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Abstract
Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various 
biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The 
availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources 
of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide 
nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.
This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing 
agent. The nanoparticles were examined by different techniques such as UV–vis spectroscopy, X-ray diffraction, scanning 
electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and 
BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) 
dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles 
were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial 
cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis tech-
niques for addressing environmental issues.
This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical 
or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior 
in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO 
NPs boundaries.

Keywords Green synthesis · Non-conventional biomass · Water pollution, Metallic nanoparticles · Photocatalysis

Introduction

Plants belonging to the genus Tillandsia are found in various 
ecosystems, including equatorial tropical forests, high-ele-
vation mountains, and rock-dwelling swamps. These plants 
typically grow in cold and humid climates under shade and 
at lower forest levels (Luna-Cozar et al. 2020). This plant 
grows prominently on two Fabaceae family members, hui-
zache (Acacia spp.), and mesquite (Prosopis spp.), which are 
ecologically significant due to their ability to fix nitrogen, 
conserve soils, and restore degraded soils (Zapata-Campos 
et al. 2020).

Moreover, owing to their unique ecological niche, plants 
belonging to the genus Tillandsia have been found to con-
tain a diverse array of molecules biologically active found 
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in plants, also called phytochemical (Bitwell et al. 2023) 
that exhibit antiviral, antitumor, and antibacterial activities 
(Pérez-López et al. 2020; Lasso et al. 2022; Lo et al. 2022).

Nanoparticles (NPs) are defined as a group of particles 
having sizes between 1 and 100 nm and characterized by 
some specific physicochemical properties such as surface 
area, surface charge, degree of agglomeration, particle mor-
phology, and surface coating (Turan et al. 2019; Cai et al. 
2020).

As a result, these properties have enabled their applica-
tion in various fields, including but not limited to, environ-
mental remediation processes, drug delivery systems, and 
pharmacology as carriers of chemical compounds (Tosi et al. 
2020). Intending to minimize the environmental impact, 
GS has emerged as a promising alternative to conventional 
methods of synthesizing NPs that are known to be highly 
polluting and generate numerous chemical residues, while 
also being associated with decreased biocompatibility due 
to their toxicity (Salem and Fouda 2021).

Metallic nanoparticles or metal nanoparticles is a term 
that refers to nanoparticles synthesized using metals such as 
gold, silver, platinum, or zinc (Jamkhande et al. 2019; Gud-
kov et al. 2021). The synthesis methods of metal nanoparti-
cles include physicochemical sol–gel method (Parashar et al. 
2020), sol–gel combustion method (Tolossa and Shibeshi 
2022), chemical synthesis (Muthuvel et al. 2020), mechani-
cal method (Yusof et al. 2019), and green synthesis methods 
where are mainly used organic extracts from plants as reduc-
ing agents (Verma et al. 2021).

Among metal nanoparticles, Zn NPs are interesting 
because of their impressive properties, including a wide 
band gap, large binding energy, and high piezoelectric 
properties (Uribe-López et al. 2021). Zinc oxide (ZnO) NPs 
synthesized using green methods can exhibit a wide variety 
of nanostructures and have been demonstrated to be safe, 
non-toxic, and biocompatible (Mirzaei and Darroudi 2017; 
Faisal et al. 2021). They have been used in various technolo-
gies and industries such as optoelectronics, sensors, biology, 
medicine, and environmental restoration (Sadiq et al. 2021; 
Islam et al. 2022). ZnO NPs are widely used as semicon-
ductors with a band gap of 3.37 eV and an exciton bind-
ing energy of 60 meV (Kumbhar et al. 2019), making them 
one of the best photocatalysts to degrade contaminants in 
water due to their capacity for photooxidizing chemical and 
biological species (Deak et al. 2019). Besides their photo-
catalytic activity, ZnO nanoparticles also can adsorb chemi-
cal compounds in water, for instance, Omar et al. (2014) 
reported the use of ZnO nanoparticles as both adsorbent 
and photocatalyst to remove MB from an aqueous solution. 
Several studies have reported this effect, i.e., adsorptive 
and photocatalytic of ZnO NPs for removing different con-
taminants present in water, e.g., 4-nitrophenol (Bhatia and 
Nath 2020), methylene blue (Sadiq et al. 2021), anthracene 

(Hassan et al. 2015), methyl orange (Gherbi et al. 2022), 
2,4-dinitrophenol (Nouri-Mashiran et al. 2022), and cationic 
and anionic dyes (Sasi et al. 2022).

Recently, T. recurvata has overpopulated and infested 
endemic species of huizache and mesquite trees, leading to 
a significant reduction in their population in the Mexican 
plateau states, significantly altering their ecosystems and 
ecological functions. Some local Mexican governments have 
implemented tree-pruning campaigns to physically eliminate 
T. recurvata, generating a significant amount of biomass 
without any potential benefits and representing costs for its 
management and final disposal. Therefore, this residual bio-
mass has been evaluated as a raw material for introduction 
into diverse processes.

Various techniques are currently being investigated to 
produce nanoparticles while minimizing the production 
of chemical waste. GS has been identified as an environ-
mentally responsible option. In this study, ZnO NPs were 
produced using organic extracts of T. recurvata in a sim-
ple and environmentally friendly manner. To evaluate the 
photocatalytic properties of the synthesized nanoparticles, 
MB solutions containing ZnO NPs were first equilibrated 
at dark conditions and then exposed to sunlight. In addition 
to the physicochemical characterization of the NPs, a com-
putational simulation was used to estimate the plasmonic 
response at the range of wavelength values, and finally, the 
WST-1 assay was used to assess the viability of HCT-15 
cells.

