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Abstract
The accurate and efficient prediction of chlorophyll-a (Chl-a) concentration is crucial for the early detection of algal blooms 
in reservoirs. Nevertheless, predicting Chl-a concentration in multivariate time series poses a significant challenge due to the 
complex interrelationships within the aquatic environment and the discrete and non-stationary nature of online monitoring of 
water quality data. To address the aforementioned issue, this paper proposes a novel prediction model named SGMD-KPCA-
BiLSTM (SKB) for predicting Chl-a concentration. The model combines two-stage data processing and machine learning 
(ML). To capture nonlinear relationships in multivariate time series data, the optimal data subset is determined by combining 
symplectic geometry mode decomposition (SGMD) and kernel principal component analysis (KPCA). This subset is then 
input into a bidirectional long short-term memory (BiLSTM) model, and the model’s hyperparameters are optimized using 
the sparrow search algorithm (SSA) to improve the accuracy of predictions. The performance of the model was evaluated at 
Qiaodian Reservoir in Shandong, China. To assess its superiority, the evaluation criteria included the root mean square error 
(RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), coefficient of determination (R2), frequency 
histograms of the prediction error, and the Taylor diagram. The prediction performance of five single models, namely the 
back-propagation (BP) neural network, support vector regression (SVR), long short-term memory (LSTM), convolutional 
neural network with long short-term memory (CNN-LSTM), and BiLSTM, as well as three hybrid models, namely SGMD-
LSTM, SGMD-KPCA-LSTM, and SGMD-BiLSTM, were compared against the SKB model. The results demonstrated that 
the SKB model performs best in predicting Chl-a concentration (R2 = 96.19%, RMSE = 1.05, MAE = 0.65, MAPE = 0.08). It 
significantly reduced the prediction error compared to other models for comparison. Furthermore, the multi-step predictive 
capabilities of the SKB model are also discussed. The analysis shows a decline in predictive performance with larger predic-
tion time steps, and the SKB model exhibits slightly superior performance compared to the other model at corresponding 
prediction intervals. The model has significant advantages in terms of its ability to accurately predict the non-smooth and 
nonlinear Chl-a sequences observed by the online monitoring system. This study presents a potential solution for controlling 
and preventing reservoir eutrophication, as well as an innovative approach for predicting water quality.

Keywords Prediction · Chlorophyll-a · Eutrophication · Symplectic geometry mode decomposition · Kernel principal 
component analysis · Bidirectional long short-term memory

Introduction

Reservoirs play an irreplaceable role in both the natural 
ecosystem and human social life (Glasgow et al. 2004). 
As industrial and agricultural modernization has advanced 
rapidly over the past few decades, there has been a signifi-
cant increase in the influx of nutrients, such as nitrogen and 
phosphorus, into the reservoir through runoff. Furthermore, 
due to the long hydraulic retention time, eutrophication has 
emerged as the main factor contributing to the deterioration 
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of water quality in reservoirs (Shi et al. 2023). The algal 
bloom caused by eutrophication seriously harms the eco-
logical environment, which in turn jeopardizes the security 
of the water supply (Li and Li 2023; Niu et al. 2021). Chlo-
rophyll-a (Chl-a) is a significant indicator of water quality, 
especially for evaluating eutrophication. It is consistently 
found in aquatic algal cells, and its concentration serves as 
an indicator of the amount of algae in water bodies (Boyer 
et al. 2009; Rakocevic-Nedovic and Hollert 2005). Algal 
blooms can be easily predicted by studying the concentration 
of Chl-a in water bodies (Dzurume et al. 2022). Therefore, 
accurately predicting the concentration of Chl-a in reservoirs 
is crucial. However, due to the complexity of the intrinsic 
mechanism of the eutrophication ecological process, the 
uncertainty factors in the water environment, and the limi-
tations of water quality monitoring technology, establishing 
a highly accurate and stable prediction model for eutrophica-
tion is a significant challenge.

Currently, scholarly research on predicting algal dynam-
ics can be categorized into two distinct approaches: process 
driven and data driven (Kerimoglu et al. 2018; Zhu et al. 
2023). Process-driven models involve physical, chemical, 
and biological processes in the growth of algae, resulting 
in a complex model structure with numerous parameters. 
These characteristics limit the use of mechanistic models 
and reduce their overall applicability. With the advent of the 
big data era and the development of artificial intelligence 
(AI) technology, data-driven models have become popular 
tools (Hejazi and Cai 2009). In addition to traditional water 
quality monitoring, the utilization of online monitoring sys-
tems, remote sensing, and other emerging technologies has 
increased the availability of data. The data-driven method 
has been widely used in predicting algae dynamics (Lee 
et al. 2003; Pepe et al. 2001). Data-driven methods can be 
further refined into empirical models and ML-based models 
(Alexakis et al. 2013). Empirical models, such as logistic 
regression (LR), generalized additive models (GAM), and 
autoregressive integrated moving average (ARIMA), have 
been widely used in water quality prediction (Carvalho 
et al. 2011; Mohebzadeh et al. 2020; Myronidis et al. 2018). 
However, these empirical models cannot accurately capture 
the nonlinear characteristics of fluctuations in water quality 
parameters, resulting in higher prediction errors (Xie et al. 
2019). ML-based models can effectively capture the non-
linear characteristics of data, allowing them to overcome 
certain limitations of empirical models. For example, Cho 
et al. (2014) used an artificial neural network (ANN) to pre-
dict the Chl-a concentration in Juam Lake. They discovered 
that the concentration of Chl-a was primarily influenced by 
environmental factors such as total organic carbon (TOC), 
pH, and water temperature. Park et al. (2015) used support 
vector machines (SVM) and ANN to predict Chl-a concen-
tration. The SVM model demonstrated superior predictive 

