and pNP-C12 hydrolytic 
activities showed significantly higher or higher tendency 
values than those in the control soil and other treatments 
from day 1 to 112 after starting the incubation (Fig. 3a and 
b). The pNP-C5 hydrolytic activity retained higher val-
ues than 200 nmol g−1 min−1 from days 4 to 112 and then 
dropped (Fig. 3a), while the pNP-C12 hydrolytic activity of 
the soil gradually decreased (Fig. 3b). In soil with PBSA-
inact E, the pNP-C5 and pNP-C12 hydrolytic activities 

showed increasing tendencies on days 56 and 26, respec-
tively (Fig. 3a and b). The esterase activities of the two 
substrates were almost the same as those in the control soils 
for the first 19 days of incubation, showing a lack of PaE 
activity in the added solution. In soil with PE-E, because 
of PaE pretreatment, the hydrolytic activity of pNP-C5 and 
pNP-C12 was higher than that of the control on day 1. How-
ever, they rapidly decreased to the control level on day 55. 
In the control soil, the hydrolytic activities of pNP-C5 and 
pNP-C12 were constant during incubation (Fig. 3a and b).

Temporal variation in fungal and bacterial 
abundance

The temporal variations in fungal abundance based on LSU 
rDNA copy numbers were determined using qPCR (Fig. 4a). 

Fig. 3   Temporal variations in 
p-nitrophenyl valerate (pNP-C5) 
(a) and p-nitrophenyl laurate 
(pNP-C12) hydrolytic activity 
(b) based on the pNP produc-
tion rate in the four different 
soil treatments: control soil and 
soils with PE pretreated using 
PaE (PE-E), PBSA pretreated 
using PaE (PBSA-E), and PBSA 
pretreated using inactivated PaE 
(PBSA-inact E). Means (n = 3) 
are presented with standard 
errors as black bars. Sampling 
was performed on days 0, 1, 4, 
7, 14, 19, 26, 55, 112, and 167 
after starting the incubation
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In soils with PBSA-E and PBSA-inact E, the fungal abun-
dance increased by up to 10 times during the first 19 days, 
and was maintained at more than 108 copies until day 167, 
while that in control soil was mostly constant during incu-
bation. The abundance increased more rapidly in soil with 
PBSA-E than in soil with PBSA-inact E. Fungal abundance 
in soil with PE-E showed values similar to those in the con-
trol soil, with no significant differences between them.

Temporal variations in bacterial abundance were meas-
ured based on 16S rDNA copy numbers (Fig. 4b). In soil 
with PBSA-E, the bacterial abundance gradually increased up 
to day 26 and then decreased, while that in soil with PBSA-
inact E peaked at day 14 and quickly decreased. The bacterial 
abundance in the soil with PE-E was constant and showed no 
significant differences from that in the control soil.

Temporal variations in microbial community 
structures

In this study, the number of analyzed amplicons from the 
fungal ITS region and bacterial 16S rDNA ranged from 

57,064 to 254,643 reads and from 11,489 to 135,730 reads, 
respectively (Tables S2 and S3 (Supplementary informa-
tion)). Although the analyzed read numbers varied, the com-
munity structures were similar among the triplicate samples 
(Figs. S1 and S2 (Supplementary information)).

Composition of fungal communities

The temporal changes in the dominant fungal taxa in soil 
with PBSA-E and PBSA-inact E were different (Fig. 5a and 
6 and Table S4 (Supplementary information)). The phylum 
Ascomycota, including Sordariomyctes, Orbiliomycetes, 
Leotiomycetes, Eurotiomycetes, and Dothideomycetes, was 
the most dominant, and variable phyla were observed in both 
soils throughout the experiment. In the control soil and the 
soil with PE-E, the fungal community structures on all sam-
pling days were similar.

In soil with PBSA-E, class Sordariomyctes rapidly 
increased in relative abundance from day 1 and dominated 
the community with 70.8% at day 7, maintaining a high 

Fig. 5   Temporal variations in 
the fungal (a) and bacterial 
community composition (b) in 
the four different treatments: the 
control soil and soils with PE 
pretreated using PaE (PE-E), 
PBSA pretreated using PaE 
(PBSA-E), and PBSA pretreated 
using inactivated PaE (PBSA-
inact E). The relative abundance 
of each fungal and bacterial 
taxon is presented as the mean 
values of triplicates. The sam-
pling days were 0, 1, 4, 7, 14, 
19, 26, 55, 112, and 167 days 
after starting the incubation 0%
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proportion (over 39%) throughout the incubation period 
(Fig. 5a). In the Sordariomyctes class, two Fusarium-related 
OTUs (OTU433F and OTU474F) showed increased pro-
portions for the first 7 days (Fig. 6). The ratio of classes 
Orbiliomycetes, Leotiomycetes, and Eurotiomycetes gradu-
ally increased from the start of incubation and peaked on 
days 19 (5.8%), 55 (9.8%), and 112 (21.3%), respectively 
(Fig. 5a). The representative OTUs in each class also showed 
similar tendencies, including the genus Arthrobotrys-related 
OTU449F in Orbiliomycetes, genus Tetracladium-related 
OTU542F in Leotiomycetes, and genus Exophiala-related 
OTU620F in Eurotiomycetes (Fig. 6).