Materials and methods

Analytical-grade materials were used without further puri-
fication. All solutions were prepared using double-distilled 
water. The analysis and measurements were performed using 
various advanced systems and tools, including a UV–vis-
ible spectrophotometer (UV–vis DRS), FTIR Spectrometer 
(Nicolet 6700), X-ray diffraction system (XDR, Smart Lab 
Rigaku), field emission scanning electron microscope (FE-
SEM, model JSM-7800F PRIME). Brunauer-Emmet-Teller 
(BET, Quantachrome NOVA 2000e). The photodegradation 
process was monitored by the photoluminescence method 
using a spectrofluorometer FLUOROLOG-FL3-111 (Hor-
iba). Cell viability was determined by employing a plate 
reader (Thermo Scientific, Waltham, MA, USA).

Plant collection

T. recurvata specimens were collected manually from a 
natural ecosystem in the municipality of Tula de Allende, 
Hidalgo, Mexico (20°0′36.995′′N 99º21′19.325′′O) between 
February and June. The average temperature at the site was 
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recorded as 16.2 °C, with an annual precipitation value of 
674 mm (INEGI, 2023).

Extraction of T. recurvata phytochemicals

The T. recurvata plants were washed and disinfected to 
eliminate residual soil and other particles. Subsequently, the 
plant material was oven-dried for 24 h at 40 °C. The dried 
plant material was ground into a fine powder and stored at 
room temperature. In a beaker, a dissolution consisting of 
3 g of T. recurvata powder and 200 ml of distilled water was 
prepared. After 30 min of heating at 60ºC, the mixture was 
filtered by gravity. For future use, the extracts were stored 
at a temperature of − 4 °C.

Qualitative phytochemical screening

Qualitative analysis was done using a fresh organic fraction 
of T. recurvata and using standard methods. The tests were 
considered as positive when was observed the presence of 
precipitates or change of color. A general description of the 
tests is shown as follows:

Test for carbohydrates

Molisch test The crude extract was mixed with 2 ml of 
Molisch’s reagent, and the mixture was shaken properly. 
After that, 2 ml of concentrated  H2SO4 was poured carefully 
along the side of the test tube. The appearance of a violet 
ring at the interphase indicated the presence of carbohy-
drates (Purewal et al. 2023).

Test for flavonoids

Flavonoid test The crude extract was mixed with a few 
fragments of magnesium ribbon and concentrated HCl was 
added dropwise. The pink scarlet color appeared after a few 
minutes which indicated the presence of flavonoids (Kirana 
et al. 2023).

Test for tannins

Crude extract was mixed with 2 ml of 2% solution of  FeCl3. 
A blue-green or black coloration indicated the presence of 
tannins (Jigna and Sumitra 2008).

Test for saponins

Foam test The crude extract was mixed with 5 ml of dis-
tilled water in a test tube and it was shaken vigorously. The 
formation of stable foam was taken as an indication of the 
presence of saponins (Tan et al. 2023).

Test for anthraquinone

Borntrager test Extraction of T. recurvata with KOH at 5% 
was filtered and acidified. The extract was mixed with ben-
zene and several drops of  NH4OH were added and stirred. 
The presence of a pink to red coloration represents the pres-
ence of anthraquinone (Dhiman et al. 2023).

Test for alkaloids

Draggendorff test The crude extract of T. recurvata was 
mixed with several drops of Dragendorff reagent and stirred. 
A shift in extracts’ color from pale to brown indicates that 
there is an alkaloid (Merakeb et al. 2023).

Test for terpenoids

Salkowski test The crude extract was mixed with 2 ml of 
chloroform. Then, 2 ml of concentrated  H2SO4 was added 
carefully and shaken gently. A reddish brown color indicated 
the presence of a steroidal ring, i.e., the glycone portion of 
the glycoside (Khan et al. 2023).

Test for reducing sugars

Fehling test An equal volume of Fehling A and Fehling 
B reagents were mixed and 2 ml of it was added to crude 
extract and gently boiled. A brick-red precipitate appeared at 
the bottom of the test tube indicating the presence of reduc-
ing sugars (Thamer et al. 2023).

Green synthesis of ZnO NPs

Zinc chloride  (ZnCl2) weighing 3.4 g and 50 ml of the aque-
ous extract of T. recurvata were combined in a beaker and 
heated to 80 °C for 1 h leading to the formation of a dark 
brown precipitate. This precipitate was separated from the 
reaction mixture by vacuum filtration using Whatman® No. 
1 filter paper (particle retention of 11 μm). The collected 
solids were dried at 70 °C for 12 h. To investigate the impact 
of the synthesis conditions on the nanoparticle structure, the 
dried solids were calcined at 300 °C, 500 °C, and 700 °C in a 
muffle furnace for 1 h. The final product was stored at room 
temperature, while the generated residues were collected and 
properly disposed of.

Characterization of ZnO NPs

The ZnO NPs were characterized using several analytical 
techniques including X-ray diffraction (XRD), Fourier-
transform infrared spectroscopy (FTIR), field-emission 
scanning electron microscopy (FESEM), energy-dispersive 
X-ray spectroscopy (EDS), and UV–vis spectroscopy. The 
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surface area of ZnO NPs was determined by the Brunauer-
Emmet-Teller (BET) and pore size and pore volume analy-
sis was done by the Barret-Joyner-Halenda (BJH) method 
(Modi and Fulekar 2020).

Photocatalytic activity

The synthesized ZnO NPs were evaluated for their abil-
ity to photodegrade MB under sunlight irradiation. For the 
photodegradation analysis, solutions containing known con-
centrations of MB and the photocatalyst were prepared and 
allowed to equilibrate for 60 min in darkness. The photodeg-
radation process was carried out in 100 mL glass Erlenmeyer 
flasks, the units were set up in triplicate, resulting in a total 
of 9 units per treatment. The control treatment consisted 
of the same MB concentration but without the addition of 
ZnO NPs.

After equilibration time, the flasks were exposed to sun-
light for 180 min to promote photodegradation, and aliquots 
were collected for analysis at time points of 0, 10, 30, 60, 
120, 150, and 180 min. The samples were centrifuged at 
4000 rpm for 10 min, and the MB concentration was meas-
ured using UV spectrophotometry.

