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Abstract
Predicting groundwater potential is crucial for identifying the spatial distribution of groundwater in a region. It serves as an 
essential guide for the development, utilization, and protection of groundwater resources. Previous studies have primarily empha-
sized finding the most accurate prediction model for groundwater potential while giving less attention to the selection of training 
features and sample sizes. This study aims to predict groundwater potential within Qinghai Province using automated machine 
learning technology and assess the influence of sample sizes and feature selection on prediction accuracy. Sixteen groundwater 
conditioning factors were categorized into categorical and numerical variables. Four feature selection modes were utilized as 
input in training the model. The results indicated that, except for correlations between evaporation and landforms (− 0.8) and 
precipitation and normalized difference vegetation index (0.8), the Pearson correlation coefficients among the remaining sixteen 
factors were ≤ 0.5 or ≥  − 0.5. The models XGB-ALL, RF-Entropy, ET-CRITIC, and XGB-PCA yielded accuracy scores of 
0.783, 0.685, 0.745, and 0.703, and area under curve (AUC) of 0.819, 0.724, 0.779, and 0.747, respectively. If enough samples 
are available with the tree model, an increased number of features can improve prediction accuracy. The principal component 
analysis method showed difficulty in reducing the dimensionality of the input space, while the Entropy method proved efficient. 
The accuracy and AUC value of the prediction model improved with an increasing number of samples. Training with 8 features 
and 200 data points achieved an accuracy of 0.745, sufficient to evaluate regional groundwater potential. As for training with 
600 samples, the model’s performance accuracy rose to 0.9, enabling precise groundwater potential prediction. The outputs of 
this research can provide decision-makers in groundwater resource management in Qinghai Province with crucial theoretical 
and practical support. The lessons learned can have future applications in similar situations.
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Highlights   
• This study predicted the groundwater potential in Qinghai 
Province using automated machine learning technology. The 
influence of sample sizes and feature selection on prediction 
accuracy was assessed.
• The study collected 16 factors that affect groundwater potential 
and adopted four feature selection methods, including the “ALL” 
method which selected all 16 factors, and the remaining methods 
each included only 8 factors for training.
• The Entropy method proved efficient in reducing the 
dimensionality of the input space. as the number of samples 
increases, the accuracy and AUC value of the groundwater 
potential prediction model risen. Training with 8 factors and 200 
samples results in 0.75 accuracy, sufficient to evaluate regional 
groundwater potential. 
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Introduction

Groundwater is an essential resource for supporting human 
existence and global socio-economic progress (Anand et al. 
2021). It serves as a critical source of freshwater for drinking, 
farming, and industrial activities. Because of its wide avail-
ability and affordability, it acts as the major source of water 
for many suburban and rural settlements in developing coun-
tries (Wang et al. 2023a). Nevertheless, groundwater deple-
tion presents an increasing worldwide concern since it is not 
a renewable source. Providing an uninterrupted groundwater 
supply to fulfill the upsurging demands of the community 
continues to be a daunting issue (Sun et al. 2019). Hence, 
forecasting groundwater potential is imperative for productive 
management, utilization, and preservation of this scarce asset.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-023-31262-5&domain=pdf
http://orcid.org/0000-0002-0708-1750
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Groundwater potential refers to either the availability of 
groundwater in a particular area or the volume of water that 
can be withdrawn from an aquifer without affecting the sur-
rounding environment (Jhariya et al. 2021). The formation 
and change process are complex and determined by various 
environmental factors (Tegegne 2022). In the past, forecast-
ing groundwater potential relied on traditional methods, such 
as drilling and geophysical surveys, which were both costly 
and time-consuming, and limited to specific areas. How-
ever, with the advancement in artificial intelligence algo-
rithms and computer performance (Reichstein et al. 2019), 
researchers are increasingly turning to machine learning 
models to forecast groundwater potential. By collecting and 
quantifying environmental factors through remote sensing 
(Shamsudduha and Taylor 2020) and geographic information 
systems (Bera et al. 2021), researchers can employ machine 
learning algorithms to predict the spatial distribution of 
groundwater potential or examine the intricate relationships 
between various environmental factors and groundwater 
potential. Commonly, logistic regression (Rizeei et al. 2019), 
decision trees (Lee and Lee 2015), random forests (Golkar-
ian et al. 2018), gradient boosting machines (Sachdeva and 
Kumar 2021), support vector machines (SVM) (Naghibi 
et al. 2017), deep neural networks (Wang et al. 2022), and 
convolutional neural networks (Panahi et al. 2020) were 
used to forecast groundwater potential. Additionally, hybrid 
models that combine machine learning with other evalua-
tion methods like analytic hierarchy process (Ahmad et al. 
2023), Technique for Order of Preference by Similarity to 
Ideal Solution (Mahnaz Zaree et al. 2019), rank sum ratio 
(Wang et al. 2023a), multi-criteria decision-making (Farhat 
et al. 2023), and genetic algorithms were also employed to 
improve predictions.

Machine learning algorithms provide efficient methods 
for evaluating regional groundwater potential. However, pre-
vious studies focused mainly on comparing and evaluating 
the performance of various models (Wang et al. 2023b). To 
predict groundwater potential in a particular area, research-
ers collected existing data, typically obtained from boreholes 
that pump groundwater (Arabameri et al. 2021), and used 
them as the training dataset for the model. Researchers often 
chose two or more separate models for training and compared 
their accuracy to identify the most precise one ( Razandi et al. 
2015). However, collecting sufficient training data is challeng-
ing due to economic and natural constraints that limit sample 
collection. Several studies have imposed limits on the sample 
size, which range from a few tens to two hundred (Bera et al. 
2021), and may be inadequate for machine learning models 
to offer precise predictions. Furthermore, to achieve more 
credible model performance, multiple studies split the data-
set into a training set of 70% of the samples and a 30% test 
set (Pham et al. 2021), resulting in a further one-third reduc-
tion in the original sample size. Additionally, the prediction 

of groundwater potential can be affected by the choice of 
training features, as some factors may be more sensitive to 
regional groundwater potential than others (Thanh et al. 2022). 
Researchers often aim to use as many factors as possible in 
training to increase accuracy, but this approach can lead to 
multi-collinearity problems, particularly in commonly linear 
models, such as linear regression, logistic regression, SVM, 
and naive Bayes. Furthermore, selecting too many factors can 
cause the curse of dimensionality (Pedregosa et al. 2011), 
which limits the accuracy of the model, particularly due to the 
small number of borehole samples. Therefore, in the context of 
predicting groundwater potential, the selection and number of 
factors, as well as the sample size, can have a greater impact 
on the accuracy of the model than the quality of the model or 
selection of parameters.