performance in estimating Chl-a concentration compared 
to the ANN model. Lee and Lee (2018) conducted a com-
parative analysis of multilayer perceptron (MLP), recur-
rent neural network (RNN), and long short-term memory 
(LSTM) models for predicting harmful algal blooms in four 
rivers located in South Korea. The findings of this investi-
gation showed that deep learning models, including MLP, 
RNN, and LSTM, exhibited superior predictive capabilities 
compared to the conventional ordinary least square simple 
linear regression method. Wang and Xu (2020) proposed 
a novel spatio-temporal distribution model that utilizes 
LSTM to predict the future trend of Chl-a concentration. 
The validation results yielded a mean square error (MSE) 
of 0.7778 and a root mean square error (RMSE) of 1.201. 
Unfortunately, the applicability of the individual ML-based 
models used in these studies is limited in complex water 
environments. Additionally, the performance of the models 
is significantly affected by the training samples, resulting in 
considerable uncertainty regarding their performance.

ML-based prediction models have been widely used to 
predict Chl-a concentration. However, the dependability 
of the input variables limits the predictive accuracy of ML 
models. The discrete and non-stationary nature of online 
monitoring of water quality data related to algae may limit 
the model’s ability to accurately capture the dynamic trends 
of algae. Hybrid models can synthesize the advantages of 
each algorithm. Through careful data processing, the hidden 
information within the data can be fully extracted, thereby 
improving the predictive capability of the model (Liu et al. 
2023; Yu et al. 2020). Recently, many scholars have con-
ducted extensive research on the “decomposition-prediction-
reconstruction” method. Firstly, the sequence is decomposed 
using decomposition technology. Subsequently, the appro-
priate model is selected to predict each component. Finally, 
the reconstructed prediction results are obtained to enhance 
the prediction performance of a single model (Tong et al. 
2019; Zhang et al. 2023b). Decomposition algorithms are 
an innovative strategy for preprocessing in the ML mod-
eling process. The essence of decomposition is to convert 
non-stationary time series data into stationary data. The 
usefulness of extracting dynamic features from time series 
data has been demonstrated in previous studies (Lu and Ma 
2020; Wang et al. 2023). These algorithms have been widely 
used to predict hydrological and meteorological param-
eters, including wind speed, rainfall, and floods (Antico 
et al. 2014; Gao et al. 2020; Zhang et al. 2017). Empiri-
cal mode decomposition (EMD), ensemble empirical mode 
decomposition (EEMD), and wavelet transform (WT) are 
frequently used decomposition algorithms (He et al. 2019). 
Nevertheless, EMD suffers from issues such as redundant 
and insufficient decomposition. As an improved method of 
EMD, EEMD can mitigate the impact of the modal alias-
ing phenomenon. However, this method can easily lead to 
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non-convergence of the function (Xie et al. 2019). WT uses 
multiple wavelet functions, which complicates the selec-
tion process (Hadi and Tombul 2018). To overcome these 
limitations, a novel adaptive time–frequency decomposition 
method called symplectic geometry modal decomposition 
(SGMD) has been introduced for prediction purposes. How-
ever, there are few applications of SGMD to water qual-
ity time series data, and the effectiveness of applying the 
“decomposition-prediction-reconstruction” methodology in 
water quality prediction deserves further investigation.

The primary objectives of this study are as follows: (1) To 
efficiently and accurately extract valuable information from 
large volumes of water quality monitoring data, consider-
ing the complexity and multiple correlations of the water 
environment. The appropriate input variables are selected 
to achieve accurate predictions of multivariate time series. 
(2) A new two-stage data processing method is proposed to 
address the nonlinearity and instability of online water qual-
ity monitoring data in multivariate time series. This method 
demonstrates the effectiveness of efficiently selecting a sub-
set of prediction data while also accurately capturing the 
nonlinear relationship present in water quality monitoring 
data. (3) A new hybrid prediction model has been developed 
to overcome the limitations of using a single model. Fur-
thermore, an intelligent optimization algorithm is applied 
to optimize the hyperparameters of the model, aiming to 
enhance the performance of the prediction model. In this 
paper, we construct a short-term prediction model that 
combines two-stage data processing and machine learning 
(ML) techniques. The model utilizes SGMD, kernel princi-
pal component analysis (KPCA), sparrow search algorithm 
(SSA), and bidirectional long short-term memory (BiL-
STM). Furthermore, the data obtained from the real-time 
online monitoring system of the reservoir is used to validate 

the accuracy of the model in predicting the temporal varia-
tions of Chl-a concentrations within the reservoir.