The MB degradation was measured using the following 
equation:

where Co is the initial absorbance of the dye solution and Ct 
is the absorbance of MB after time t in min.

Evaluation of supported electric field distributions 
by COMSOL modeling

The effect of the electric field distributions created by light-
matter interactions of the incident light, ZnO–NPs, and the 
surrounding medium (distilled water) is studied at differ-
ent wavelengths, different Zn–NPs diameters, and differ-
ent Zn–NPs presentations in silico experiments through 
COMSOL-Multiphysics software. 2D Simulations were per-
formed via the physics module, while the localized surface 
plasmon resonances (LSPR) were solved via the electromag-
netic waves and the frequency domain modules; resulting 
in the observable maximum supported |E|2 surrounding the 

Percentageofdegradation =
Co − Ct

Co
X100

ZnO NPs. All simulations were performed on the nanometer 
scale.

To emulate the experiments (visible region of the solar 
spectral irradiance), 2D simulations were performed by 
establishing two main working wavelengths (360  nm 
and 750 nm). A free triangular mesh size of 1.2 nm was 
employed for all the simulations. In addition, several ani-
mations are presented in Supplementary information 1, 
where the study considered a broader spectral region from 
300 to 1000 nm. Table 1 summarizes the parameters used 
to perform these simulations.

Determination of the degradation mechanism 
mediated by ZnO NPs

To understand the role of ZnO NPs in photodegradation, 
the following experiment was carried out. The experiment 
consisted of a 0.4-mM terephthalic acid (TA) dissolved in 
distilled water with 2 mM NaOH along with 20 mg of ZnO 
NPs; TA reacts in the presence of the nanoparticles in the 
aqueous dissolution generating •OH radicals to produce 
2-hydroxyterephthalic acid. This process was followed 
by the photoluminescence method using TA as a marker 
(Jayaraj et al. 2018).

Cell culture and cell viability assay

HCT 15 cells, which are isolated from the large intestine 
(American Type Culture Collection, ATCC) were grown 
in a 100-mm cell culture Petri dish at 37 °C with 5%  CO2 
in RPMI cell culture medium containing amino acids, vita-
mins, phosphate, sodium bicarbonate, and supplemented 
with 10% fetal bovine serum. The effect of nanoparticles 
on cell viability was analyzed using a water-soluble tetra-
zolium salt (WST-1) assay, following the manufacturer’s 
instructions (Abcam, Cambridge, UK). Briefly, 5 ×  104/
well cells were cultured in a 96-well microtiter plate at 
a final volume of 100 μL per well for 24 h prior to the 
experiment. The cells were incubated for 24 h with ZnO 
NPs at concentrations of 50 μg/mL, 70 μg/mL, and 100 μg/
mL. Afterward, WST-1 reagent was added to each well and 
incubated under standard culture conditions for 1 h. The 

Table 1  Material parameters 
considered for simulations

�r relative permittivity, �r relative permeability, � conductivity [S/cm]

Materials properties Distilled water ZnO–NPs References

�r 1.77 3.50 (Archer and Wang 1990)
�r 1.00 1.00 (Goda and Behrenbruch 2004)
� 5 × 10 − 6 1 × 102 (Hermans et al. 2014; Baxter and 

Schmuttenmaer 2006)
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absorbance of the samples was measured using a microti-
ter plate reader (Thermo Scientific, Waltham, MA, USA) 
at 440 nm. Non-treated cells were used to control cell 
viability.

Statistical analysis

The tests for MB removal, cell viability, and phytochemis-
try were conducted in triplicate. To determine the efficacy 
of ZnO NPs, an analysis of variance (ANOVA) was con-
ducted on MB removal and cell viability. The statistical 
significance of the observed probability values (p < 0.05) 

was considered significant and estimated using the General 
Linear Model procedure (PROC GLM; SAS 1989).

Results and discussion

Phytochemical screening of T. recurvata extracts

The results of the phytochemical analyses are presented 
in Table 2. The organic fraction exhibited positive results 
for tannins, reducing sugars, and carbohydrates, which are 
essential reducing compounds that act as reducing agents to 
promote the formation of oxide metallic NPs. The phyto-
chemicals also play a critical role in the metabolic processes 
of plants, for instance, Bellotti and Deyá (2019), reported 
that tannins can reduce zinc (Zn) ions to their lower oxida-
tion states, and Hamidian et al. (2022) confirmed that alka-
loids extracted from Salvatore persica efficiently promoted 
the synthesis of ZnO NPs which showed excellent physical 
properties and minimum toxicity effect to MCF-10A cell 
line.

Diffraction of X‑ray (XDR)

The XDR patterns of the green-synthesized ZnO NPs 
annealed at 300, 500, and 700 °C are presented in Fig. 1a–c, 
respectively. The diffraction peaks (2θ) for the material 
annealed at 700 ºC, i.e., 31.8°, 34.4°, 36.2°, 47.6°, 56.6°, 

Table 2  Phytochemical screening of T. recurvata extract

— = No detected; +  = low; +  +  = moderate; +  +  +  = strong

Metabolite Test Result Reference

Carbohydrates Molisch test (+ + +) (Purewal et al. 2023)
Flavonoids Shinoda test (+ +) (Kirana et al. 2023)
Tannins Stiasny test (+ + +) (Kilpeläinen et al. 