In this study, we aim to enhance the accuracy of ground-
water potential prediction by exploring the impact of feature 
selection methods and sample size on prediction perfor-
mance. A total of 16 factors that affect groundwater potential 
in Qinghai Province, China were collected. Unlike previous 
studies that directly train all factors, this research incorpo-
rates four distinct methods: the “ALL” method, which uti-
lizes all 16 factors affecting groundwater potential, and three 
techniques that reduce the dimension of factors — Princi-
pal Component Analysis (PCA) (Sun et al. 2021), Entropy 
(Naghibi et al. 2015b), and Criteria Importance Through 
Intercriteria Correlation (CRITIC) (Rostamzadeh et  al. 
2018). Each of these three methods includes only eight fac-
tors for training, providing a comprehensive comparison of 
their performance. Furthermore, an extensive analysis on 
the influence of sample size on prediction performance is 
conducted, a factor often overlooked in previous studies. 
As our research was not focused on finding the ideal model 
or parameter, the automated machine learning (AutoML) 
method (Wang et al. 2021) was used to identify and select 
the optimal model and parameter set. The predictive model 
was applied to determine groundwater potential across the 
entire Qinghai Province. By using trained models, the study 
was able to accurately assess the groundwater potential in 
Qinghai Province. The results of this study will be helpful 
for guiding future research on groundwater potential predic-
tion by assisting with the selection of appropriate sample 
sizes and features.

Data and data processing

Description of the study area

Qinghai Province is situated in the northeast region of 
the Qinghai-Tibet Plateau in Northwest China, spanning 
from 89°35′E to 103°04′E for longitude and 31°9′N to 
39°19′N for latitude (Liu et al. 2013). The province covers 
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an area of approximately 720,000 km2 and has an alti-
tude ranging from 2000 to 5000 m (Han et al. 2016). Its 
geological conditions chiefly arose from the Himalayan 
orogeny and the Qinghai-Tibet Plateau uplift. The region 
is endowed with a plethora of rock strata from various geo-
logical periods from the Paleozoic to the Late Cenozoic, 
along with some scattered volcanic and intrusive rocks. 
The study area experiences a plateau continental climate 
and its annual mean temperature oscillates between − 5.1 
and 9.0 °C, while the annual mean rainfall varies substan-
tially across different locations, ranging from 18 to 780 
mm (Han et al. 2021). The average annual evaporation is 
around 1012–3335 mm (Fig. 1). The region is the origin 
of numerous rivers and lakes, including those that flow 
outward into the ocean, such as the Yangtze River and the 
Yellow River (Cao et al. 2020), as well as inland rivers that 
pour into the Qaidam Basin (Wang et al. 2022). Qinghai 
Province is crucial to China’s water conservancy and min-
ing industries, as it is abundant in a broad range of non-
ferrous metals, coal, oil, gas, and salt minerals (Kong et al. 
2017). Despite the abundance of local water resources, the 
province still faces a notable disparity between water sup-
ply and demand. Therefore, it is necessary to provide an 
accurate assessment of groundwater resources in Qinghai 
Province to achieve sustainable development and efficient 
management, given the importance of water for industrial 
and agricultural activities in the region.

Sample dataset

The reliability of prediction results and the accuracy of 
machine learning algorithms used for groundwater poten-
tial prediction depend on the number of training samples 
(Panahi et al. 2020). However, the limited economic and 
natural conditions in the geosciences field pose several 
challenges in collecting sufficient samples for the predic-
tion process. Therefore, many researchers use a limited 
number of samples to estimate the groundwater poten-
tial of various study areas. In this study, we investigated 
the influence of the number of samples on the prediction 
results by constructing different datasets involving various 
sample sizes. 800 samples were extracted randomly from 
the hydrogeological map of GeoCloud (http://​geosc​ience.​
cn) (Wang et al. 2023b), and we categorized them into five 
groups based on the number of samples available: 50, 100, 
200, 600, and 800 samples (Fig. 1). We also used 1500 
validation samples to evaluate the model’s performance. 
Based on groundwater abundance at the source location 
indicated on the hydrogeological map, the samples were 
divided into two categories: type 1 for enriched ground-
water and type 0 for groundwater scarcity. Moreover, the 
entire study area was discretized, which had an accuracy 
of 1 km × 1 km, into 699,016 points to draw a spatial dis-
tribution of groundwater potential in the study area after 
completing the model training.

Fig. 1   a Location of Qinghai Province in China. b Topographic features and location of the samples in the study area

http://geoscience.cn
http://geoscience.cn


1130	 Environmental Science and Pollution Research (2024) 31:1127–1145

1 3

Database of conditioning factors

The generation, enrichment, migration, and discharge of 
regional groundwater are directly or indirectly controlled 
by groundwater conditioning factors (Mahnaz Zaree et al. 
2019). These factors serve as features in the machine learn-
ing model used for predicting groundwater potential. There-
fore, before proceeding with model training and predicting 
groundwater potential, it is necessary to collect the eigen-
values of all conditioning features that could potentially 
impact groundwater in the entire study area. Furthermore, 
the spatial resolution of the factor features must be no lower 
than that of the discrete units to ensure their accuracy. In our 
study, the resolution was less than 1 km × 1 km. We analyzed 
16 characteristics in the Qinghai region that affect ground-
water (Díaz-Alcaide and Martínez-Santos 2019), including 
precipitation, evapotranspiration, normalized difference veg-
etation index (NDVI), landcover, slope, topographic wetness 
index (TWI), slope aspect, curvature, distance to rivers, dis-
tance to roads, fault density, residential density, landform, 

vegetation types, soil, and lithology (Figs. 2, 3, 4, and 5). 
We discussed each characteristic separately and its impact 
on predicting groundwater potential.