Materials and methods

Study area

This study used the Qiaodian Reservoir as an example to 
assess the effectiveness of the method. Qiaodian Reservoir is 
situated in Jinan, Shandong Province, China, along the Xin-
zhuang River, which is a tributary of the Mouwen River. The 
location is situated at the global geographical coordinates 
of 117°51′34″ east longitude and 44°23′40″ north latitude 
(see Fig. 1). The dam was constructed in 1965 and under-
went repairs in 2005 to reinforce its structure. The reservoir 
controls a watershed area of 85  km2, with a total capacity of 
27.99 million  m3. The reservoir provides an average annual 
water supply of 10 million  m3. It is a medium-sized reservoir 
used for water supply, flood control, agricultural irrigation, 
and power generation, among other purposes. This signifi-
cant water source was recognized as an important national 
drinking water source in 2016. The water quality of the res-
ervoir is relatively exceptional, making it a valuable source 
of drinking water in Jinan City.

The Qiaodian Reservoir is located in the temperate mon-
soon climate zone, which is characterized by four distinct 
seasons, significant annual temperature variations, and 
uneven distribution of precipitation throughout the year. 
The annual average temperature is 15.2 °C, based on data 
from the period 2005–2022. The warmest period of the 
year occurs between June and September, when the average 
highest temperature exceeds 35 °C. The average duration 
of sunlight in the reservoir over several years is 2296.71 h, 

Fig. 1  Study area and location of Qiaodian Reservoir
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and the average wind speed for many years is 2.6 m/s. The 
annual average precipitation in the reservoir basin is 683.3 
mm, with the majority of rainfall occurring during the flood 
season (July–September).

In recent years, there has been an emergence of cyanobac-
terial blooms in the Qiaodian Reservoir. This poses a poten-
tial hazard to the water quality and safety of urban water 
supply systems. Even though several scientific prevention 
and control measures were implemented to reduce pollution 
and limit discharge, signs of localized cyanobacteria growth 
were still observed in the reservoir. The risk of eutrophica-
tion cannot be ignored.

Dataset collection and selection

The phenomenon of reservoir eutrophication arises from 
the synergistic impacts of multiple environmental condi-
tions (Chen et al. 2011; Gentine et al. 2022). Appropriate 
meteorological conditions, sufficient nutrient levels, and 
proper hydraulic conditions all contribute to the increase in 
Chl-a content in water (Wu et al. 2014). Therefore, before 
predicting Chl-a concentration, it is important to identify 
and screen the main driving factors of Chl-a to eliminate 
any interference from irrelevant factors. To eliminate the 
interference of irrelevant factors and optimize the selection 
of input variables, the gray correlation analysis method and 
Pearson correlation analysis were employed to filter out 
extraneous variables.

The research data were collected from daily water quality 
monitoring data spanning from January 2019 to December 
2022, which were obtained through the online monitoring 
system of the Qiaodian Reservoir. The automatic monitor-
ing station is located 20 m away from the water intake, and 
the water point is positioned approximately 3 m below the 
water surface. The water quality indicators involved included 
water temperature (WT), pH, turbidity (TD), electrical con-
ductivity (EC), permanganate index  (CODMn), ammonia 
nitrogen  (NH3-N), and Chl-a. Furthermore, considering the 
interdependence between the growth and reproduction of 
algae and meteorological factors, the research data for this 
study included daily meteorological data from January 2019 
to December 2022. This dataset includes variables such as 
air temperature (T), atmospheric pressure (P), wind speed 
(WS), sunshine hours (SUN), and precipitation (PRCP).

The magnitude of the gray correlation degree directly 
reflects the level of correlation between the two sequences. 
The strength of the association between the two variables 
is directly proportional to the magnitude of the correlation 
coefficient. The Chl-a concentration monitoring data was 
used as the reference sequence, while the other 11 groups 
of water quality monitoring data were used for compari-
son. According to the steps for calculating the degree of 

correlation, the gray correlation between Chl-a and the 
other 11 indexes was analyzed and calculated. The specific 
analysis steps are as follows:

Step 1:  Determine the reference sequence 
and standardize it. Let the reference sequence 
X0=

{
X0(k)|k= 1, 2,⋯ n

}
 and the comparison sequence 

Xi=
{
Xi(k)|k= 1, 2,⋯ n

}
,i = 1, 2,⋯m . Due to the use of 

different units in water quality monitoring data, it is easy 
to introduce errors in the analysis results. Therefore, the 
mean values of 12 groups of water quality monitoring 
data are standardized.

Step 2: Calculate the correlation coefficient �i(k).

where ρ is the resolution coefficient within [0, 1], gener-
ally, ρ = 0.1.
Step 3: Calculate the correlation coefficient r

i
(k).

The correlation degree values of 11 groups of comparison 
sequences and the reference sequence Chl-a were sorted. The 
results are shown in Table 1. The variables that exhibited a 
strong positive correlation with Chl-a concentration were iden-
tified as follows: pH, electrical conductivity (EC), turbidity 
(TD), atmospheric pressure (P), permanganate index  (CODMn), 

(1)
�

xi(k) = Xi(k)∕Xi(l)

Xi(l) =
1

n

∑n

k=1
Xi(k)

(2)�i(k) =

min
i

min
k

||x0(k) − xi(k)
|| + � max

i

max
k

||x0(k) − xi(k)
||

||x0(k) − xi(k)
|| + � max

i

max
k

||x0(k) − xi(k)
||

(3)ri =
1

n

n∑
k=1

�i(k)

Table 1  Result of gray relational degree

Serial number Factors Gray correlation 
degree

1 pH 0.8205
2 EC 0.8176
3 TD 0.8176
4 P 0.8155
5 CODMn 0.8149
6 WS 0.8149
7 SUN 0.8124
8 T 0.8083
9 WT 0.7987
10 NH3-N 0.7986
11 PRCP 0.7751
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wind speed (WS), sunshine hours (SUN), and air temperature 
(T).