Meanwhile, in soil with PBSA-inact E, the class Orbili-
omycetes showed increased relative abundance from day 1 
(1.4%) to day 26 (38.4%) and maintained dominance (31.7%) 
at day 55 (Fig. 5a). In the Orbiliomycetes class, the representa-
tive OTUs were related to the genus Arthrobotrys (Table S4 
(Supplementary information)). OTU630F first increased to 
12.2% on day 7, and OTU449F became dominant (over 20%) 
from day 14 to 55 (Fig. 6). After day 112, class Leotiomy-
cetes, including Tetracladium-related OTU542F, showed an 
abundance of over 20% (Fig. 5a and 6). On day 167, the class 
Eurotiomycetes, including Exophiala-related OTU620F, com-
prised more than 5% (Fig. 6 and Table S4 (Supplementary 

Days 0  1     4      7    14 19 26 55 122 167 1 4      7     14 19 26 55 122 167
Fungi
<Dothideomycetes> %
OTU4F Unidentified Tubeufiaceae 25-30
OTU71F Ochroconis tshawytschae 20-25
OTU395F Cladosporium exasperatum 10-20
OTU534F Ascochyta herbicola 5-10
OTU540F Alternaria betae-kenyensis 3-5
OTU640F Unidentified Pleosporales 1-3
<Eurotiomycetes> 0.7-1
OTU47F Talaromyces trachyspermus 0.5-0.7
OTU434F Talaromyces sayulitensis 0.3-0.5
OTU620F Exophiala pisciphila 0.1-0.3
<Leotiomycetes> 0-0.1
OTU542F Unidentified Tetracladium
<Orbiliomycetes>
OTU449F Arthrobotrys microscaphoides
OTU593F Arthrobotrys superba
OTU630F Unidentified Orbiliaceae
<Sordariomycetes>
OTU72F Plectosphaerella cucumerina
OTU145F Staphylotrichum coccosporum
OTU165F Coniochaeta fasciculata
OTU271F Unidentified Chaetomiaceae
OTU335F Unidentified Cordycipitaceae
OTU433F Unidentified Fusarium
OTU474F Fusarium oxysporum
OTU497F Unidentified Hypocreales
OTU586F Staphylotrichum boninense
<Other>
OTU299F Unidentified Fungi

Bacteria
<Actinobacteria> %
OTU300601B Arthrobacter 6-8
OTU199022B Arthrobacter 4-6
<Alphaproteobacteria> 2-4
OTU165401B Bradyrhizobium 1-2
<Gammaproteobacteria> 0.8-1
OTU212542B Azotobacter 0.6-0.8
OTU267604B Azotobacter 0.4-0.6
OTU381457B Azotobacter 0.2-0.4
OTU260392B Azotobacter 0-0.2

Bacteria

OTU name Phylogenetic group
PBSA-E PBSA-inact E

Fungi

Fig. 6   Temporal variations of the dominant phylogenetic groups of 
fungal and bacterial communities in soils with PBSA pretreated using 
PaE (PBSA-E) and PBSA pretreated using inactivated PaE (PBSA-
inact E). The percentages of each fungal and bacterial phylogenetic 

group are presented as the mean values of triplicate samples. Sam-
pling was performed at 0, 1, 4, 7, 14, 19, 26, 55, 112, and 167 days 
after starting the incubation
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information)). Compared to the soil with PBSA-E, OTU449F, 
OTU542F, and OTU620 reached a peak later in soil with 
PBSA-inact E, and the former two showed higher relative 
abundance, while the latter showed a lower relative abundance 
(Fig. 6).

Composition of bacterial communities

Similar to the fungal communities, the dominant bacterial 
taxa in soils with PBSA-E and PBSA-inact E showed tem-
poral changes that differed from each other. Furthermore, the 
bacterial communities were relatively constant and similar in 
the control soil and in the soil with PE-E during incubation 
(Fig. 5b and 6 and Table S5 (Supplementary information)).

In the soil with PBSA-E, a relatively high proportion of 
Actinobacteria was found on day 1 (35.1%) and day 4 (32.0%) 
(Fig. 5b), and the genus Arthrobacter of the Actinobacteria-
related OTU (OTU300601B) seemed likely to be more abun-
dant (over 2%) from day 1 to 7 than that in the control soil 
(Fig. 6). The relative abundance of Gammaproteobacteria 
increased from day 1 (3.0%) to 14 (25.2%), and then com-
prised approximately 15% at day 55 (Fig. 5b). The genus Azo-
tobacter in Gammaproteobacteria-related OTUs, especially 
OTU212542B and OTU267604B, was dominant from day 7 
to 55 (Fig. 6).