Precipitation and evaporation are the two critical sources and 
sinks of groundwater. During rainfall, some water infiltrates into 
the ground, fully replenishing groundwater (Jin et al. 2013). Pre-
cipitation also enhances the replenishment of surface runoff, indi-
rectly influencing groundwater replenishment (Jia et al. 2011). 
On the other hand, evaporation is the process through which 
water is removed from soil and groundwater reservoirs, thereby 
reducing groundwater storage. For this study, we acquired pre-
cipitation data for Qinghai Province from WorldClim (Fick and 
Hijmans 2017), with values ranging between 18 and 780 mm, 
and evaporation data from https://​data.​cma.​cn, with values rang-
ing between 1012 and 3335 mm. The spatial variability of pre-
cipitation and evaporation across the study area was significant, 
as shown in Fig. 2 (a) and (b). The Qaidam Basin, situated in the 
northwest of Qinghai Province, experienced minimal precipita-
tion, paired with high evaporation. Conversely, the eastern part 
of the study area received relatively abundant rainfall.

Fig. 2   Factors affecting groundwater potential: a precipitation (mm), b evapotranspiration (mm), c NDVI, and d vegetation types

https://data.cma.cn
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Vegetation type and coverage are critical factors in regu-
lating and using groundwater. Vegetation can impact soil 
water-holding capacity and the rate of evaporation, which 
leads to changes in groundwater recharge and the water 
table level (Orellana et al. 2012). In areas with ample veg-
etation, plants can reduce the evaporation rate of ground-
water, and the root system can increase infiltration capacity. 
Consequently, this can decrease surface water runoff and 
improve groundwater recharge. However, vegetation also 
absorbs more groundwater and subsequently releases it into 
the atmosphere through transpiration, which can lead to 
groundwater depletion. To assess the impact of vegetation on 
groundwater potential, this study considers vegetation types 
and the normalized difference vegetation index (NDVI) as 
factors. We divided the vegetation in Qinghai Province into 
six types: coniferous forests, shrublands, deserts, grasslands, 
meadows, and bare grounds. NDVI is calculated using mul-
tispectral remote sensing data using the following formula 
(Han et al. 2021):

where NIR represents the near-infrared band’s reflectance 
value and RED represents the reflectance value of the red 
band. Both NIR and RED are reflectance values ranging 
from 0 to 1. The resulting NDVI values range from 0 to 
1 (Fig. 2(c)), with higher values indicating greater vegeta-
tion growth and coverage. We calculated the NDVI index 
of Qinghai Province using MODIS images (accessed from 
https://​glovis.​usgs.​gov), which ranged from 0 to 0.92 
(Fig. 2(d)).

Slope is the measure of the degree of rise or fall in 
the vertical direction as the surface moves a particular 
distance in the horizontal direction, typically expressed 
in angles. On steeper slopes, surface runoff flows more 
quickly and infiltrates less into the groundwater. In con-
trast, in areas with gentle slopes, surface water is more 
likely to recharge the groundwater (Naghibi et al. 2015a). 

(1)NDVI =
NIR − RED

NIR + RED

Fig. 3   Factors affecting groundwater potential: a slope (degree), b TWI, c slope aspect, and d curvature

https://glovis.usgs.gov
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The study area’s slope data can be extracted from the 
digital elevation model (DEM; obtained from https://​
gsclo​ud.​cn), which is calculated based on the elevation 
difference and horizontal distance from one DEM grid 
to the surrounding eight DEM grids. The slope range of 
Qinghai Province is 0–30.37° (Fig. 3(a)). Slope aspect is 
the surface slope’s orientation, specifically, the direction 
with the steepest slope expressed as an angle relative 
to the north direction. Slope aspect affects the direction 
of water flow in surface runoff, leading to variations in 
groundwater recharge across space (Singh et al. 2019). 
The slope aspect data were obtained by extracting the 
direction with the most significant elevation difference 
of the surrounding grid values within the DEM. Based 
on the aspect angle, the slope aspect of the study area can 
be categorized into nine categories: flat, north, north-
east, east, southeast, south, southwest, west, and north-
west (Fig. 3(b)). Curvature is a measure used to describe 
the topography of a surface. This metric has a direct 

impact on the flow and infiltration of surface runoff. In 
regions with lower curvature, concave areas can develop, 
which are prone to retaining and accumulating surface 
water (Arabameri et al. 2019). These areas facilitate the 
complete recharge of groundwater. In contrast, regions 
with higher curvature are convex, allowing for the swift 
flow and flooding of surface runoff and resulting in a 
decreased supply of groundwater. To determine the cur-
vature data for the study area, we extracted the values 
from the DEM data and sorted them into three categories 
based on magnitude: concave (< 0), flat (0), and convex 
(> 0) (Fig. 3(c)).

TWI is a metric that quantifies the potential for water 
retention in soil and vegetation within a specific region. It 
is calculated based on DEM using the following formula:

(2)TWI = ln

(

�

tan �

)

Fig. 4   Factors affecting groundwater potential: a distance to rivers (km), b distance to roads (km), c fault density (km−1), and d residential den-
sity (km−.2)

https://gscloud.cn
https://gscloud.cn
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where α denotes the catchment area, which can range 
from 0 to the total area of the catchment. β represents 
the slope’s tangent, which can range from 0 (for a flat 
surface) to infinity (for a vertical surface). FA is the flow 
accumulation value, which can range from 0 (for areas 
with no inflow) to a large number representing the total 
inflow into a point. S corresponds to the grid area, which is 
a fixed value based on your grid resolution. A higher TWI 
value indicates poor drainage and longer water retention 
times, which can contribute to maintaining soil moisture 
and increasing groundwater supply (Rinderer et al. 2014). 
Conversely, a lower TWI value indicates good drainage, 
lower soil moisture content, and relatively lower ground-
water supply. In Qinghai Province, the TWI was calculated 
to be between 14.60 and 34.61 (Fig. 3(d)).