The Pearson correlation analysis method was chosen to 
identify and eliminate duplicate components that contain 
overlapping information. Figure 2 shows the results of the 
univariate correlation analysis among the indicators. Except 
for  NH3-N and WS, all other variables showed a significant 
correlation with Chl-a concentration (P < 0.05). The cor-
relation coefficients among the three environmental factors, 
T, WT, and P were high. These factors could be included or 
excluded, depending on the circumstances. It is important 
to acknowledge that nitrogen, a significant factor in algae 
growth, was not initially considered one of the primary fac-
tors associated with Chl-a concentration. The omission may 
be attributed to the stable and low concentration of  NH3-N 
observed throughout the monitoring period.

Based on the aforementioned analyses, the water quality 
prediction model incorporates T, WS, SUN, pH, EC, TD, 
 CODMn, and Chl-a as variables. The data was preprocessed 
and then divided into training and test sets. The selected 
indicators were used as input variables to train the BiLSTM 
network, with the daily variation in Chl-a designated as the 
output variable.

Framework of the prediction model

The proposed Chl-a prediction system mainly consists 
of data processing and time series prediction, as shown 
in Fig. 3. It can be decomposed into seven steps. Step 
1 involves data preparation. Step 2 and step 3 represent 

the two stages of data processing, respectively. At the end 
of step 3, the optimal data subset can be selected. The 
remaining four steps are structured as time series predic-
tion modules. In step 4, the hyperparameters of the BiL-
STM model are optimized using the SSA algorithm. Step 
5 represents the training set as the input to the BiLSTM. 
Step 6 outputs predicted values, and step 7 evaluates the 
model’s performance in making predictions. The specific 
steps are as follows:

Step1: Constructing the input dataset. The input variables 
were screened using Chl-a influence factor analysis. 
Each variable was checked for outliers, and missing val-
ues were interpolated to obtain a complete time series 
dataset.

Step2: Sequence decomposition using SGMD. The SGMD 
algorithm is applied to decompose the data processed in 
step 1 into multiple symplectic geometric modal com-
ponents and residual components. It adaptively decom-
poses and reconstructs the single-component signal 
while preserving the original time series.

Step3: Data dimensionality reduction using KPCA. Since 
the number of dimensions of the input variables decom-
posed in step 2 is too large, KPCA dimensionality reduc-
tion is performed on the data. On the basis of ensuring 
the preservation of accurate information in the data, 
the correlation and redundancy of various time series 
data are eliminated. This is done to prevent the issue of 
overfitting in the prediction model and improve compu-
tational efficiency.

Fig. 2  Correlation analysis 
among the factors. Note: *cor-
relation is significant at 0.05; 
**the correlation is significant 
at 0.01; ***the correlation is 
significant at 0.001
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Step4: BiLSTM network training. To mitigate significant 
data fluctuations during the training phase, the data is 
normalized and converted into a suitable format for 
training the BiLSTM network. This is done after reduc-
ing the dimensionality in step 3. The training set and test 
set are then divided.

Step5: Network parameter optimization using SSA. The 
SSA is used to optimize the hyperparameters of the BiL-
STM model. The optimization parameters include the 
number of hidden layer nodes, the initial learning rate, 
and the regularization coefficient.

Step6: Sequence prediction. After training the network 
model in step 4, the test set is used for evaluation.

Step7: Validation of the prediction model. The predicted 
values obtained in step 6 are compared with the actual 
values to calculate errors and verify the model’s pre-

dictive performance. The selected evaluation indica-
tors include the root mean square error (RMSE), mean 
absolute percentage error (MAPE), mean absolute error 
(MAE), and coefficient of determination (R2). The for-
mulas for each indicator are as follows:

(4)ERMSE =

√√√√ 1

N

N∑
i=1

(
yi − yi

�
)2

(5)EMAPE =
1

N

N∑
i=1

||yi − yi
�||

yi
× 100%

(6)EMAE =
1

N

N∑
i=1

||yi − yi
�||

Fig. 3  A flowchart diagram of 
the process of model construc-
tion
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where N is the length of the predicted time sequence, yi and 
yi′ are the actual and predicted values of the sequence at the 
ith moment, respectively.

Two‑stage data processing method

A novel two-stage data processing method is proposed to 
address the nonlinearity and instability of online water 
quality monitoring data in multivariate time series. Spe-
cifically, the SGMD decomposition algorithm captures the 
nonlinearities in the series, improving the smoothness and 
predictability of the time series. Nonetheless, it increases 
the dimensionality of the input variables in the model. The 
KPCA method is used to reduce the dimensionality of the 
input variables. The model’s computational efficiency and 
accuracy are improved, while also ensuring the validity and 
representativeness of the information.