In soil with PBSA-inact E, the temporal changes in domi-
nant bacterial taxa were different from those in soil with 
PBSA-E. Relatively high proportions of Betaproteobacteria 
(about 16%) were observed at days 4 and 7 (Fig. 5b). Simi-
lar to the relatively gradual increase in Alphaproteobacteria 
toward the end of incubation (9.7–14.2%), the proportion of 
the genus Bradyrhizobium in subphylum Alphaproteobacteria-
related OTU165401B gradually increased from 0.19% on day 
1 to 0.71% on day 167.

PBSA film‑degrading potential of fungal strains

All tested fungal strains of Arthrobotrys and Tetracladium were 
able to form the clear zone on the emulsified PBSA on the agar 
plate (Fig. S3). In the case of the solid-state PBSA film, five of 
the Arthrobotrys strains, A. oligospora MAFF425031, Arthro-
botrys sp. MAFF243669, MAFF243672, MAFF243670, 
and MAFF243671 decomposed the film on the agar plate 
(Fig. S4). The other two Arthrobotrys strains and T. setigerum 
MAFF425374 did not.

Discussion

In this study, we confirmed the effectiveness of pretreat-
ment with PaE in promoting the degradation and miner-
alization of PBSA films to CO2 in cultivated soil. Our data 
indicated that PaE not only substitutes for esterases from 

initial degraders, but also stimulates esterase production 
by indigenous soil microbes. In addition, our next-genera-
tion sequence analyses elucidated the microbe genera that 
were involved in the sequential degradation of partially 
degraded PBSA films by PaE and new PBSA film.

In soil with PBSA-E, most of the PBSA pieces disap-
peared from day 1 after the start of incubation (Fig. 1) and 
were rapidly degraded to monomers and oligomers by PaE, 
as previously reported (Sato et al. 2017). Succinate and 
butanediol monomers showed fast mineralization (within 
a few hours) by microbial uptake and utilization (Nelson 
et al. 2022). In this study, the CO2 production peaked dur-
ing the first 7 days, accompanied by enhanced fungal and 
bacterial abundance. These results indicate that PaE pro-
moted PBSA degradation to CO2 or microbial biomass. 
The CO2 production rates then decreased and maintained 
higher values than those in the soil with PBSA-inact E 
until day 55, followed by a slower rate of release (Fig. 2a). 
This suggests that the organic carbon that soil microbes 
could assimilate was mostly consumed at this point. The 
addition of PaE with PE to soil showed little or undetect-
able effects on soil respiratory activity because PE was not 
degradable in soil, even after treatment with PaE, and the 
added PaE was negligible as a carbon source.

Our results indicated that this enhancement of PBSA 
degradation by PaE depended on the sequential coopera-
tion of the added PaE and esterase-like enzymes from 
indigenous soil microbes, based on the following obser-
vations: (1) pNP-C5 and pNP-C12 hydrolytic activities 
showed high and similar values in soils with PBSA-E and 
PE-E one day after the start of incubation. (2) While these 
activities maintained higher values in soil with PBSA-E, 
they quickly decreased to the control level in soil with 
PE-E at day 55 (Fig. 3). (3) Fungal and bacterial abun-
dance increased in soil with PBSA-E and showed higher 
values than in soils with other treatments during PBSA 
degradation. Shackle et al. (2006) advocated a “pump-
priming mechanism” in which the supplemented enzyme 
can act to induce further enzyme production by microor-
ganisms via increased degradation of the corresponding 
substrate. In the present study, PaE may also act as a driver 
of this mechanism underlying the enhanced degradation 
of PBSA films in soil.