(3)� = (FA + 1) × S The connection between rivers and groundwater is clear. 
During periods of high water flow, water infiltrates into the 
groundwater, boosting groundwater recharge. Conversely, 
during droughts, groundwater sustains the river’s flow (Gol-
karian et al. 2018). Groundwater reservoirs located near riv-
ers are typically permeable and mobile, allowing for faster 
water flow and spreading. In Qinghai Province, rivers are 
categorized into six classes based on their distance from 
the river: < 5, 5–15, 15–30, 30–50, 50–100, and > 100 km 
(Fig. 4(a)). Road construction can interrupt soil connectivity, 
hindering groundwater flow and drainage as well as chang-
ing the direction of groundwater flow (Velis et al. 2017). In 
this study, we classified the distances from roads in Qing-
hai Province into six categories: < 5, 5–15, 15–30, 30–50, 
50–100, and > 100 km (Fig. 4(b)).

Varied fault densities can have diverse effects on ground-
water distribution and flow. Faults can be influenced by 

Fig. 5   Factors affecting groundwater potential: a landform, b landcover, c soil, and d lithology
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vertical stresses and are susceptible to deformation and rup-
ture, which, in turn, facilitate the flow and penetration of 
groundwater, resulting in abundant underground water sup-
ply in those areas (Ahmad et al. 2021). However, high-den-
sity subsurface faults can also interfere with water flow dur-
ing certain times. The fault density in Qinghai Province has 
been calculated to range from 0 to 0.28 km−1 (Fig. 4(c)). In 
areas with high population density, there is an inherent rise 
in water demand which results in the extraction of ground-
water and a resultant drop in the groundwater table. Further-
more, urban areas with dense populations have increased 
conversion rates between surface water and groundwater, 
for example, rainwater seeping into sewers and underground 
pipes. The study area houses most of its population in the 
eastern region, where the resident density ranges from 0 to 
0.51 km−2 (Fig. 4(d)).

The undulations within the terrain dictate the height 
and rate of groundwater flow, as well as its direction. In 
comparison to flat terrain, areas with tortuous topography 
and significant fluctuations encounter more fluctuations 
in groundwater levels and experience complex water flow 
dynamics. In steep and irregular areas, ground rainfall 
quickly gathers to form rivers and streams, leading to 
water loss, while mountainous areas with pitted terrain 
are more favorable to groundwater accumulation and 
retention (Subba Rao 2006). Additionally, solid precipi-
tation, like snow, can influence hydrological processes 
through subsurface processes, in varying geomorphologi-
cal regions. The study area is characterized by four basic 
landform types: mountain, plateau, plain, and glacier 
(Fig. 5(a)). Differential land use and land management 
practices have a profound impact on recharge rates and 
aquifer storage capacity. For instance, urban expansion 
contributes to enlarged impervious surfaces such as build-
ings and roads that reduce infiltration, cause surges in 
stormwater runoff, and thus cause a decline in ground-
water recharge rates. Conversely, intensive agricultural 
practices, such as irrigation, can exhaust or deplete 
groundwater reservoirs. In Qinghai Province, the types 
of land cover (data obtained from http://​globa​lland​cover.​
com) can be categorized into nine types: cropland, forest, 
grassland, aquatic, artificial, tundra, sandy land, Gobi, 
and saline-alkali land (Fig. 5(b)).

The interaction between surface water and groundwater 
and the connection between them is reflected in soil and 
lithology, as they both play a crucial role in this process. 
Different types of soil and lithology exhibit varying levels 
of permeability, water storage, and drainage capabilities, and 
thus, influence the hydrodynamic attributes of groundwater 
(Wang et al. 2022). The study area encompasses ten soil 
categories: black soil, brown soil, desert soil, meadow soil, 
saline soil, felty soil, glacier and snow cover, alpine meadow 
soil, alpine desert soil, and salt crust (Fig. 5(c)). Lithology, 

on the other hand, is divided into seven distinct categories: 
intrusive rock, Cenozoic, Mesozoic, early Paleozoic, mid-
dle Paleozoic, early Proterozoic, and middle Proterozoic 
(Fig. 5(d)).

Methodology

Figure 6 illustrates the systematic flow chart of this study, 
which is composed of four key steps:

(1)	 The 16 conditioning factors were meticulously cat-
egorized into 5 categorical variables and 11 numerical 
variables. A one-hot encoding technique was employed 
to transform the categorical variables into 26 catego-
ries, while the numerical variables were used directly 
as continuous data and standardized.

(2)	 During the machine learning training phase, four dis-
tinct methods were utilized to select different factors 
as sample features. The ALL feature subset incorpo-
rated all the factors, while the PCA method projected 
the factors onto 8-dimensional space. The Entropy and 
CRITIC methods were used as weighting techniques to 
quantify the weight values of the 16 factors were quan-
tified, and the top 8 factors with higher weights were 
selected, respectively. This step is crucial for reducing 
dimensionality and focusing on the most influential 
features.

(3)	 A range of training samples were sequentially input 
into the AutoML models sequentially, and the model 
yielding the highest accuracy was chosen. This step 
allows for an unbiased and automated selection of the 
best performing model. Furthermore, we conducted an 
experiment by incrementally increasing the sample size 
from 50 to 800 to assess the accuracy of the AutoML 
test set after each training iteration.

(4)	 Finally, the study area was divided into 699,016 
points which were used to create raster data to map 
the groundwater potential of the entire study area. By 
comparing the accuracy and generalization of model 
predictions using different model factors and sample 
sizes, an evaluation was conducted on the effect of 
selected samples and factors on prediction.

One hot encoding and Principal Component 
Analysis

One hot encoding is a technique used for encoding dis-
crete features. It involves encoding a discrete factor into 
binary form, such that each feature’s binary encoding is 
unique and distinct. To implement one hot encoding in the 
context of a groundwater potential analysis, discrete types 
are first assigned unique integers (Bai et al. 2022). These 

http://globallandcover.com
http://globallandcover.com
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integers are then converted to binary numbers, as depicted 
in Fig. 7. The resulting matrix has rows that represent indi-
vidual samples and columns that represent various discrete 
types of encoded bits. Each code bit can only have a value 
of 0 or 1, indicating whether a specific sample belongs to 
the corresponding discrete type (Pedregosa et al. 2011).