Symplectic geometry mode decomposition

Symplectic geometric mode decomposition (SGMD) is a 
relatively new method for decomposing modes that can 
eliminate noise interference while preserving the character-
istics of the original time series. It is suitable for analyzing 
nonlinear and unstable time series. Compared to empirical 
mode decomposition (EMD), this method can avoid modal 
aliasing and sensitivity to parameter selection (Pan et al. 
2019). The steps for SGMD decomposition are as follows:

(1) Phase space reconstruction
Let the original signal time series be denoted as x = (x1, 
x2, …, xn). According to the Takens embedding theorem, 
the trajectory matrix X is defined by Eq. (8).

where d and τ represent the embedding dimension and the 
delay time, and m = n—(d—1) τ.
(2) Symplectic geometric matrix transformation
Let the covariance symmetric matrix A=XTX , the Ham-
iltonian matrix M is obtained using Eq. (9).

Let F = M
2 , then F is also a Hamiltonian matrix, and the 

symplectic orthogonal matrix Q is constructed.

(7)R2 = 1 −

∑
i

�
ŷi − yi

�2
∑

i=1

�
yi − yi

�2 × 100%

(8)X =

⎡⎢⎢⎢⎣

x1 x1+� ⋯ x1+(d−1)�
x2 x2+� ⋯ x2+(d−1)�
⋮ ⋮ ⋱ ⋮

xm xm+� ⋯ xm+(d−1)�

⎤⎥⎥⎥⎦

(9)M =

[
AT

0

0

−A

]

where B and R represent the upper triangular matrix and 
the submatrix after matrix transformation, the eigenvalues 
of the matrix B are �1,�2,⋯ ,�d.
Let  t he  e igenva lues  of  mat r ix  A  be  σ i , 
�i=

√
�i(i= 1, 2,⋯ ,d) , and the corresponding eigenvec-

tors of matrix A be Qi(i= 1, 2,⋯ ,d) . The reconstructed 
trajectory matrix Z is constructed from a series of initial 
single-component matrices Zi(i= 1, 2,⋯ ,d) , the matrix Z 
is obtained using Eq. (11).

In Eq. (11), Zi = QiSi, Si = QT
i
XT.

(3) Diagonal averaging
Since the reconstructed single-component matrix Zi is an 
m × d matrix, it is necessary to transform the single-com-
ponent matrix Zi(1 ≤ i ≤ d) into a time series of length 
n. The sum of d sets of time series of length n should 
equal the original time series signals. Let the elements of 
matrix Zi be zij(1 ≤ i ≤ d, 1 ≤ j ≤ m) , if m < d, then 
z∗
ji
=zij , otherwise, z∗

ij
= zji . The formula for diagonal aver-

aging is as follows:

In Eq. (12), 
d∗=min(m, d), m∗ = max(m, d), n = m+(d−1)�.
The time series Yi(y1, y2, ⋯ , yn) corresponding to 
Z
i
(1 ≤ i ≤ d) is obtained from Eq. (12), and the matrix 

Y of d × n is obtained by averaging the individual recon-
struction matrices diagonally.

(4) Single-component reconstruction

The initial d symplectic geometric modal components 
obtained from the decomposition can be used to reconstruct 
components that exhibit a high degree of similarity, based 
on the similarity criterion.

Kernel principal component analysis

Kernel principal component analysis (KPCA) is a dimen-
sionality reduction algorithm suitable for processing 
linearly inseparable data (Chen et  al. 2019; Zhou and 
Peng 2020). By employing the kernel method to map all 
samples in the input space to a high-dimensional space, 
KPCA achieves linear separability of data. It then applies 

(10)QTFQ =

[
B R

0 BT

]

(11)Z = Z1 + Z2 +⋯ + Zd

(12)yk =

⎧⎪⎨⎪⎩

1

k

∑k

p=1
z∗
p,k−p+1

1 ≤ k < d∗

1

d

∑d∗

p=1
z∗
p,k−p+1

d∗ ≤ k < m∗

1

n−k+1

∑n−m∗+1

p=k−m∗+1
z∗
p,k−p+1

m∗ ≤ k ≤ n

(13)Y = Y1 + Y2 +⋯ + Yd
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principal component analysis (PCA) for linear dimension-
ality reduction in the high-dimensional space, aiming to 
preserve the nonlinear information of the data to the great-
est extent possible. This approach offers several advan-
tages over PCA, including the ability to obtain an accurate 
covariance matrix and effectively process nonlinear data. 
(Wang et al. 2021). The main steps of the KPCA algorithm 
are as follows (Zhang et al. 2023a):

(1) Construct the covariance matrix C.
Suppose the sample xk undergoes a nonlinear transfor-
mation into φ(xk), which is then mapped to the high-
dimensional feature space F. Subsequently, the covari-
ance matrix C is constructed.

(2) Calculate the eigenvalue λ and the eigenvector V.
The eigenvalues λ and the eigenvector V should satisfy 
�V = CV , and by introducing the nonlinear function 
φ(xk), the eigenvector V can be represented linearly 
using φ(xk).

(3) Calculate the kernel matrix K.
By introducing the kernel function Kij=�(xi)�(xj) , the 
following formula can be obtained.

where α represents the eigenvector of the kernel matrix K.
(4) Select the principal component.

The projection of any sample onto the principal compo-
nent φ(x) in the feature space F can be expressed using the 
following equation.

Select the principal component whose cumulative con-
tribution exceeds the specified threshold to satisfy the fol-
lowing conditions.

where p represents the number of principal components that 
satisfy the condition, and d represents the specified threshold 
of cumulative contribution, typically with 0.8 ≤ d ≤ 0.95.

