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Abstract
It is crucial for the development of carbon reduction strategies to accurately examine the spatial distribution of carbon emis-
sions. Limited by data availability and lack of industry segmentation, previous studies attempting to model spatial carbon 
emissions still suffer from significant uncertainty. Taking Pudong New Area as an example, with the help of multi-source 
data, this paper proposed a research framework for the amount calculation and spatial distribution simulation of its  CO2 
emissions at the scale of urban functional zones (UFZs). The methods used in this study were based on mapping relations 
among the locations of geographic entities and data of multiple sources, using the coefficient method recommended by the 
Intergovernmental Panel on Climate Change (IPCC) to calculate emissions. The results showed that the emission intensity 
of industrial zones and transport zones was much higher than that of other UFZs. In addition, Moran’s I test indicated that 
there was a positive spatial autocorrelation in high emission zones, especially located in industrial zones. The spatial analy-
sis of  CO2 emissions at the UFZ scale deepened the consideration of spatial heterogeneity, which could contribute to the 
management of low carbon city and the optimal implementation of energy allocation.
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Abbreviations
UFZ  Urban functional zone
IPCC  Intergovernmental Panel on Climate 

Change
LMDI  Logarithmic mean Divisia index
LEAP  Long-range Energy Alternatives Planning
DMSP-OLS  Defense Meteorological Satellite Program–

Operational Linescan System

NPP-VIIRS  National Polar-orbiting Operational Envi-
ronmental Satellite System Preparatory Pro 
Visible Infrared Imaging Radiometer Suite

POI  Point-of-interest
OSM  OpenStreetMap
ESDA  Exploratory spatial data analysis
LISA  Local Indicators of Spatial Association
ID  Industrial zone
TS  Transport zone
RS  Residential zone
CT  Cultural tourism zone
CS  Commercial service zone
PS  Public service zone

Introduction

Urban is the center of human activities that have a signifi-
cant impact on the surface of the Earth. Rapid urbaniza-
tion not only causes significant changes in the utilization of 
land but also concentrates intensive energy consumption, 
both of which release large amounts of  CO2 into the atmos-
phere. Some research showed that urban areas account for 
about 75% of carbon emissions worldwide (Li et al. 2022). 
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Moreover, the United Nations Habitat predicts that the pro-
portion of urban carbon emissions will increase to 76% by 
2030 (Gan et al. 2022). Therefore, the mitigation of urban 
carbon emissions has played a vital role in the process of 
global carbon reduction (Gong et al. 2022a).

Numerous studies have been conducted on urban carbon 
emissions at different scales, such as Peng used logarithmic 
mean Divisia index (LMDI) method to analyze the energy 
consumption of  CO2 emissions in Hunan province based 
on the Long-range Energy Alternatives Planning (LEAP) 
system model (Wang et al. 2017). Hu set up four scenarios 
to forecast and analyze the energy production and consump-
tion of Shenzhen, a postindustrial city, from 2015 to 2030 
(Hu et al. 2019).

However, similar studies regarded the city as a whole, 
but have no idea about the specific source and spatial distri-
bution of carbon emissions. Some scholars used statistical 
data to compare the spatial heterogeneity between different 
administrations, and these studies generally concentrated on 
regions with low spatial resolution (Gan et al. 2022; Xia 
and Yang 2022). In recent years, the spatial study of urban 
carbon emissions has become an important research hot-
spot with the advancement of remote sensing technology 
and the abundance of multi-source data (AbdelRahman et al. 
2021; Yang et al. 2022). The Defense Meteorological Satel-
lite Program–Operational Linescan System (DMSP-OLS), a 
visible imaging linear scanning service system carried by the 
US Defense Meteorological Satellite, can obtain the weak 
light intensity on the ground (Wang et al. 2017; Zhang et al. 
2022), which has been widely applied to carbon emission 
estimation. For example, Oda et al. used DMSP-OLS data to 
invert carbon footprint in city regions and used demographic 
data as an auxiliary inversion to non-city regions to gener-
ate a global carbon footprint grid map with 1-km spatial 
resolution from 2000 to 2019 (Oda and Maksyutov 2011). 
Based on National Polar-orbiting Operational Environmental 
Satellite System Preparatory Pro Visible Infrared Imaging 
Radiometer Suite (NPP-VIIRS) nighttime light remote sens-
ing data, Narit found that the factors affecting carbon emis-
sions of land holdings include the share of primary industry 
output, land area per capita, and land use index (Narit et al. 
2016).