One hot encoding ensures that each variable type of input 
is equal in the model. If integer labels are utilized to encode 
different types, the machine learning model will learn that 
the size of the encoded value between different types has 
a quantitative relationship, potentially leading to inaccu-
rate predictions by the model. One hot encoding changes 
each type into a binary classification, thereby increasing the 
interpretability of the model’s predictions. For this study, we 
utilized one hot encoding to encode five features, including 
landscape, vegetation types, soil, lithology, and landcover. 
These features cannot be expressed numerically; therefore, 
one hot encoding was used to encode them accurately.

PCA is a data dimensionality reduction method that 
transforms high-dimensional data into a lower dimensional 
space (Pan et al. 2016). Specifically, it performs a linear 

transformation of the original data to a new coordinate system, 
finding the direction that maximizes the variance of the data 
in the new coordinate system, referred to as the first principal 
component. The second principal component is then found, 
which is orthogonal to the first principal component, and sub-
sequent principal components are found successively, until the 
first k principal components are generated (Helena et al. 2000). 
These principal components comprise a new, lower dimen-
sional space and have certain explanatory properties that can 
aid in understanding the data distribution. For instance, assum-
ing that there is a groundwater potential assessment data set 
x containing m samples and n features, where m, n ∈ N (set of 
natural numbers). This data must first be standardized into y:

where δj represents the standard deviation of feature j and μj 
denotes its mean. Both δj and μj are real numbers (δj, μj ∈ R). 
Once y has been obtained, the covariance matrix C can be 
computed. For any pair of features j and k, the covariance 
calculation expression is as follows:

(4)yij =
xij − �j

�j
, (i = 1, 2, 3,… n;j = 1, 2, 3,…m)

Fig. 6   Flowchart of the methodology



1136	 Environmental Science and Pollution Research (2024) 31:1127–1145

1 3

The eigenvalue decomposition of the covariance matrix C 
produces m eigenvalues λ1, λ2, … λm (λi ∈ R), and correspond-
ing eigenvectors v1, v2, … vm. Each element of the eigenvec-
tor vi represents the weight of the corresponding feature in the 
new coordinate system, which is also the direction in the new 
coordinate system. The eigenvalue λi represents the variance of 
the corresponding feature in the new coordinate system, used 
to measure the degree of dispersion of the data. The eigenvec-
tors are sorted according to the eigenvalues, from largest to 
smallest, and the top k eigenvectors corresponding to the largest 
eigenvalues are selected as the principal components. The data 
is then projected onto the principal components to obtain the 
dimensionally reduced data matrix Z:

Here, Vk represents the matrix composed of the first k prin-
cipal components (k ∈ N and k ≤ m), and Y is the normalized 
original data matrix. PCA is a commonly used technique, and its 
strengths include the ability to compress data dimension while 
retaining maximum information. During groundwater potential 
prediction, too many features may lead to the curse of dimension-
ality, due to the lack of training samples. As such, we reduced 
the 16 factors to eight features after applying PCA processing.

Entropy weight method and criteria importance 
through intercriteria correlation

The Entropy Weight Method (EWM) utilizes fuzzy math-
ematics theory and information entropy theory to calculate 
the weight of indicators (Zhang et al. 2021b). A matrix 

(5)Cjk =
1

n − 1

n
∑

i=1

(

yij − �j

)(

yik − �k

)

(6)Z = VkY

N of m indicators and n samples can be formed for data 
that has been standardized or normalized, where m, n ∈ N. 
The proportion P of the jth index in the ith sample can be 
obtained, which reflects the variation of the index, such 
that (Li et al. 2019)

Using P, the information entropy of the jth index is 
calculated as follows:

By using the above formula, the information entropy of 
each indicator can be calculated. Based on this, the weight 
γj of indicator j can be obtained through the information 
entropy of all indicators:

The information entropy is used to reflect the degree 
of difference between evaluation indicators. The weight 
decreases as information entropy increases, reflecting 
a greater difference between evaluated indicators. Con-
versely, the weight increases as information entropy 
decreases, indicating a smaller difference between evalu-
ation indicators.

CRITIC calculates the correlation coefficient between 
indicators to determine the degree of mutual influence 
between indicators, and subsequently, calculates their 
weight. Unlike the EMW, the CRITIC method requires 

(7)Pij =
Nij

∑n

i=1
Nij

(8)Ej = −
1

ln n

n
∑

i=1

Pij lnPij, (j = 1, 2,⋯ ,m)

(9)Pij =
1 − Eij

∑n

i=1

�

1 − Eij

�

Fig. 7   One hot encoding
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normalization, not standardization, before processing (Giao 
et al. 2023). This is because the weight evaluation crite-
rion is based on the standard deviation. Different indica-
tors require different normalization methods (Zhang et al. 
2021a). For instance, indices that have a positive impact on 
groundwater potential enrichment are calculated using the 
expression:

For indicators that have a negative impact on groundwater 
potential enrichment, yij can be calculated using

Using this, the amount of information C of the jth index 
can be calculated, as follows:

where δj represents the standard deviation of index j (σj ∈ R) 
and rjk denotes the correlation coefficient between index 
j and k (rjk ∈ R). All C values are calculated based on the 
above formula, and ultimately, the weight vector for each 
indicator is obtained as follows:

The CRITIC method pays attention to the relationship 
between indicators, unlike the EWM, but requires prior 
knowledge of the correlation between indicators. Through 
the EWM and CRITIC methods, the weights of the 16 fac-
tors were obtained. The eight factors with larger weights 
were then selected to predict groundwater potential, thereby 
reducing the model’s complexity and making groundwater 
prediction more interpretable.

Automated machine learning

Machine learning, a subfield of artificial intelligence, con-
structs general paradigms for predicting or classifying new 
data by recognizing patterns and rules in known datasets. 
However, the multitude of machine learning models avail-
able, each with varying effectiveness for different prob-
lems, makes choosing the best model a challenge. Existing 
machine learning models, whether simple single models like 
decision trees or complex ensemble models, all contain a 
wealth of hyperparameters. Therefore, the traditional pro-
cess of building machine learning models involves algorithm 
selection and manual adjustment of hyperparameters, which 
requires a significant amount of time and effort.