(14)C =
1

n

n∑
j=1

�
(
xj
)
�
(
xj
)T

(15)V =

m∑
i=1

�i�
(
xj
)

(16)n�� − K� = 0

(17)V�(x) =

m∑
i=1

�i�
(
xj
)
�(x) =

m∑
i=1

�iK(xi, x)

(18)

∑p

k=1
�k∑m

k=1
�k

≥ d

If the assumption of 
∑n

i=1
�
�
xk
�
= 0 is not satisfied, 

replace K with K̃:

where S is an n × n order unit matrix with a coefficient of 1/n.

Machine learning prediction model

Sparrow search algorithm

The sparrow search algorithm (SSA) has robust stability, 
rapid convergence, and effective global search capabilities 
(Yu et al. 2022).

(1) The formula for updating the discoverer’s location

where t represents the current number of iterations, 
iitem,max represents the maximum number of iterations, 
Xi,j represents the position information of the ith sparrow 
in the jth dimension, α is a random number within [0, 
1], R2 is the early warning value within [0, 1], ST is the 
safety value within [0.5, 1], Q is a random number obey-
ing normal distribution, and L is a matrix of 1 × d whose 
internal elements are all 1.
(2) The formula for updating the joiner’s location

where Xp represents the current best position occupied by 
the discoverer, Xworst represents the current global worst 
position, and A is a matrix of 1 × d whose elements are 
either -1 or 1.
(3) Assuming that 10–20% of the sparrows in the flock 
are aware of the danger, Eq. (22) indicates the location 
of these sparrows.

where Xbest represents the current best global position, β 
is a random number obeying a normal distribution with a 
mean value of 0 and a variance of 1, K is a random num-
ber within [0, 1], fi is the fitness value of an individual 

(19)K̃ = K − SK − KS + SKS

(20)Xt+1
i, j

=

{
Xt
i, j

⋅ exp(−
i

𝛼⋅iitem,max

) if R2 < ST

Xt
i, j

+ Q ⋅ L if R2 ≥ ST

(21)

Xt+1
i,j

=

⎧
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Q ⋅ exp(
Xworst−X

t
i,j

i2
) if i < n∕2

Xt+1
p

+
���Xt

i,j
− Xt+1

p

��� ⋅ AT
�
AAT

�−1
⋅ L if otherwise

(22)Xt+1
i,j

=
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Xt
best

+ 𝛽
���Xt

i,j
− Xt

best

��� fi > fg

Xt
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+ K(

���Xt
i,j
−Xt

worst

���
(fi−fw)+𝜀

fi = fg
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sparrow, fg and fw are the global optimal position and worst 
position, respectively, and ε is a constant.

Bidirectional long short‑term memory network

The long short-term memory (LSTM) is a type of recurrent 
neural network (RNN) that incorporates a distinct gating 
mechanism and memory units, improving upon the conven-
tional RNN architecture. By employing selective forgetting and 
selective memory connections, the LSTM effectively addresses 
problems related to long-term dependency, gradient descent, 
and gradient vanishing (Qin et al. 2019). Currently, the neu-
ral network in question has gained popularity and has shown 
superior performance (Cen et al. 2022; Shin et al. 2020). The 
architecture of LSTM comprises three fundamental compo-
nents: the forgetting gate, the input gate, and the output gate.

(1) Forgetting gate. The sigmoid function is utilized to 
determine whether to retain or discard information at the 
output of the previous time step and at the input of the 
current time step. The calculation equation is as follows:

where ft is the output value of the forgetting gate, Wf is 
the weight matrix of the forgetting gate, σ is the sigmoid 
function, bf is the bias term of the forgetting gate, ht−1 is 
the output value from the previous time step, and xt is the 
input value at the current time step.
(2) Input gate. The information to be updated is deter-
mined using the sigmoid and tanh functions. The calcula-
tion equations are as follows:
After being filtered by the sigmoid function:

After being filtered by the tanh function:

The formula for updating the unit status is as follows:

where it is the output value of the input gate, Wi is the 
weight matrix of the input gate, bi is the bias term of the 
input gate, C′

t
 is the current cell state information, Wc is 

the weight matrix of C′

t
 , bc is the bias term of C′

t
 , Ct is the 

unit state at the current time step, and Ct-1 is the unit state 
at the previous time step.
(3) Output gate. Determine the information available in 
the current moment unit state Ct for the current moment 
output ht.

(23)ft = �
(
Wf

[
ht−1, xt

]
+ bf

)

(24)it = �
(
Wi

[
ht−1, xt

]
+ bi

)

(25)Ct
� = tanh

(
Wc

[
ht−1, xt

]
+ bc

)

(26)Ct = ftCt−1 + itC
�

t

The input gate information is determined using the sig-
moid function, and the updated information is processed 
using the tanh function. These two results are then multi-
plied to calculate the current output value at the specified 
moment. The calculation equation is as follows:

where ot is the output value of the output gate, Wo is the 
weight matrix of the output gate, bo is the bias term of 
the output gate, and ht is the output value at the current 
moment.