In soils with PBSA-E, class Actinobacteria, genus 
Arthrobacter-related OTUs of bacteria, and class Sor-
dariomycetes, genus Fusarium-related OTUs of fungi, 
were dominant for the first 7 days (Fig. 6). During this 
period, the data of CO2 production and soil esterase activ-
ities showed that the degradation and mineralization of 
PBSA proceeded intensely. The quick domination of these 
microorganisms may be attributed to their preference for 
nutrient-rich environments (Leplat et al. 2013; Bazhanov 
et al. 2017). One of the Arthrobacter strains was reported 
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to possess an esterase gene (Nishizawa et al. 1995), and 
this genus was reported to be a potential degrader of PBSA 
in soils (Bandopadhyay et al. 2020). The genus Arthro-
bacter colonized biodegradable mulch films based on 
poly(butylene terephthalate-co-adipate) (PBAT) in soil, 
which is a biodegradable polyester (Bandopadhyay et al. 
2020). Cutinase from F. solani can hydrolyze PBS films 
(Hu et al. 2016), and domination of F. solani in soils with 
buried PBSA films has been reported previously (Yama-
moto-Tamura et al. 2020; Purahong et al. 2021; Tanunchai 
et al. 2021). These factors were considered to contribute 
to the degradation of not only PBSA degradation prod-
ucts by PaE, but also PBSA polymers. Bacterial genus 
Azotobacter-related OTUs then dominated and sustained 
high relative abundance during the incubation from day 
14 to 55 (Fig. 6); in this period, CO2 showed a second 
peak, and pNP-C5 hydrolytic activity remained high. The 
bacterial genus Azotobacter has been found in soils con-
taining buried PBSA films (Tanunchai et al. 2021, 2022). 
This genus is known as producers and degraders of poly-
hydroxyalkanoate, a biodegradable polyester (Page 1992) 
although its potential for degrading PBSA remains to be 
determined as far as we know. Additionally, it has been 
proposed that diazotrophic bacteria, including genus Azo-
tobacter, can enhance PBSA degradation by increasing 
fungal abundance and activity, facilitated by nitrogen 
fixation (Tanunchai et al. 2022). As genus Azotobacter 
is a renowned diazotroph, it likely plays a crucial role in 
providing fixed nitrogen to soil with PBSA-E, where rapid 
degradation of PBSA films may deplete nitrogen. These 
suggests that genus Azotobacter might contribute to the 
degradation of PBSA-E in soil. However, further research 
is essential to elucidate the specific ecological roles of 
genus Azotobacter in soils containing PBSA-E.

The PBSA degradation without PaE required time for 
the induction and the increase of degraders in soil. Our 
results indicated that the fungal genera Arthrobotrys and 
Tetracladium played essential roles in the early stages of 
PBSA film degradation in soil. In this study, according 
to the increase in their relative abundance, pNP-C12 and 
pNP-C5 hydrolytic activity increased in PBSA-inact E. 
In the plate culture analyses, the genus Arthrobotrys had 
a solid PBSA film-degradation potential (Fig. S4a, d–g 
(Supplementary information)). This result suggests that 
the genus Arthrobotrys attacks the PBSA film initially. 
Arthrobotrys is reported to show a high abundance in the 
plastisphere of BP mulch films (Qi et al. 2022) and is well 
known as a nematode-capturing fungi (Nordbring-Hertz 
et al. 2011). The nematode epidermis is covered with a 
cuticle layer, whose structure is composed of ester com-
pounds like BP (Chisholm and Xu 2012). The genus Tetra-
cladium, which dominated, followed by the genus Arthoro-
botrys, seemed to play a role in the next step of PBSA 

degradation. Purahong et al. reported that Tetracladium 
spp. are important PBSA colonizers and potential PBSA 
decomposers (Purahong et al. 2021), whose genomes are 
enriched for esterase and pectate lyase domains (Ander-
son and Marvanová 2020). A strain belonging to the genus 
Tetracladium examined in this study showed a clear zone 
on the PBSA emulsion-containing culture plate (Fig. S3h 
(Supplementary information)), even though this strain did 
not degrade solid PBSA films. PBSA emulsions are small 
PBSA particles dispersed in water. One to two percent of 
strains in PBSA emulsion-degrading bacteria isolated from 
soil degrade solid biodegradable films (Kitamoto et al. 
2011). In soil, after PBSA films are partially degraded into 
a form that disperses in water, PBSA polymer chains are 
depolymerized by more types of soil bacteria or fungi, such 
as Tetracladium. Because these genera were less abundant 
in soil with PBSA-E, PaE was considered to contribute to 
the degradation of PBSA films on behalf of these genera.

Conclusion

Enzymatic treatment with PaE enhanced the degradation 
and mineralization of biodegradable plastic in soil through 
the collaborative action of PaE and the soil microbial com-
munity. This approach offers promising potential to address 
agricultural and environmental concerns regarding the per-
sistence of BPs in soil. Given the heterogeneity, complex-
ity, and variability of soil, further experiments using dif-
ferent soil types or field trials should be performed in the 
future. This study identified candidate microbial degrad-
ers of PBSA film and observed their sequential succes-
sion during PBSA degradation in soil. Interestingly, these 
microbial groups appear to be commonly involved in the 
degradation of biodegradable polyesters, even across differ-
ent geographical locations in various studies. Our findings 
open up new avenues for research, such as exploring the 
capabilities of these microbes in artificially synthesized and 
simplified microbial communities—known as the synthetic 
community (SynCom) approach (Vorholt et al. 2017). This 
approach can help clarify the direct contributions of these 
microbes to the degradation process. Strengthening our 
understanding of these mechanisms will be vital in devel-
oping more effective and targeted strategies for biodegrad-
able plastic waste management.
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