However, nighttime light remote sensing data is inconsist-
ent in different years, and the detection performance will 
gradually weaken, leading to problem like discontinuous 
image data (Liu et al. 2022). It has also been shown that 
nighttime lighting data are better suited to describe popula-
tion activity, but not for reflecting energy consumption and 
 CO2 emissions (Zhang et al. 2021). Furthermore, there were 
some studies generated fossil fuel carbon emissions at grid 
scale. Yang et al. (2022) simulated the spatial distribution 
of  CO2 emissions based on fossil fuel carbon emission grid 
data and land use data. Gurney et al. (2020) used the carbon 

emission survey results of industry, commerce, household 
consumption, and other industries in American to form a 
carbon emission product at 1-km resolution. However, this 
method cannot be applied widely to detect the spatial distri-
bution of carbon emissions due to difficulties in energy data 
availability and validity (Huynh et al. 2017).

Spatial heterogeneity refers to the unevenness and com-
plexity of the spatial distribution of ecological processes and 
patterns, which can be generally understood as the sum of 
patchiness and gradient (Zhenyue et al. 2023). To distinguish 
the spatial heterogeneity of  CO2 emissions, many studies 
take land use type as the basic unit for carbon emission cal-
culation (Xiaowei and Jianxi 2019; Zeng et al. 2022). For 
instance, Muntean et al. (2014) used land use and human 
activity data to build a global greenhouse gas emission 
dataset with 0.1° resolution from 1970 to 2008 and tried to 
reduce  CO2 emissions by optimizing the structure of land 
use (Li et al. 2022). However, in the existing studies on land 
use  CO2 emissions, most of them only took into account the 
differences between built and non-built land and ignored the 
carbon intensity in detail between different functional areas, 
such as transport land, commercial land, and industrial land 
(Wang et al. 2019; Upadhyay et al. 2021). As the carbon 
emission intensity is significantly diverse with these differ-
ent functional areas, it is necessary to further explore the dif-
ference of  CO2 emissions among different functional areas.

UFZs describe the human activities within a certain area 
and contain socio-economic characteristics (Zhu et al. 2022). 
As the most basic unit of urban development, UFZ reflects 
the socio-economic characteristics of a specific region and 
helps to realize the optimization of energy consumption. 
Through it, the allocation of public resources and the type of 
energy consumption can be clearly observed. All functional 
areas are aggregated by geographic objects and extracted 
from the land use, and the same functional zone has basi-
cally similar energy consumption and carbon metabolism 
patterns (Wang et al. 2022a). Relatively speaking, the esti-
mation of  CO2 emissions at the UFZ scale can help urban 
planners to anticipate the carbon emissions associated with 
urban development. Thus, UFZs are a reasonable basic unit 
for the estimation of  CO2 emissions (Jing et al. 2022; Zheng 
et al. 2022). The explosive growth of urban big data like 
social media data, cell phone signaling data, and point-of-
interest (POI) data is characterized by large sample size and 
rich types, which makes up for the poor recognition ability 
of remote sensing technology on urban functional interac-
tion and can help accurately detect the spatial distribution 
of UFZs (Zhou 2022), so as to promote the refined research 
on urban carbon emissions.