(10)yij =
xj − xmin

xmin − xmin

(11)yij =
xmax − xj

xmax − xmin

(12)Cj = σj

m
∑

k=1

(

1 − rjk
)

(13)Wj =
Cj

∑m

k=1
Ck

AutoML is a process that automates these time-consum-
ing iterative tasks in machine learning model development. 
It simplifies the application of machine learning by auto-
matically selecting models, adjusting hyperparameters, and 
optimizing model performance (Feurer et al. 2015). It can 
quickly build high-quality machine learning models with-
out the need for laborious manual tuning. The process of 
AutoML usually includes data preprocessing, feature engi-
neering, model selection, hyperparameter tuning, and post-
evaluation. This study mainly involves model selection and 
hyperparameter optimization. Hyperparameter tuning can 
be represented by the following formula:

In this formula, x∗ represents the best model parameters 
and f(x) represents the model’s loss function. We use Mean 
Squared Error (MSE) to represent it:

Here, n is the total number of training samples (n ∈ N), 
yi is the true value of the ith sample (yi ∈ R), and zi is the 
prediction value of the ith sample by machine learning 
(zi ∈ R). Traditional hyperparameter optimization includes 
grid search and random search. Both methods exhaustively 
or randomly search possible parameter combinations in 
the parameter space to find the optimal solution. However, 
for parameters with higher dimensions, these two methods 
consume too much time and result in unreliable parameter 
selection results. This study adjusts machine learning hyper-
parameters by establishing a probability model of the loss 
function using Bayesian optimization. The specific steps are 
as follows:

(1) Select some initial hyperparameter samples x, and 
calculate their target function values f(x).
(2) Based on the existing samples x and their correspond-
ing target function values f(x), establish a surrogate model 
p(·) for the target function f(·), usually using Gaussian 
Process.
(3) Based on the surrogate model and observed data 
points, use an acquisition function to determine the next 
query point. Common acquisition functions include 
Expected Improvement (EI) and Probability of Improve-
ment. This study uses EI, whose formula is as follows:

Here, xi∗ represents a batch of candidate points generated 
in the ith iteration. We calculate the EI values of all candi-
date points and select the point xi∗max with the maximum 

(14)x∗ = arg min f (x)
x

(15)f (x) =
1

n

n
∑

i=1

(yi − zi)
2

(16)EI(x) = E
[

max
(

f (�) − f
(

x∗
i

)

, 0
)]
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EI value as the next query point. We then calculate its cor-
responding target function value f(xi∗max) and add this data 
point to the sample set x.

(4) Repeat steps 2 and 3 until a stopping condition is 
met, such as when the number of iterations reaches a preset 
value or when the target function value is below a certain 
threshold. In this way, we can achieve a balance between 
exploration (searching for unassessed areas) and exploita-
tion (searching for known information), thereby effectively 
finding a global optimal solution.

The emergence of AutoML has considerably reduced the 
difficulty of machine learning modeling, making it more 
efficient and user-friendly. In this study, we selected five 
ensemble models for predicting groundwater potential. 
These models include Extra Trees (ET) (Geurts et al. 2006), 
Light Gradient Boosting Machine (LGBM) (Fan et al. 2019), 
L1-Regularized Logistic Regression (LRL1), Random For-
est (RF) (Breiman 2001), Extreme Gradient Boosting (XGB) 
(Chen and Guestrin 2016), and XGB limit depth (XGBLD). 
Compared to other single models, these ensemble models 
can achieve superior performance and more robust gener-
alization results. We utilized FLAML (Wang et al. 2021), 
a Python AutoML framework, to automate the process of 
model selection and hyperparameter tuning. This allowed us 
to select and optimize the most effective machine learning 
models for predicting groundwater potential under varying 
characteristics and sample sizes.

Results and discussion

Factor correlation and importance

The study utilized Pearson’s correlation coefficient to 
determine the correlations between potential groundwater 
influencing factors (Chen et al. 2018) in Qinghai Province 
(Fig. 8). The curvature feature did not pass the null hypothe-
sis rejection test for vegetation types (0.9986), soil (0.1684), 
lithology (0.1374), residential density (0.9214), fault density 
(0.7576), distance to roads (0.8059), and distance to rivers 
(0.9462), indicating that curvature has no statistical correla-
tion with these factors. Except for distance to roads (0.6287) 
and TWI and slope and soil (0.7254), the p-values of all other 
factors were less than 0.01, indicating a correlation between 
most factors. Furthermore, a significant negative correla-
tion exists between evaporation and landform, reflected by 
a correlation coefficient of − 0.8. This can be explained by 
the high altitude of the Qinghai Plateau, to which Qinghai 
Province belongs, compared to the Qaidam Basin located 
in the northwest of Qinghai Province that has a lower alti-
tude and a higher annual evaporation rate of over 3000 mm 
per annum (Fig. 2(b)). As such, landform and evaporation 
showed a significant negative correlation. The correlation 
coefficient between precipitation and NDVI is 0.8, which can 
be attributed to the little precipitation in the plateau desert 
climate of the study area. Increased precipitation leads to 
more vegetation growth resulting in an increase in NDVI 

Fig. 8   Heatmap of factor correlations
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value. Moreover, although some factors, such as slope, slope 
aspect, and TWI, were extracted from DEM data, their linear 
correlations between each other were relatively low, with 
positive correlation coefficients less than or equal to 0.5, 
and negative correlation coefficients greater than or equal 
to − 0.5. In conclusion, the generally low Pearson correla-
tion coefficients among the various factors suggest a weak 
correlation between the factors. Each factor shows a high 
degree of independence, which allows them to perform their 
respective roles in predicting the groundwater potential of 
the study area effectively.