Bidirectional long short-term memory (BiLSTM) is a 
combination of forward LSTM and backward LSTM that 
can capture long-term dependencies while simultaneously 
processing information in both directions (Latifoglu 2022). 
The BiLSTM combination mechanism can effectively 
extract data features and fully leverage the temporal cor-
relation between them. It has a strong capability to capture 
sequence correlations and make nonlinear predictions, 
providing a significant advantage in time series prediction 
(Ozdogan-Sarikoc et al. 2023). The main structure of the 
BiLSTM neural network model is shown in Fig. 4.

Results and discussion

Two‑stage data processing

Decomposition of data by SGMD

The time series data for each input variable is decomposed 
using SGMD. Since using a small value of K for the decom-
position layer of SGMD can result in under-decomposition 
of the data and negatively impact prediction accuracy, and 
using a large value can lead to repeated modes and intro-
duce noise, it is important to test different values of K. After 
debugging, it has been determined that K = 5 is the opti-
mal value. Taking the decomposition results of the Chl-a 
sequence data as an example, as shown in Fig. 5, the original 
Chl-a concentration sequence is decomposed into five com-
ponents (SGC) spanning from high frequency to low fre-
quency. As the volume of data increases, the high-frequency 
subsequence can capture the detailed signal and noise of the 
corresponding time, while the low-frequency subsequence 
can reveal hidden periodic oscillation trends. This is advan-
tageous for the model because it helps accurately identify 
the internal transformation patterns of the data sequence, 
thereby improving the accuracy of predictions.

(27)ot = �
(
W0

[
ht−1, xt

]
+ b0

)

(28)ht = ottanh(Ct)
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Dimensionality reduction of data by KPCA

Set the threshold for the cumulative contribution rate at 0.95. 
When the cumulative contribution of principal components 
exceeds the threshold, it indicates that these components 
already capture 95% of the original data. Therefore, these 
principal components can be extracted as the input param-
eters required to construct the model. When using KPCA 
to process the original data, Fig. 6 illustrates the cumula-
tive contribution rate of each principal component and the 

corresponding change in the contribution rate. From Fig. 6, 
it can be observed that the contribution rate of principal 
component 1 exceeds 55%, indicating a significant portion 
of the cumulative contribution rate. By the time we reach 
principal component 6, the cumulative contribution rate 
has already reached 96.01%. The contribution rate of the 
subsequent principal components is negligible. Therefore, 
the first six principal components are selected as the input 
parameters for the prediction model, reducing the input data 
to six dimensions.

Fig. 4  Structure of BiLSTM 
network

Fig. 5  Chl-a concentration 
decomposition results from 
2019 to 2022 by SGMD
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Predictions obtained by BiLSTM

The feature sequences obtained by applying SGMD for data 
decomposition and KPCA for data dimensionality reduction 
are used as inputs for training and prediction in the BiLSTM 
network. The input and output data are normalized to eliminate 
the influence of dimensions and individual data samples. The 
training set consists of 60% of the total data, while the test set 
consists of the remaining 40%. The input layer dimension of the 
prediction model is 8, and the output layer dimension is 1. The 
input time steps correspond to the duration of the historical data 
sequence used for predictive purposes, and the prediction time 
step is 1. Furthermore, the selection of BiLSTM network param-
eters is crucial as it directly affects the accuracy of the model’s 
predictions. SSA is used to optimize the three hyperparameters 
of the BiLSTM model, which include the number of hidden 
layer nodes (NHN), the initial learning rate (α), and the L2 regu-
larization coefficient. In the SSA optimization parameters, the 
sparrow population size is set to 30, the maximum number of 
iterations is set to 10, the ratio of discoverers to joiners is set at 

1:4, and the warning threshold is set to 0.8. The upper and lower 
limits of the three hyperparameter settings are shown in Table 2. 
The remaining primary parameters of the BiLSTM structure are 
selected as indicated in Table 3.

Figure 7 demonstrates the predictive effect of Chl-a con-
centration using the SKB model. From the linear fit plot of the 
predicted and true values on the test set, the R2 value is 0.96, 
and the correlation coefficient is close to 1. This demonstrates 
that the predicted Chl-a concentration value of the SKB model 
closely aligns with the true value and exhibits a strong goodness 
of fit. To further test the accuracy of the prediction results, we 
calculated frequency histograms of the errors. The closer the 
histogram is to a normal distribution, the more stable the pre-
diction result will be. As shown in Fig. 7, the predicted results 
demonstrate a symmetrical distribution on both sides of the 
central point. The histogram closely resembles a normal dis-
tribution, indicating that the established SKB model produces 
reliable results.

Model evaluation and comparison

Comparison of different prediction models

To validate the effectiveness and superiority of the SKB model, 
a total of eight alternative models were selected for comparison. 
These included five single models (BP, SVR, LSTM, CNN-
LSTM, and BiLSTM) and three hybrid models (SGMD-LSTM, 
SGMD-KPCA-LSTM, and SGMD-BiLSTM). The test set 
was used to verify the model's prediction results, and several 
metrics were employed to evaluate and compare the model’s 

Fig. 6  Cumulative contribution 
rate of principal components 
and the change of contribution 
rate

Table 2  The search range of SSA optimization algorithm for BiL-
STM hyperparameters

Number of hid-
den layer nodes

Initial learning rate L2 regulari-
zation coef-
ficient

Upper limit 100 0.002 1 ×  10−2

Lower limit 10 0.0001 1 ×  10−10

Table 3  BiLSTM structure 
parameters selection

Parameters Hidden Layers Optimizer Batch_size Epochs Loss function Activation function

Value 2 Adam 18 250 MSE ReLU
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performance. These metrics include the root mean square error 
(RMSE), mean absolute error (MAE), mean absolute percent-
age error (MAPE), and coefficient of determination (R2).