2023)
Saponins Foam test (+ +) (Tan et al. 2023)
Anthraquinone Borntrager test (—) (Dhiman et al. 2023)
Alkaloids Draggendorff test (+ +) (Merakeb et al. 2023)
Terpenoids Salkowski test (+ +) (Khan et al. 2023)
Reducing sugars Fehling test (+ + +) (Thamer et al. 2023)

Fig. 1  Diffraction patterns 
of materials synthesized and 
annealed for 1 h at different 
temperatures: a 300 °C, b 
500 °C, and c 700 °C
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62.9°, 67.9°, 68.5º,69.2º, 72.5º, 76.4º, 81.5º, 89.5º, 93.1º, 
96.01, and 97.6º, corresponding to the planes (1 0 0), (0 
0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3), (2 0 0), (1 1 2), (2 
0 1), (1 0 4), (2 0 2), (1 0 5), (2 1 1), (2 1 2), (2 1 3), and 
(3 0 0), confirmed the formation of wurtzite (hexagonal 
close-packed structure) which is a type of close packing of 
a sphere in three dimensions. The average crystallite size 
of the ZnO NPs was determined by the Debye–Scherrer 
formula and was found to be 26.77 nm. In various experi-
ments using green synthesis methods, ZnO nanoparticles of 
comparable size demonstrated photocatalytic activity with 
high removal efficiency of chemical compounds in aqueous 
media (Anbuvannan et al. 2015; Shah et al. 2019; Fouda 
et al. 2022). The crystallite size was determined as follows:

where λ is the X-ray wavelength of Cu–Kα radiation 
(1.5406 Å), β is the full width at half maximum (in radians), 
and � is the Bragg angle.

Morphology studies by field emission scanning 
electron microscopy (FE‑SEM)

Previous studies have evaluated the influence of diverse fac-
tors on the morphology and properties of ZnO nanoparticles 
synthesized via green synthesis, obtaining spherical crystal-
lite sizes ranging from 11.35 to 65 nm, using various plant 
extracts, including Brassica oleracea, Syzygium cumini, and 
Moringa oleifera, among others (Matinise et al. 2017; Osun-
tokun et al. 2019; Sadiq et al. 2021). Among the investigated 
parameters, annealing temperature emerged as one of the most 
crucial for obtaining defined morphologies. FE-SEM was 
used to examine the morphologies of the synthesized prod-
ucts. Figure 2 depicts the results of annealing temperatures 
of (a) 300 ºC, (b) 500 ºC, and (c) 700 °C. The images reveal 
various degrees of agglomeration of the amorphous mate-
rial (Fig. 2a), a more defined morphology with a flake-like 
structure (Fig. 2b), and well-defined nanoparticles ranging 

D =
0.9�

�Cos�

in diameter from 12 to 61 nm (Fig. 2c). At 700 ºC, spherical 
nanoparticles were observed, which is a common shape for 
ZnO NPs synthesized applying GS. For example, Thi et al. 
(2020) demonstrated that a better morphology and photocata-
lytic activity of green synthesized ZnO NPs were improved 
when the annealing process was performed at a higher tem-
perature i.e., 600 ºC, similar studies confirmed that the mor-
phology crystallinity, and size of the ZnO NPs were tempera-
ture-dependent (Kabir et al. 2019). Later results of FTIR and 
EDS analysis supported that high annealing temperature, i.e., 
700 ºC is crucial for obtaining the desired shape and morphol-
ogy of ZnO NPs with high photocatalytic efficiency.

Energy dispersive spectroscopy (EDS)

The chemical composition (Zn, O, and other trace elements) 
of the prepared ZnO NPs was observed by energy dispersive 
spectroscopy (EDS) analysis, and the results are presented in 
Table 3. Unlike at lower temperatures, the percentage of impu-
rities such as chlorine and other elements (Al, Si, phosphorus, 
sulfur, and Ca) decreases at 700 °C. This confirms that the 
annealing temperature is crucial for obtaining high-purity nan-
oparticles contributing to better properties and performance.

Based on these results, it can be inferred that over a 
certain time and as the annealing temperature increases, 
structural defects (likely caused by the presence of residual 
compounds from the reaction process) are reduced, and 
therefore, the morphology of the particles that make up 
the material becomes more defined. It has been proved that 
higher annealing temperature produces a higher compressive 

a) b) c)

Fig. 2  Morphology of the material annealed at different temperatures a 300 ºC, b 500 ºC, and c 700 ºC

Table 3  Elemental composition of samples annealed at different tem-
peratures

Temperature (%)

(°C) Zn O Cl Other

300 35.964 51.507 11.549 0.98
500 35.553 48.198 15.908 0.341
700 47.826 50.995 0.861 0.318
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stress on the NPs affecting not only the morphology but their 
chemical composition (Nagamalleswari and Modem 2023).

Fourier Transform Infrared Spectroscopy (FTIR)

Figure 3 shows the FTIR spectra of the ZnO NPs annealed 
at three different temperatures. The vibration of the O–H 
bond of water absorbed on the surface was linked to the 
large band at 3466  cm−1 and a smaller band at 1603  cm−1 
(Thamer et al. 2023). According to Kumar et al. (2019), 
the band at 2091  cm−1 showed double carbon bonds with 
other elements (such as nitrogen or sulfur), while the peak 
at 1414  cm−1 was attributed to the C = O bond. In addition, 
the band at 2342  cm−1 was assigned to atmospheric  CO2 
absorption by  Zn2+ metal cations. These peaks may have 
been caused by the organic components of the T. recurvata 
extract (Khan et al. 2018).

In the sample calcined at 700 °C, a band correspond-
ing to the link between zinc and oxygen was observed at 
918  cm−1. According to Chaudhari and Kale (2017), metal 
oxides typically exhibit absorption bands in the fingerprint 

region (i.e., below 1000  cm−1) owing to vibrations between 
the atoms involved, proving that the annealing temperature 
is crucial for producing defined nanoparticles with a high 
degree of purity.

The findings demonstrated that some of the peaks 
detected at 300 °C dramatically decreased at 500 °C and 
700 °C.

This shows that the removal of contaminants from the 
nanoparticles, which may impair their photocatalytic effi-
cacy and potentially harm living organisms and the environ-
ment, depends critically on the annealing temperature.

UV–vis absorbance

The UV–vis absorption spectrum of the ZnO NPs annealed 
at 700 °C (used for the photocatalytic process) is shown in 
Fig. 4, where a peak of maximum absorbance at 363 nm was 
observed. The method proposed by Tauc and Menth (1972) 
was used to determine the width of the optical bandgap.

where α is the absorption coefficient, ℎν is the energy of the 
incident photon, k is a constant independent of energy, Eg 
is the energy of the optical band gap, and n, known as the 
transition mode power factor, depends on the nature of the 
material (i.e., whether it is crystalline or amorphous) and can 
take values of 1/2, 2, 3/2, or 3, depending on whether it is a 
direct allowed, indirect allowed, direct forbidden, or indirect 
forbidden transition, respectively (Sharma et al. 2022).