This study further constructed a framework to estimate 
the spatial pattern of  CO2 emissions based on the scale of 
UFZs, using the land use type as the basic unit, in the case 
of Pudong New Area, Shanghai, China. Firstly, we extracted 
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UFZs by combining remote sensing image with POI and 
road network data. Then, the carbon emissions of each UFZ 
were obtained through the combination of top-down decom-
position and bottom-up spatial estimation method. Finally, 
the spatial patterns of  CO2 emissions at the UFZ scale were 
analyzed to provide policy implications for the process of 
building a low carbon city. Overall, this study mapped the 
spatial distribution of  CO2 emissions intensity at the UFZ 
scale, which is necessary for urban planning to adjust and 
reshape the industrial layout to build a more sustainable city.

Data and methods

Study area

Pudong New Area is located in the eastern part of Shanghai, 
with an area of 1210  km2, making it the largest municipal 
district in Shanghai (Fig. 1). Since the reform and opening 
up, Pudong New Area has experienced rapid urban devel-
opment, a huge economic volume and extremely frequent 
human activities (Gong et al. 2022b). It is also an important 
transportation hub with a three-dimensional integrated trans-
portation system including international ports, railway trans-
port, air transport, and intercity high-speed transport, etc. 
(Qingyu and Oh 2021). The huge energy consumption has 
increased the corresponding carbon emissions year by year. 
As one of the most well-developed zones in China, Pudong 
New Area has played an indispensable role in the transition 
to an energy efficient and low emission mode. Therefore, 
this study chose Pudong New Area as a typical case area.

Data source and preprocessing

Data source

POI is the most important element of population agglomera-
tion, which can better reflect the spatial distribution of mate-
rial resources in the city, but its spatial distribution pattern 
is different (Yang and Li, 2022). POI opens up a new way 
of thinking for the study of urban spatial structure, and it 
has been widely used in the fields of analysis of the spatial 
pattern of UFZs (Xia et al. 2022). Multiple-source data were 
used to estimate UFZ scale based on energy consumption 
and CO2 emissions in Pudong. Specifically, the POI data 
was obtained from the Gaode Map Open Platform in 2019. 
And the road network data was obtained from the map shar-
ing plan OpenStreetMap (OSM) website. Energy consump-
tion and other data related to CO2 emission calculation were 
provided by China Energy Statistical Yearbook and Pudong 
New Area Statistics Bureau.

Data preprocessing

There were about 201 thousand POI data of all categories in 
Pudong New Area, and major types of use cover sightseeing 
spots, enterprises, traffic devices, education, medical care, 
community activities, business residence, etc. During the 
collection process, there were some problems, such as dupli-
cation of raw data and missing data, which cannot be used 
directly. Thus, therefore, missing data should be added, and 
duplicate data should be deleted and reclassified. In addition, 
since the actual OSM data obtained had topological errors, 

Fig. 1  Overview map of the 
study area
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there were a large number of dead ends, redundant cross 
roads, and unsealed roads that were not usable. Therefore, it 
is necessary to preprocess the road data in combination with 
the high-resolution images and select the main highways, 
trunk roads, urban primary roads, secondary roads, etc.

Methods

UFZ extraction and verification

Extraction of single UFZs Figure 2 demonstrates the process 
of UFZs identification. All the POI data were divided into 
six types according to the land use type: industrial (ID) 
zone, transport (TS) zone, residential (RS) zone, cultural 
tourism (CT) zone, commercial service (CS) zone, and pub-
lic service (PS) zone. The frequency density and propor-
tion of different POI types can be directly used to reflect 
the type of urban function. The frequency density can be 
expressed as

where i represents the type of POI and ni represents the 
quantity of the different POI types, Si represents the total 

(1)Fi =
ni

Si
(i = 1, 2,… , 6)

number of the different POI types, and Firepresents the fre-
quency density of the different POI types in the total number 
of POIs.