Figure 9 displays the weights of all factors calculated 
through both the CRITIC and EWM methods. The EWM 
approach determined the weights of the 16 factors from 
largest to smallest as follows: evapotranspiration (0.390), 
landform (0.325), curvature (0.107), soil (0.051), lithology 
(0.041), fault density (0.021), distance to rivers (0.021), 
NDVI (0.011), precipitation (0.010), distance to roads 
(0.006), residential density (0.005), slope (0.004), land 
cover (0.004), TWI (0.002), slope aspect (0.002), and veg-
etation types (0.002). The CRITIC method determined 
their weights in the following descending order: landform 
(0.472), evapotranspiration (0.248), precipitation (0.102), 
slope aspect (0.0640), distance to roads (0.050), distance 
to rivers (0.0270), soil (0.0140), land cover (0.009), lithol-
ogy (0.007), vegetation (0.003), slope (0.002), TWI (0.002), 
NDVI (< 0.001), curvature (< 0.001), fault density (< 0.001), 
and residential density (< 0.001). Due to differences in the 
distribution of weights and decision-making objectives, the 
weights assigned to some indicators are inconsistent. Never-
theless, both methods illustrate that landform and evapotran-
spiration are critical factors in groundwater enrichment in 
Qinghai. The two factors that exhibit the greatest difference 
between the two methods are curvature and precipitation. 
Based on the weight values calculated by the methods, the 

first eight factors with the highest weights are selected for 
machine learning training features.

Influence of factor selection and sample quantity 
on groundwater potential prediction

Using AutoML, we employed four distinct feature selection 
methods to train machine learning models with a sample size 
of 200, focusing on groundwater conditioning factors. The 
machine learning models, selected by AutoML correspond-
ing to the four factor selection methods, were XGB, XGB, 
RF, and ET. Figure 10 (a) and (b) illustrate the scores of 
the prediction model trained by four different factor selec-
tion modes using 1500 test samples. The accuracy scores 
were 0.783, 0.685, 0.745, and 0.703, respectively, with an 
area under curve (AUC) of 0.819, 0.724, 0.779, and 0.747. 
For a more comprehensive performance assessment, Table 1 
provides detailed metrics such as accuracy, precision, AUC, 
recall, and F1 score. Notably, apart from precision, XGB-
ALL outperforms the other models, followed by RF Entropy, 
ET-CRITIC, and XGB-PCA.

The ALL factor selection mode yielded the highest accu-
racy, indicating that all factor choices are reasonably valid. 
This is because, while reducing some factors, the model’s 
accuracy decreases as well. Furthermore, the primary uti-
lization of a tree-based ensemble model in the prediction 
model, as opposed to a linear model, ensured that our predic-
tions did not encounter issues with multicollinearity. Linear 
models quite often face multicollinearity problems since 
their trained features exhibit a linear relationship with each 
other. In contrast, tree-based models are designed so that 
each node in the tree depends on a single optimal feature to 
divide the data, meaning that each node only utilizes a spe-
cific feature, thereby minimizing the intricacy of the connec-
tions between features (Paul et al. 2018). Additionally, with 

Fig. 9   Factor weights calculated 
using the EWM and CRITIC
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ensemble models such as RF or XGB, the characteristics 
employed in each tree are diverse, further mitigating collin-
earity issue among them. Consequently, using a tree-based 
ensemble model with an appropriate number of samples can 
ensure higher accuracy in predicting models involving mul-
tiple features.

The XGB-PCA method shows the lowest accuracy in pre-
dicting groundwater potential models. This is because of the 
inadequate correlation among the various factors, especially 
after applying one hot encoding, leading to a lack of correla-
tion between each encoding category. But PCA works well 
when variables possess a robust correlation and loses more 
information when the correlation is weak. Therefore, when 
the 16 factors are reduced to eight dimensions, XGB-PCA’s 
forecast is inaccurate. The RF-Entropy and ET-CRITIC 

methods exhibit moderate effects on predicting groundwater 
potential in Qinghai Province. These methods utilize their 
calculated weights to pick only the eight factors with the 
most significant weights for training. It is noteworthy that 
RF-Entropy exhibits greater accuracy than ET-CRITIC, 
which indicates that information entropy is a better weight-
assignment technique for determining factors influencing 
groundwater potential in Qinghai Province.

The spatial distribution of groundwater potential in Qing-
hai Province, as drawn under the four factor selection modes, 
is represented in Fig. 11, while its density distribution is 
shown in Fig. 10(c). The prediction results have been strati-
fied into five separate categories using the natural break-
point method, namely, very low, low, moderate, high, and 
very high, in order to differentiate the types of groundwater 
potential. The values of groundwater potential in the region 
are generally higher than 0.5, and the areas with high and 
very high potentials are primarily concentrated in the south-
west and southeast regions of the study area, which are the 
primary source of three critical rivers in China. Conversely, 
the low groundwater potential areas are concentrated in the 
north-western part of the study area, which is an arid region 
with major salt lake industries (Wang et al. 2022). Although 
the overall distribution of the four models is similar, the 
density distribution of groundwater potential values varies. 

Fig. 10   a Accuracy and AUC values of the models. b ROC curves of the models. c Density distribution of groundwater potential in the study 
area

Table 1   The performance of the four models under various assess-
ment criteria

Accuracy Precision AUC​ Recall F1 score

XGB-ALL 0.783 0.748 0.819 0.942 0.834
XGB-PCA 0.685 0.730 0.724 0.830 0.777
RF-Entropy 0.745 0.752 0.779 0.916 0.826
ET-CRITIC 0.703 0.767 0.747 0.856 0.809



1141Environmental Science and Pollution Research (2024) 31:1127–1145	

1 3

The prediction outcomes of the ET-CRITIC are more con-
centrated around 0.7, while those of XGB-PCA are between 
0.9 and 1.0. In comparison, the results of RF-Entropy and 
XGB-ALL model are somewhat analogous (around 0.8). 
This demonstrates that utilizing the Entropy method to 
screen factors with higher weights for predicting ground-
water potential can bring about effective dimensionality 
reduction without sacrificing accuracy.

Besides feature selection, the number of samples sig-
nificantly affects the model results. Figure  12 depicts 
the performance of the model in predicting groundwater 
potential in Qinghai Province by varying sample sizes. As 
the number of samples increases under the AutoML train-
ing framework, the model’s accuracy displays an upward 
trend with fluctuations. The model accuracy fluctuated 
around 0.7 but did not increase significantly as the sample 
size increased from 50 to 200. The accuracy and AUC 
improved when the number of samples exceeded 200, 
reaching an accuracy of approximately 0.9 after training 
with 600 samples, and then gradually stabilizing. In many 

cases, the number of samples was limited due to certain 
conditions. Therefore, to attain a model accuracy and AUC 
of 0.75 and above, the assessment of regional groundwater 
potential should include a minimum of 200 samples. For 
a more detailed characterization of regional groundwater 
potential, the sample size must exceed 600.