An energy equation was used to calculate photon energy. 
In this case, the frequency of the incident photon (v) can 
be replaced with the value of the speed of light (c) divided 
by the wavelength of the photon (λg), and as a result, it is 
possible to calculate the optical band gap (Eg) (Ibañez et al. 
1991).

The photon energy (hv) is plotted on the x-axis, and the 
parameter (αhv) is plotted on the y-axis, according to the 
Tauc method. It is worth noting that for ZnO, the transition 

(αhv)1∕n = k(hv − Eg)
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Fig. 3  FTIR spectra of the products calcined at three different tem-
peratures

Fig. 4  Band gap determina-
tion of synthesized ZnO NPs 
through UV–vis absorption 
spectrum
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is a direct allowed transition; therefore, the value of n is ½ 
(Kamarulzaman et al. 2015). The linear portion of the result-
ing curve was extrapolated to the x-axis (where α = 0), and 
the value of the optical band gap was obtained as 3.18 eV, 
which is slightly lower than the reported literature value. of 
3.20–3.37 eV (Limpachanangkul et al. 2019).

The graphs in Fig. 4 show (a) the UV–vis absorption spec-
trum for the annealed nanoparticles and (b) the energy of the 
photon (hv) on the x-axis and the parameter (αhv) on the y-axis 
according to the previously mentioned method.

BET analysis

The BET surface area of samples was measured by  N2 adsorp-
tion isotherms. The specific surface area of ZnO NPs was 
determined by the BET method. This method involved the 
physical adsorption of N2 at its boiling temperature. The 
following equation is used to find out surface area by BET 
method (Gatou et al. 2022)

where, P = adsorption equilibrium pressure, Po = Satu-
rated vapor pressure of adsorbate, Va = volume of adsorb-
ate required for a monolayer coverage, and C = A constant 
relating to the head of adsorption.

As per the BET method, a plot P/Va(Po-P) against P/Po 
yields a straight line when P

Po
< 0.3 . The Vm value is obtained 

from the slope and intercept of the straight line by following 
the equation.

P

Va(Po − P)
=

1

VmC
+ C −

1

VmC
×

P

Po

SurfaceArea
m2

g
= Vm ×

N

22414 ×W
× Am

where, Vm = monolayer volume in ml at standard pressure 
and temperature (STP); N = Avogadro number; W = weight 
of the powered sample (g); Am = cross-sectional area of 
adsorbate molecule (0.162  nm2 for  N2).

According to the data, the surface area for the ZnO NPs 
is 13.01  m2g−1, the pore radius is 1.52 Aº, and 0.023 for the 
pore volume (cc/g).

Photocatalytic degradation of methylene blue: 
Influence of amount of ZnO NPs and MB

The optimal photocatalyst dosage for the removal percentage 
of MB was assessed by altering the quantity of ZnO NPs 
from 5.0 to 50 mg/L, while the 20 mg/L dye concentration 
and pH 7 remained unaltered. The results revealed that the 
removal efficacy of MB was considerably influenced by the 
amount of photocatalyst, as shown in Fig. 5.

The results demonstrate that a higher initial concentra-
tion of ZnO NPs was observed in a higher MB removal per-
centage. After equilibrium time, it was reduced the initial 
concentration of MB; this result can be explained by the 
adsorptive capacity of the ZnO nanoparticles.

As part of this work, it was necessary to eliminate the 
interference due to the adsorption effect since it is known 
that the adsorptive capacity of dye molecules on the surface 
of the photocatalyst is a crucial factor that influences the 
photocatalytic performance of the catalyst. For instance, 
Lal et al. (2022) evaluated the combined photocatalytic and 
adsorptive effect of green synthesized ZnO NP to remove 
MB from aqueous media, observing that the NPs exhibited 
better photocatalytic activity due to their better adsorption 
capacity reaching 91% of MB degradation after 180 min of 
sunlight exposure. In a similar experiment, Nguyen et al. 
(2021) evaluated the adsorption and photocatalytic perfor-
mance of ZnO NPs fabricated from Canna indica L. flowers 

Fig. 5  Removal of MB during 
photocatalysis with ZnO nano-
particles at different concentra-
tions under dark (60 min) and 
sunlight conditions (3 h in a 
day)
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extract for removing organic dyes, observing that the dye 
molecules behaved monolayer adsorption on ZnO surface 
layers and that this process it was controlled by chemisorp-
tion. The study reported that sunlight was effective for pho-
tocatalytic degradation of MB using green synthesized ZnO 
NPS (94.23% removal and 31.09 mg/g of uptake capacity). 
Our results showed a reduction of the initial concentra-
tion of MB during the dark equilibrium stage, proving that 
ZnO NPs can present adsorptive behavior which is posi-
tively correlated to the amount of the photocatalyst, i.e., at 
50 mg/L of ZnO NPs it was observed a 20% removal of 
MB, 15% removal for 20 mg/L of ZnO NPs, 7% removal for 
10 g/L, and 5% for 5 mg/L, observing statistical difference 
only between the higher ZnO NPs concentration (50 mg/L) 
with lower concentrations (0 mg/L to 20 mg/L). It has been 
reported that ZnO NPs show a low capacity to adsorb com-
pared to their composites or other metallic nanomaterials 
(Nang An et al. 2020; Obayomi et al. 2021).

After the equilibrium time, the removal efficiency was 
significantly higher for samples with ZnO concentrations 
of 20 and 50 mg/L, with removal values of 30% and 80%, 
respectively, after 3 h of sunlight exposure. The removal 
obtained for experiments with ZnO concentrations of 0, 5, 
and 10 g/L did not show significant statistical differences. 
A gradual decrease in the absorption band was observed 
in the experiments with 20 g/L and 50 g/L ZnO nanopar-
ticles, indicating the breaking of the conjugated system by 
hydroxyl radicals generated through photocatalysis, causing 
the formation of smaller organic compounds (Krishnan et al. 
2023). Figure 6 shows the results obtained.