In order to compare different types of POI, Ci vector was 
used to represent the proportion of each type of POI in the 
unit on the basis of density. The calculation formula is as 
follows:

According to the calculation results of Ci, the POI and 
the research unit were superposed and analyzed to build the 
underlying data of urban spatial pattern, the hooking point 
data, and the street unit. And the POI-related data was cal-
culated through the field calculator.

Extraction of mixed UFZs In the actual practice, many 
UFZs usually hold mixed functions. Concretely, this 
study defined the unit as a single functional area when 
the proportion of the POI type was greater than or equal 
to 50%. On the contrary, when the proportion of the POI 
type was less than 50%, it was determined that there was 
not dominant UFZ in this area, which meant it was mixed 

(2)C
i
=

F
i

∑6

i=1
F
i

× 100% ( i = 1, 2,… , 6)

Fig. 2  The flow chart of 
UFZs identification 
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UFZ. When the proportion of all the POI types was less 
than 20%, it was considered an integrated UFZ. Since the 
integrated UFZ occupied little proportion of the study 
area, it was not considered in this study.

Accuracy evaluation of UFZ extraction results For accuracy 
evaluation, this study selected some units and verified the 
UFZ classification by sampling and scoring. Specifically, 
the full score was set up to 3, meaning complete consist-
ency, while 0 meant complete inconsistency. If a single UFZ 
was identified as a mixed UFZ, the score was 2. And if a 
mixed UFZ was identified as a single UFZ included in the 
corresponding mixed UFZ, or as a mixed UFZ containing 
a function included in the corresponding mixed UFZ, the 
score was 2. The calculation formula for precision evalua-
tion is as follows:

where A is the verification accuracy of UFZ, xi is the score 
of randomly selected sample, and Xi is the total score of 
randomly selected samples.

Calculation of  CO2 emissions at the UFZ scale

Calculation of  CO2 emissions in industrial zones Based on 

the range of  CO2 emissions from energy consumption, this 
study adopted the top-down accounting method to calculate 
 CO2 emissions in industrial zones. The construction model 
is as follows:

where CP is the total  CO2 emissions generated by the func-
tional area, i is the energy type, C is the amount of energy 
consumption, and EFi is the  CO2 emission coefficient of 
energy i.

(3)A =

∑n

i=1
xi

∑n

i=1
Xi

× 100%

(4)CP =
∑

i

Ci ×
∑

i

EFi

Calculation of  CO2 emissions in residential and commer-
cial service zones As the carbon emission sources in resi-
dential zones and commercial service zones are mainly 
liquefied petroleum gas, electricity, gas, coal, etc. and the 
energy consumption data is difficult to obtain, this study 
utilized carbon emission intensity obtained from previ-
ous research to calculate the  CO2 emissions in residential 
zones and commercial service zones. Its calculation for-
mula is as follows:

where CO2m is the total amount of various  CO2 emissions of 
these zones, i is the energy consumption category, ki is the 
conversion factor for different energies, Ei is the amount of 
energy consumption of category i, and di is the  CO2 emis-
sion coefficient (constant value).

Calculation of  CO2 emissions in public service and cultural 
tourism zones The carbon emission accounting of public 
service zones and cultural tourism zones referred to the 
previous studies, which used the carbon emission intensity 
to estimate the  CO2 emissions in the corresponding zones 
(Gao and Li 2021). The general calculation model is as 
follows:

where C is the  CO2 emissions of UFZ, j is the UFZ type, Aj 
is the area of UFZ, and Lj is the  CO2 intensity of UFZ.

Calculation of  CO2 emissions in transport zones This 
study adopted the carbon emission coefficient of four 
transportation modes, namely, railway, highway, water 
transport, and aviation (Table 1) to calculate the carbon 
emissions:

 where CO2T is the total  CO2 emissions of the transporta-
tion system, CO2T1 is the total  CO2 emissions from inter-
city transportation, and CO2T2 is the total  CO2 emissions 
of urban passenger transportation, i is different types of 
transportation modes, g1i is the passenger turnover, g2iis 
the freight turnover, ki is the passenger cargo conversion 
coefficient, and α is the carbon emission ratio coefficient of 
intercity transportation and urban transportation.