Due to AutoML being re-run each time the number of 
samples is modified, different model types were selected 
on each occasion. Among the 6 used models, XGB was 
the most popular, with 44 executions, followed by the ET 
and RF models making an appearance 12 times. As for the 
LGBM, LRL1, and XGBLD models, they were included 
no more than five times. Thus, when predicting ground-
water potential, priority can be given to the XGB model.

In conclusion, the primary hurdle in accurately assess-
ing the groundwater potential of a specific area is not the 
performance of machine learning algorithms, but rather the 
scarcity of available samples. While various machine learn-
ing models, particularly well-established ensemble learning 
models, may yield different results across various research 

Fig. 11   Spatial distribution of groundwater potential: a XGB-ALL, b XGB-PCA, c RF-Entropy, and d ET-CRITIC
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areas and feature sets, these differences are typically minor. 
On the other hand, collecting a sufficient number of samples 
in a vast research area is a daunting task that requires signifi-
cant time and financial resources. This challenge contradicts 
our initial intention of using machine learning algorithms, 
which is to achieve the most accurate predictions at the low-
est cost. Furthermore, the lack of samples limits our abil-
ity to incorporate a large number of features for machine 
learning evaluation, leading to the curse of dimensionality. 
Therefore, the primary challenge in predicting groundwater 
potential lies in finding a balance between sample quantity 
and feature selection to achieve the most accurate results.

In this study, we utilized AutoML with the aim of stream-
lining the process of machine learning model selection and 
hyperparameter tuning, allowing us to concentrate on the 
samples and features themselves. The prediction of ground-
water potential under various sample sizes and feature 
selection methods was carried out using AutoML, thereby 
minimizing potential biases arising from manual model and 
hyperparameter choices. When the sample size permits, the 
groundwater potential prediction model should include as 
many factors as possible to enhance accuracy. However, this 
approach depends on the use of an ensemble model based 
on tree models, such as XGBoost, as excessive multicol-
linearity among numerous factors may negatively impact 
the model’s predictive performance, which tree models can 

alleviate. In situations with limited sample sizes, it is advis-
able to limit the number of input features in the machine 
learning model. We observed that using the entropy method 
to evaluate the importance of all factors and selecting those 
with high weights for training can maximize the accuracy 
of groundwater potential prediction. While PCA (Principal 
Component Analysis) can reduce the number of factors and 
linear correlations between them during dimension reduc-
tion, if the correlations are weak, PCA may result in a loss of 
information and ultimately lead to less accurate predictions. 
Moreover, while increasing the sample size improves the 
accuracy of groundwater potential prediction, this improve-
ment tends to plateau after reaching a certain scale. To effec-
tively address the challenge of limited sample availability, 
we recommend that in the research area of Qinghai Prov-
ince, a minimum sample size of 200 is necessary to achieve 
an accuracy level of 0.75. However, for higher precision 
requirements, a sample size of approximately 600 is needed.

This research outcome presents a fresh perspective on 
how to approach the issue of groundwater potential predic-
tion and offers a novel method for tackling problems related 
to limited sample quantity and feature selection. We believe 
that this will contribute to the advancement of groundwater 
potential prediction for future research. Nevertheless, due to 
variations in geological, geographical, and human activity 
conditions across different regions, it is essential to use the 

Fig. 12   Comparison of model performance with different sample sizes
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methods detailed in this study to reevaluate and determine 
the optimal sample size and feature selection approach when 
assessing groundwater potential, rather than directly apply-
ing the recommended values from this research.

Conclusions

This study leveraged AutoML technology to predict ground-
water potential in Qinghai Province, with a particular focus 
on analyzing the influence of the feature selections and sam-
ple sizes on the predictions. The models were trained using 
50 to 800 samples, while an additional 1500 were used for 
model evaluation. Sixteen groundwater conditioning fac-
tors in Qinghai Province were classified into categorical and 
numerical variables based on feature types. Categorical vari-
ables underwent one hot encoding to prevent the model from 
being misled by the quantitative relationship of integer clas-
sifications. Four different feature selection modes, including 
ALL, PCA, Entropy, and CRITIC, were employed to train 
the model. Upon training completion, the entire research area 
was discretized into 699,016 points and fitted into the trained 
model. The output results were subsequently transformed 
into maps of groundwater potential in Qinghai Province. 
The study revealed that despite the general statistical cor-
relation among 16 groundwater conditioning factors, their 
Pearson correlation coefficients were low. This implies that 
when using the tree model to predict the groundwater poten-
tial, a larger number of features can be utilized as long as 
there are sufficient samples, thereby enhancing the accuracy 
of the model. Due to the weak linear correlation between fac-
tors, the PCA method struggled to effectively reduce model 
dimensionality, negatively impacting prediction performance. 
Conversely, using the Entropy method to screen factors with 
higher weights ensured better accuracy while also reducing 
dimensionality, thus circumventing the potential curse of 
dimensionality. Results from model training revealed that as 
the number of samples increases, so does the accuracy and 
AUC value of the groundwater potential prediction model. 
Training with 8 factors and 200 samples resulted in an accu-
racy of 0.745, sufficient for evaluating regional groundwa-
ter potential. On the other hand, training with 600 samples 
led to a model accuracy performance of 0.9, thus realizing 
accurate prediction of groundwater potential. In summary, 
when dealing with the small sample sizes and low degrees 
of linear correlation between factors, we recommend using 
the Entropy method to screen factors with higher weights 
based on sample size and employing the XGB model for 
groundwater potential prediction. This study provides both 
theoretical and practical support for decision-makers deal-
ing with groundwater resource management in the Qinghai 
Province. The findings underscore the importance of feature 
selection and sample size in machine learning models for 

groundwater prediction. Furthermore, the model and meth-
odology developed in this research can also be applied for 
predicting groundwater potential in other regions.
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