The influence of the initial MB concentration was ana-
lyzed by preparing solutions of this dye at concentrations 
of 0, 5, 10, 20, and 50 mg/L of the ZnO catalyst and an 
initial MB concentration of 50 mg/L. The MB dye exhib-
ited an absorption band with two peaks at 612 and 664 nm, 

corresponding to the conjugated system formed between 
sulfur and nitrogen, which acted as a chromophore in the 
molecule (Renda et al. 2021). In the absence of ZnO nano-
particles, MB is generally stable, and the rate of its degra-
dation under sunlight is 8%; similar results were observed 
by (Vasiljevic et al. 2020). Results are shown in Fig. 5.

The impact of dye concentrations on the removal per-
formance of the MB was also assessed by changing the 
dye concentration from 5.0 to 30.0 mg/L using sunlight 
irradiation while maintaining the photocatalyst amount at 
20 mg/L and pH 7 as shown in Fig. 6. It was observed 
that the adsorptive performance of ZnO nanoparticles dur-
ing the dark conditions experiment was greater at lower 
concentrations of MB ranging from 16% of removal for 
5 mg/L MB to 7% of removal for 30 mg/L); this can be 
explained by the saturation of the photocatalyst surface, 
being this the predominant process during the dark expo-
sure (Elmorsi et al. 2017; Nang An et al. 2020).

The results showed that the photocatalytic perfor-
mance of the ZnO NPs was inversely proportional to the 
MB concentration, that is, the maximum removal of MB 
was obtained at a minimum concentration of MB (5 and 
10 mg/L). It was also noticed that when MB increased 
from 10 to 30  mg/L, MB-removal removal gradually 
decreased from 100 to ~ 80%. This abatement is due to the 
decreased light absorption on the photocatalyst surface 
with increasing dye concentration, which in turn reduces 
the production of  OH∙radical ions that have been reported 
to play a crucial role in the photodegradation process 
(Nguyen et al. 2018).

In general, similar removal results were obtained for 
green-synthesized ZnO nanoparticles using several plant 
extracts, such as S. cumini, Myristica fragans (Faisal), and 
Scutellaria baicalensis (Chen et al. 2019).

Fig. 6  Removal of MB at differ-
ent initial concentrations during 
photocatalysis with ZnO nano-
particles under dark conditions 
(60 min) and sunlight irradia-
tion (3 h in a day)
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ZnO–NPs simulations

In Fig. 7, | E|2 simulations are shown for ideal geometrical 
wurtzite hexagonal single ZnO NPs at different diameters 
and for those with rounded vertexes emulating the observ-
able SEM images presented above. Simulations in Fig. 7 
(from i to xii) show that at different wavelengths and diam-
eters, the | E|2 profiles vary along the immediate surrounding 
medium. For example, under 360 nm wavelength excitation, 
the observable hot spots are more confined to smaller sur-
face regions for all cases, while at 365 nm, longer LSPR is 
distributed around ideal and rounded vertexes and edges. 
In addition, for both wavelengths, the rounded configura-
tions slightly reduced the LSPR amplitudes. Regardless of 
the shape configuration (ideal and/or rounded), the electric 
field enhancements are located at the vertexes and edges 
of the ZnO–NPs. Previously, metallic oxide semiconduc-
tor nanostructures (ZnO–NPs) have been used as potential 
systems for SERS applications (Marica et al. 2022; Li et al. 
2023) demonstrating their versatility in terms of promis-
ing materials for electron mobility under longer excitation 
wavelength range. For example, optical excitation ranging 
along the near-IR results in electronic excitation in the con-
duction band, while those regions centered along the UV, 
result in electronic excitation in the valence band (Li et al. 
2023). This electronic mobility is finally understood such 
as the collective resonance of surface plasmons generated 

and oscillating under the influence of incident EM fields in 
a broader wavelength range.

Because the physical properties of nanomaterials strongly 
depend on their morphology and their topology presenta-
tions, an example of the resonant plasmonic enhancement 
distributions for different ZnO–NPs ensembles distributed 
in a surface area of 400 nm × 400 nm with different diam-
eters, is presented in Fig. 8. |E|2 simulations are done at 
four different wavelengths revealing that whatever the work-
ing wavelengths, the maximum |E|2 values are supported 
along the ZnO–NPs surroundings; demonstrating the plas-
monic resonant enhancements due to the strong light-matter 
interaction around the ZnO–NPs boundaries. These |E|2 
simulations show, in addition, that under these randomly 
oriented ZnO–NPs, the maxima plasmonic enhancements 
are observed along all working wavelengths; showing, in 
addition, that at shorter wavelengths the LSPRs are sup-
ported more on that region for small ZnO–NPs, while at 
750 nm, the LSPRs are located where ZnO–NPs with greater 
diameters are. It is well known that the optical properties of 
NPs are strongly influenced by their sizes. This dependence 
is not exclusive to those NPs based on metallic and organic; 
semiconductor-based NPs also present modifications in their 
optical properties because of the tunability of their sizes 
(Huerta-Aguilar et al. 2019; Bhattacharya et al. 2020). At 
500 nm, the LSPRs are more uniformly distributed. Regard-
less of working wavelength, all simulations presented an 

Fig. 7  |E|2 simulations of 
hexagonal and rounded vertexes 
of ZnO–NPs with different 
diameters embedded in DW per-
formed at 300 nm and 360 nm 
of wavelength excitation. The 
bottom color scale is in V/m. 
The bar scale corresponds to 
50 nm
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extended LSPR contribution, boosting the LSPR interaction 
with the ZnO–NPs environments.