(5)CO2m =

n
∑

i=1

(

ki × Ei × di
)

(6)C =
∑

(

LjAj

)

(7)CO2T = CO2T1 + CO2T2

(8)CO2T1 =
∑

(

g1i × hi + g2i
)

× ki

(9)CO2T2 = � CO2T1

Table 1  Conversion between passenger and cargo and  CO2 emission 
coefficient

Mode of transportation Passenger transport 
conversion factor

CO2 emission 
coefficient

Highway 1 P km = 1 T km 0.1955
Railway 13 P km = 1 T km 9.6000
Water transport 10 P km = 1 T km 0.5560
Aviation 3 P km = 1 T km 0.0425
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Spatial pattern analysis of UFZ based on carbon 
emissions

Utilizing the reclassified POI and OSM data and combining 
the carbon emission accounting data of each UFZ, the car-
bon emission maps of residential zones, commercial service 
zones, industrial zones, and transport zones were conducted 
as follows:

where CO2i is the  CO2 emission value of UFZ, Di is the 
carbon emission intensity of UFZ, n is the total number of 
pixels in the study area, and C is the total  CO2 emission of 
all the UFZs.

According to the spatial distribution of POI in each 
UFZ and the relevant energy consumption, the  CO2 
emission intensity of residential zones, industrial 
zones, and commercial service zones was calculated 
as follows:

where P is the carbon emission intensity, Wi is the emission 
weight of POI in corresponding UFZs (the weight of resi-
dential zones, commercial service zones, industrial zones, 
and tertiary industry is 1, respectively), A is the total area of 
UFZ, and n is the total amount of POI in certain UFZ.

As the transport zone is a linear vector, its calculation 
model of  CO2 emission intensity is as follows:

where D is the  CO2 emission intensity, Li is the length of the 
road in the UFZ within the search range, Wi is the volume 
of traffic on the road, A is the total area, and m is the total 
number of roads in the search range.

Exploratory spatial data analysis (ESDA) describes and 
visualizes the spatial characteristics of data by establish-
ing statistical relationships through spatial geographic 
location correlation, so as to recognize the characteris-
tics of data spatial distribution and to explore spatial cor-
relation information. Spatial autocorrelation analysis is 
the main module of ESDA, which reveals the degree of 
interdependence between data from different geographical 
locations. According to the mutual spatial relationship, it 
can be divided into positive correlation and negative cor-
relation. According to the scope of study, it can be classi-
fied into two categories: global spatial autocorrelation and 
local spatial autocorrelation.

(10)CO2i =
Di × C
∑n

i=1
Di

(11)P =

∑n

i=1
Wi

A

(12)D =

∑m

i=1
Li ×Wi

A

Global spatial autocorrelation analysis

Global Moran’s I is a key index used to assess the global 
applicability of spatial data, and it takes values between 
−1 and 1. When I < 0, it means that there is a negative 
spatial correlation in the distribution of this spatial ele-
ment, and its negative correlation is stronger when the 
value of I is closer to −1. When I > 0, it means that there 
is a positive spatial correlation, and its positive correlation 
is stronger when the value of I is closer to 1. When I = 0, 
it means that these are spatially randomly distributed and 
do not have any spatial correlation. In the study, Global 
Moran’s I calculation formula for urban carbon emissions 
is as follows:

where I denotes Global Moran’s I, n denotes the total num-
ber of regions, xi is the  CO2 emissions of region i, xj is the 
 CO2 emissions of region j, x is the average  CO2 emissions, 
and wij is the normalized spatial weight matrix (Eq. (14)), 
which characterizes the neighborhood relationship between 
spatial objects. There are two types of spatial weight matrix, 
Rook and Queen. Rook denotes the adjacency of common 
edges, and Queen denotes the adjacency of common verti-
ces. In the study, Queen adjacency was used, that is, if region 
i and region j have a common edge, wij = 1; otherwise, wij 
= 0.