Confirmation of the MB degradation mechanism 
mediated by ZnO NPs

Figure 9 shows the photoluminescence spectra of TA in the 
presence of annealed NPs–ZnO at 700 °C under sunlight and 
a UV–vis lamp (at wavelengths 254 and 365 nm).

As observed, there was a gradual increase in the fluo-
rescence intensity at a wavelength of 420 nm produced by 
2-hydroxyterephthalic acid, similar to the results reported by 
Abebe et al. (2020), which was more evident under sunlight 
exposure. Several authors have used scavenging approaches 
to suggest the degradation mechanism of MB in the presence 
of ZnO (Gómez-Solís et al. 2012; Mumanga et al. 2021; 
Chemingui et al. 2022; Biswas et al. 2023).

The catalytic performance of green synthesized ZnO 
NPs (T. recurvata) can be attributed to its small size and 

Fig. 8  |E|2 simulations of 
randomly oriented rounded 
ZnO–NPs with different diam-
eters under different working 
wavelengths. The bar scale 
corresponds to 100 nm

Wavenumber (nm)

A
bs
or
ba
nc
e(

a.u
.)

minminmin

Fig. 9  Fluorescence intensity of 2-hydroxyterepthalic acid under sunlight intensity in the presence of ZnO NPs
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low band gap energy. Furthermore, the presence of surface 
oxygen vacancies is known to enhance the photocatalytic 
efficiency by improving the separation of the  e–/h+ pairs as 
well as increasing the adsorption of  O2 on the ZnO nanocata-
lyst (Duraimurugan et al. 2019). Oxygen vacancies produce 
energy levels within the band gap of the ZnO nanoparticles. 
These levels serve as charge carrier traps that can capture 
the photogenerated charges and delay the recombination 
between the  e–/h+ pairs.

Green synthesized nanoparticles show better performance 
when compared to those synthesized using chemical/physi-
cal methods due to the bioactive compounds present in the 
plant extract which coat the surface of the photocatalyst, 
increasing its surface area, and providing a large number of 
surface area of the catalyst. It also increases the concentra-
tion of hydroxyl groups, and as a consequence, increases 
the production of reactive oxygen species (ROS) (Kumar 
and Dutta 2022) as described in the proposed degradation 
mechanism.

In a study published by Kuriakose et al. (2015), it was 
reported the photocatalytic activity of ZnO nanostructures 
and Cu doped with ZnO nanostructures for removing MB 
under sunlight irradiation conditions, observing an improve-
ment in the MB removal with Cu–ZnO doped nanomate-
rial (92% of 10 μM MBin 30 min) compared to pure ZnO. 
It was also demonstrated that the enhanced photocatalytic 
of Cu–ZnO nanostructures is attributed to the formation of 
nanoheterojunctions (ZnO–CuO) facilitating a better sun-
light utilization efficiency. Liu et al. (2021) confirmed that 
the construction of heterojunction at the interface of two 
semiconductor photocatalysts plays a crucial role in separat-
ing and transporting charge carriers, contributing to a highly 
efficient photocatalytic reaction, reported to higher efficien-
cies in shorter time of light exposure.

As it is observed, pure ZnO NPs showed larger times 
for removing MB when compared to the results obtained 
in the previous studies, however, it is hypothesized that 
when a photocatalyst (ZnO NPs) is irradiated with photons 
with energies equal to or greater than the bandgap energy 
(3.18 eV), electrons  (e−) are excited from the valence band 
(VB) to the conduction band (CB), simultaneously creating 
holes  (h+) in vb.

The photocatalytic mechanism of ZnO NPs is as follows 
(Legrini et al. 1993):

where h is the required electron transfer from the VB to CB. 
The electrons generated by irradiation are easily surrounded 
by  O2 adsorbed on the surface of the catalyst to produce 
superoxide radicals ( O∙−

2
).

nO + h → ZnO
(

h+
[VB]

)

+ ZnO
(

e−
[CB]

)

Subsequently, it can react with  H2O to produce the 
hydroperoxyl radical ( HO∙

2
 ) and hydroxyl radical ( OH∙ ), 

which are strong oxidizing agents capable of decomposing 
organic molecules, such as MB.

Simultaneously, the photoinduced holes are trapped by 
 H2O on the surface of the photocatalyst to produce hydroxyl 
radicals (OH∙).

Finally, the organic molecules are oxidized to produce 
carbon dioxide and water.

Meanwhile, the recombination of positive holes and elec-
trons occurs, which reduces the photocatalytic activity of 
ZnO.

Cell culture and cell viability assay

The rapid development of the application of ZnO nanopar-
ticles in diverse fields such as medicine, cosmetics, food, 
and environmental remediation has led to the need for their 
safety as associated with human health. There is less cer-
tainty regarding nanoscale ZnO, even though bulk ZnO 
has been recognized as safe. Several studies have reported 
damage to eukaryotic cells, but there are no precise details 
regarding the cytotoxic mechanism or toxic concentration 
of NPs.

Multiple studies have reported the toxicity of nanopar-
ticles when inhaled or ingested. To determine the effect of 
zinc nanoparticles on intestinal epithelial isolated from the 
large intestine (HCT 15) and purchases from American Type 
Culture Collection (ATCC). HCT 15 cells growing in RPMI 
cell culture medium were incubated with different nanopar-
ticle concentrations for 24 h and the WST-1 cell viability 
assay was used to determine cell viability.

As shown in Fig. 10, zinc nanoparticle concentrations 
between 50 and 70 μg/mL exhibited negligible toxicity in 
comparison to untreated control cells.

The toxicity of ZnO NPs produced through green syn-
thesis and derived from various plant extracts has been the 
subject of many studies.

It is important to note that the toxicity of ZnO is spe-
cifically linked to its solubility, evident in the concentration 
of  Zn2+. In a study published by (Song et al. 2020) it was 

e−
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reported that several factors such as exposure duration, cul-
ture conditions, and test mediums, can impact on the toxic-
ity of ZnO nanoparticles NPs. In this study was evaluated 
the cytotoxicity of ZnO NPs, ZnO bulk particles (BPs), and 
 Zn2+, towards E. coli, observing that ZnO NPs and ZnO 
BPs had comparable cytotoxicity. The study revealed that 
the toxicity of ZnO NPs/BPs was decreased by  Fe3+ in a 
concentration-dependent manner. The mechanisms of the 
decreased cytotoxicity of ZnO NPs were attributed to both 
decreased particle-related and ion-related toxicity, there-
fore, the presence of  Fe3+ resulted in decreased cytotoxic-
ity by the promotion of  Zn2+. The study concluded that the 
cytotoxicity of ZnO NPs can be partially attributed to Zn 
accumulation, which is governed by the solubility of ZnO. 
There are additional mechanisms of cytotoxicity includ-
ing the produced by the reactive oxygen species (ROS), 
membrane disorganization, and DNA damage, which are 
also affected by the dynamic of ZnO and  Zn2+ ratio in the 
medium. A remarkable statement of this previous work was 
that the cytotoxicity of ZnO NP was predominantly derived 
from particle-related toxicity (90%) after 8 h and after 24 h 
of exposure, the cytotoxicity was related to the presence of 
Zn2 + ions (≥ 80%).

As an important remark it is important to note that a com-
plete understanding of the dissolution mechanism of ZnO 
NPs in the medium and most of the mechanisms leading 
to increasing intracellular  [Zn2+] levels remain speculative 
(Valdiglesias et al. 2023).

In a previous study published by Saravanan et al. (2018), 
it was hypothesized that free  Zn2+ partially contributed an 
antimicrobial effect through the mechanical contact between 
the membrane of Helicobacter pylori and ZnO surface, 
interestingly, in the same experiment, the biosafety profile of 
the NPs was studied using normal human mesenchymal stem 

cells (hMSc) with no significant toxicity to the mammalian 
cells at a concentration equal to and below 12.5 μg/ml.

Toxicity levels of metal oxide nanoparticles are also influ-
enced by the kind of synthesis method used and the reaction 
conditions applied, which affect the surface atomic prop-
erties of the synthesized nanoparticles and their arrange-
ments (Rana et al. 2020). For instance, Aswathi et al. (2023) 
reported that biodegradability and low toxicity are among 
the most significant characteristics of green-synthesized 
ZnO nanomaterials. In previous studies, (Mandal et  al. 
2018) proved that green synthesized ZnO NPs improved 
their photocatalytic activity and Hahm (2016) reported that 
ZnO nanoparticles showed acceptable biocompatibility to be 
used in detection modes in biological systems.

Our data indicate that cell viability was not affected by 
ZnO NPs at doses below 70 μ/mL. It is possible to postulate 
that the HTC 15 cells exhibited compatibility with the green 
synthesized ZnO NPs during culture. This improvement may 
be partially due to the residual organic molecules remain-
ing from the T. recurvata extract after the synthesis pro-
cess, which may have coated the nanoparticles to facilitate 
a less deleterious interaction with the cells. Furthermore, 
it is hypothesized that the cytotoxic effect of ZnO NPs is 
restricted to the initial hours of incubation, where the con-
centration of  Zn2+ is low (Song et al. 2020).

It is worth noting that multiple studies have found ZnO 
NPs to be toxic to several cell systems and organisms. Nev-
ertheless, most of these studies did not consider the potential 
interference of these nanoparticles with the components of 
the culture medium, reagents, or detection systems, which 
has been shown to be a critical factor in the observed results. 
This is why more research is needed to determine whether 
the toxicity of ZnO NPs is caused by the nanoparticles them-
selves or by the zinc ions that are released, as well as the 
cellular mechanisms.

In relation to the international regulation of Zn and Zn-
based compounds in water, it is important to note that the 
permissible levels for these materials differ across different 
international regulations. For instance, the European Union 
has set a provisional recommendation value of 50 µg/L for 
total zinc in drinking water, which includes both soluble and 
insoluble forms of zinc but does not expressly address ZnO 
nanoparticles (98/83/EC 1998). Currently, there is no fed-
eral law or standard in the USA that specifies the maximum 
amount of ZnO nanoparticles that can be present in water, 
including both soluble and insoluble forms of zinc, and the 
Environmental Protection Agency (EPA) has set the maxi-
mum contamination level (MCL) for total zinc in drinking 
water at 5 mg/L. (USEPA 1979).

Finally, it is critical to understand that, in addition to 
the critical advances made in the fabrication and charac-
terization of nanomaterials for environmental applications, 
a comprehensive assessment involving cytotoxic analysis is 

Fig. 10  WST-1 viability for HCT 15 cells growth at different green 
synthesized ZnO NPs concentrations
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required. This method may not only improve our comprehen-
sion of cell responses, but it may also help to uncover the 
potentially dangerous effects of nanoparticles release into 
the environment. As a result, for informed decision-making 
in environmental policies, a complete approach is necessary.

Conclusion

For the first time, this study presents a feasible and environ-
mentally friendly method for producing ZnO nanoparticles 
with strong photocatalytic activity and minimum toxicity 
effect on human epithelial cells, making them potentially 
useful in a variety of environmental applications. The green 
synthesis of ZnO nanoparticles using T. recurvata extracts 
is a viable strategy that can be expanded to manufacture 
a wide range of nanomaterials, providing an alternative to 
existing methods that frequently involve toxic chemicals 
and time-consuming processes. Overall, the findings of this 
work provide a green and sustainable approach for synthe-
sizing ZnO nanoparticles with potential applications in a 
variety of industries. This study also includes results of the 
simulations of ZnO NPs varying shapes and sizes, as well 
as in individual or aggregated presentation; the use of these 
simulation tools significantly contributes to our understand-
ing of the optical behavior of nanomaterials, enhancing our 
comprehension of the obtained photocatalytic response.

This new approach was useful for visualizing the plas-
monic response of this semiconductor and elucidating the 
optical behavior of this nanoparticle, opening a broader 
range of applications for the same purposes.
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