By standardizing the Z value and P value, the significance 
of Global Moran’s I can be evaluated. The null hypothesis 
of no spatial autocorrelation among spatial elements is first 
established, and the decision to reject or accept the null 
hypothesis is made by comparing the P value with the sig-
nificance level: if −1.96 < Z < 1.96 and P > 0.05, the null 
hypothesis is accepted; if Z ≥ 1.96 or Z ≤ −1.96 with P ≤ 
0.05, the null hypothesis is rejected. The Z value was cal-
culated as

and

where E(I) is the theoretical expected value and 
√

VAR(I) is 
the theoretical variance.

(13)I =
n
∑n

i=1

∑n

j=1
wij

�

xi − x
��

xj − x
�

�

∑n

i=1

∑n

j=1
wij

�

∑n

i=1

�

xi − x
�2

(14)wij =

⎡

⎢

⎢

⎣

w11 ⋯ wj1

⋮ ⋱ ⋮

wi1 ⋯ wjn

⎤

⎥

⎥

⎦

(15)Z(I) =
I − E(I)
√

VAR(I)

(16)E(I) =
1

n − 1
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Moran’s scatter plot is a visualization result of global 
autocorrelation analysis, which can visualize the type of spa-
tial autocorrelation each spatial element, respectively, and 
qualitatively reveal the local spatial stability of the study 
object. It represents different types of spatial agglomera-
tions in four quadrants in the form of Cartesian coordinate 
system: high-high (H-H), low-low (L-L), high-low (H-L), 
and low-high (L-H).

Local spatial autocorrelation analysis

Global Moran’s I can identify the overall spatiality of the 
study object, and Moran’s scatter plot can indicate the type 
of agglomeration of each spatial element, but neither of them 
can show the specific spatial location of the agglomeration. 
In the study, the Local Indicators of Spatial Association 
(LISA) index was further used to analyze the local spatial 
pattern of the urban  CO2 emissions. The principle of LISA 
index is to decompose Global Moran’s I into various parts 
of the entire spatial range, which can effectively reveal the 
aggregation of various spatial elements at specific locations. 
The formula is as follows:

where

(17)Ii =
xi − x

S

n
∑

j=1

Wij

(

xj − x
)

(18)S =

(

n
∑

j=1 j≠i

x2
j
∕(n − 1)

)

x
2

while the rest of the variables have the same meaning as 
in Eq. (13).

Results and discussion

Results and validation of UFZ extraction

Figure 3 shows the distribution of processed POI data exca-
vated from Gaode Map. Among them, commercial service, 
residential, and public service POIs were most densely dis-
tributed in the center of Pudong New Area, while indus-
trial POIs were concentrated in their surroundings. And the 
transport POIs were mostly concentrated in coastal ports, 
airports, and high-speed railway stations, with the cultural 
tourism POIs distributed far away from the urban center.

Figure 4 shows the proportion of single UFZs and mixed 
UFZs, respectively. Thus, for single UFZs, transport and 
industrial zones accounted for 63%; for mixed UFZs, those 
with transport or industrial zones accounted for the major-
ity at 76%. The results of UFZ extraction showed that there 
were 1083 functional zones, of which 124 single UFZs 
accounted for 11.45% and 959 mixed UFZs accounted for 
88.55% (Fig. 5). Concretely, mixed UFZs were mainly dis-
tributed in areas with developed economy, complete infra-
structure, and convenient life.

Generally, residential zones were mainly located in 
larger towns away from commercial centers. Similarly, in 
this study, most of the residential areas in Pudong were 
located in the old urban areas around the center, with small 
plots and many patches. Commercial service zones were 

Fig. 3  Distribution of various 
POIs in the study area



2124 Environmental Science and Pollution Research (2024) 31:2117–2128

1 3

located around large business districts, that is, in the center 
of Pudong or around the Huangpu River, providing support 
for citizens’ life services. Industrial zones were located in 
the southeast and southwest of Pudong, with obvious indus-
trial function advantages and intensive production factors. 
Public service zones were mainly located around administra-
tive organs, like education, culture, and medical facilities. 
Transport zones were mainly located in Pudong Airport, 
railway station, subway, port, and other large transport hub 
areas (Zhao et al. 2022).

Compared with the existing research conducted in the 
other cities (Chen et al. 2022), the single UFZs of this study 
area accounted for 63% of the total. That is mainly because 
the UFZs in Pudong were concentrated in the central area, 
or around coastal ports and other peripheral areas, different 
UFZs had a high degree of overlap. In addition, in terms 
of research methods, we divided UFZs by constructing 

frequency density vectors based on POI and OSM data, 
while the above research divided UFZs through pixel thresh-
old method based on POI and land use data. This was dif-
ferent from our situation, because Pudong was relatively 
developed in economy, commerce, and transportation; it 
was difficult to use the threshold method to divide various 
functional categories in the road network.

For precision evaluation, 300 UFZs were randomly 
selected and compared with the real map. The score was 
shown in Table 2. The overall accuracy was 81.1%, meeting 

Fig. 4  The proportion of dif-
ferent UFZs (a represents the 
proportion of single UFZ and 
b represents the proportion of 
mixed UFZ)

Fig. 5  UFZ identification results 
of the study area

Table 2  Verification score of functional zone identification

Score 3 2 1 0
Number of points 192 57 40 11
Total score 576 114 40 0
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the experimental requirements. This indicated that the POI 
data can supplement the remote sensing data and improve 
the spatial refinement.

Results of urban  CO2 emission accounting

Figure 6 shows the carbon emissions of each UFZ, with the 
industrial, transport, and commercial service zones ranking 
in the top 3, while the residential and cultural tourism zones 
were far below them. This is consistent with the existing 
studies (Wang et al. 2022b), which computed the  CO2 emis-
sions of various functional zones in Sichuan province and 
found out that the percentage of  CO2 emissions in industrial 
zones and transport zones was much higher than those in 
other UFZs.

According to the framework of IPCC, the carbon emis-
sion sources of industrial zones include emissions in the 
production process, waste treatment, and changes in land 
use (Mir et al. 2021; Xu et al. 2021). Therefore, due to the 
limited availability of data, the  CO2 emissions of some 
UFZs may be underestimated, and the total carbon emis-
sions considered in this study may be slightly lower than the 
actual values. Nevertheless, compared with the bottom-up 
carbon emission accounting, the top-down method used in 
this study covered all the energy consumption, which may in 
turn improve the estimate accuracy (Chen et al. 2023). Over-
all, the  CO2 emissions computed in this study were obtained 
from statistical data due to the additional time required for 
field surveys, but the emissions results were relatively fea-
sible and valid.

Fig. 6  CO2 emissions of the six 
UFZs

Fig. 7  The spatial distribution of  CO2 emissions (a) and the local spatial autocorrelation analysis (b)
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Spatial patterns of UFZs based on  CO2 emissions

Spatial distribution

The spatial distribution of  CO2 emissions at the UFZ scale 
was shown in Fig. 7. In terms of spatial distribution, the 
 CO2 emissions of industrial zones ranked first, because 
China’s economy still mainly relied heavily on industry. 
Therefore, the adjustment of the structure of industrial 
UFZs was crucial for carbon emission reduction. Sec-
ondly, the emission source generated by the industrial 
zones was also the main source of air pollutants, which 
greatly affected the human living environment (Ahmed 
et al. 2022; Piotr and Zbigniew 2015). Therefore, in urban 
planning, the relevant environmental agencies must strictly 
monitor the  CO2 emissions generated by the design of the 
spatial distribution of industrial land.

The transport zones were the second largest source area 
of urban  CO2 emissions (Zhou et al. 2023), as the regional 
traffic facilities have undertaken the transportation task 
of serving the normal economic development of Pudong, 
especially the existence of numerous ports, which makes 
Pudong a world shipping node. Therefore, it should be 
properly adjusted the distribution of transport zones in 
the urban space, such as increasing the strength of water 
transportation to replace part of air transportation, in order 
to achieve the goal of reducing  CO2 emissions from trans-
portation (Wang et al. 2023).

Spatial autocorrelation

The global spatial autocorrelation analysis showed that 
Moran’s I value was 0.8116, which revealed that the posi-
tive correlation of urban carbon emissions in Pudong New 
Area was stronger in terms of spatial distribution. And the 
 CO2 emissions of high and low carbon intensity regions 
were more significantly different from other regions. 
Furtherly, local spatial autocorrelation results illustrated 
that industrial zones and transport zones were the main 
locations of high emission concentrations in Fig. 7. In 
the LISA cluster map, high-high, high-low, and low-high 
clusters were majorly distributed in inland ports and areas 
around the city center. This was because inland ports were 
important transportation hubs in Pudong, while industrial 
enterprises were distributed in areas around the city center, 
which was the same as the location of these clusters in 
the LISA map. Besides, low-low clusters were majorly 
distributed in coastal areas and areas far from urban cent-
ers (Xia et al. 2023). This was mainly due to the fact that 
these areas have poorer economies and fewer large shop-
ping malls (Zhu et al. 2023). And because of the large 

area, there was more agricultural and forestry land and 
parkland.

Compared with the extraction results of UFZs, it can be 
found that the areas with high carbon emissions were mainly 
located in the center of Pudong New Area and inland ports, 
while the areas with low carbon emission intensity were 
mainly located in coastal communities, such as Chuansha 
New Town and other areas with good ecological environ-
ment quality. Existing research failed to accurately show the 
difference in regional carbon emissions (Ji and Lin 2022; 
Zhou et al. 2023); this study took the impact of UFZ into 
account, so as to simulate regional carbon emissions distri-
bution at a finer scale.

Conclusion

It is crucial to make accurate spatial distribution simula-
tions of urban  CO2 emissions for low carbon city con-
struction. The study used POI and road network data to 
extract UFZs in Pudong New Area, China, and designed 
a framework based on the scale of UFZs to explore the 
spatial distribution pattern of  CO2 emissions. The results 
showed that the spatial difference of the mixed utiliza-
tion degree of the UFZs was obvious within the study 
area, which was specifically reflected in the downtown 
area, especially in the areas with developed transportation. 
Accordingly, there were significant spatial differences in 
urban  CO2 emissions at the UFZ scale (Li et al. 2021; 
Xia et al. 2022). Specifically, the high  CO2 emission areas 
were located in the typical secondary industry and trans-
port functional areas around the inland ports and urban 
center, which was consistent with the actual situation (Tao 
et al. 2023; Yang et al. 2023). Besides, in terms of spatial 
autocorrelation analysis, the  CO2 emissions in Pudong 
New Area presented a significant high spatial agglom-
eration, and the high  CO2 emission clusters were majorly 
distributed in the zones with concentrated industries and 
transportation. This paper tried to decompose the  CO2 
emissions into corresponding UFZs and established the 
UFZ carbon emission correlation framework, fully consid-
ering the spatial heterogeneity within the area, which can 
help improve the policy implementation for low carbon 
city construction (Wang et al. 2018).

At present, the POI data used in this study only included 
the location, name, type, etc., while the corresponding 
housing area of each UFZ needed to be supplemented in the 
subsequent research. Furthermore, high-resolution remote 
sensing images can be utilized to obtain building profiles. 
And with the maturity of big data and artificial intelligence 
technology, future research can try to extend UFZ-based car-
bon emission spatialization to larger scope.
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