The comparison results of the prediction effects of the indi-
vidual models are shown in Fig. 8. Table 4 presents the results 

of the calculation of four evaluation indicators. The LSTM and 
BiLSTM models demonstrated superior predictive performance 
compared to the other individual models. This suggests that 
the LSTM and BiLSTM models are more effective for pre-
dicting time series data. Furthermore, the BiLSTM model has 
the capability to capture information from both preceding and 
subsequent contexts, thereby improving its prediction accuracy 
compared to other models.

Next, LSTM and BiLSTM models are selected to be com-
bined with two-stage data processing for model fusion. Four 
hybrid models, namely SGMD-LSTM, SGMD-KPCA-LSTM, 
SGMD-BiLSTM, and SKB, were developed. The hyperparam-
eters of each network model were optimized using the SSA 
algorithm. The relationship between the predicted value and the 
true value in each model is shown in Fig. 9 below. Table 5 pre-
sents the quantitative results for RMSE, MAE, MAPE, and R2.

Fig. 7  Prediction effect for Chl-a concentrations of the SKB model

Fig. 8  Comparison of predic-
tion results of single models

Table 4  Error evaluation of single models

Models Evaluation indicators

RMSE MAE MAPE (%) R2

BP 2.5302 1.8808 20.7661 0.78012
SVR 2.402 2.0284 21.8717 0.80184
LSTM 1.9026 1.288 14.4392 0.87568
CNN-LSTM 2.2844 1.7398 20.1968 0.82076
BiLSTM 1.7104 1.1254 12.7041 0.89953
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The prediction of Chl-a concentration showed significant 
improvement when a two-stage data processing approach 
was incorporated into a single network model. From the 
numerical results presented in Table 4 and Table 5, it is evi-
dent that the SGMD-KPCA-LSTM model achieved a reduc-
tion in RMSE, MAE, and MAPE of 28.60%, 36.99%, and 
25.97%, respectively, compared to the single LSTM model. 
In comparison to the SGMD-LSTM model, the RMSE, 
MAE, and MAPE exhibited reductions of 32.23%, 45.37%, 
and 16.46%, respectively. The R2 of the SGMD-KPCA-
LSTM model showed improvements of 6.96% and 10.85% 
in the respective cases. The SKB model demonstrated a 
significant improvement in performance metrics com-
pared to the single BiLSTM model. Specifically, the SKB 
model achieved a reduction of 38.45% in RMSE, 42.07% in 
MAPE, and 37.77% in MAE. In comparison to the SGMD-
BiLSTM model, the RMSE, MAE, and MAPE exhibited 
reductions of 45.57%, 50.74%, and 38.06%, respectively. 
The R2 for the SKB model increased by 6.94% and 11.46%, 
respectively.

To further evaluate the predictive accuracy of the Chl-a 
concentration prediction model, the Taylor diagram is 

employed to visually summarize the agreement between the 
predicted and observed values. This graphical representa-
tion includes measures of R2, RMSE, and standard devia-
tion, enabling a comprehensive evaluation of the model’s 
predictive performance, as shown in Fig. 10. Based on the 
three indicators mentioned above, the reference point is 
determined, and the position of each model in the figure 
is obtained. Among these models, the SKB model is the 
closest to the reference point and performs relatively well. 
The predictive performance is slightly better than that of 
the SGMD-KPCA-LSTM model. Notably, the prediction 
results of the SGMD-LSTM and SGMD-BiLSTM models 
are unsatisfactory. This suggests that using SGMD alone for 
data decomposition can effectively extract feature informa-
tion from the sequence, but it also introduces data redun-
dancy. Therefore, it is essential to employ KPCA to reduce 
the dimensionality of the data.

The SKB model predicted Chl-a concentration signifi-
cantly better than the other models being compared. The 
values of RMSE, MAE, and MAPE were 1.0527, 0.65194, 
and 0.08, respectively. The evaluation indexes showed that 
the SKB model outperformed the other eight models. The 
comparison of the RMSE and MAE values for each model 
indicates that the SKB model has lower prediction error 
and higher prediction accuracy. Additionally, the compari-
son of the MAPE values suggests that the SKB model is 
more stable. Based on the above analysis, it is evident 
that the predicted values of the SKB model closely align 
with the actual values of Chl-a concentration, demon-
strating the effectiveness of the model. When compared 
to directly inputting the data into a single model, the two-
stage processing of the data using SGMD and KPCA can 

Fig. 9  Comparison of predic-
tion results of hybrid models

Table 5  Error evaluation of hybrid models

Models Evaluation indicators

RMSE MAE MAPE (%) R2

SGMD-LSTM 2.0045 1.4873 12.7955 0.84491
SGMD-BiLSTM 1.9341 1.3235 12.7617 0.86304
SGMD-KPCA-LSTM 1.3585 0.81151 10.6895 0.93662
SKB 1.0527 0.65194 7.9052 0.96194
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enhance the data-driven model’s ability to capture chang-
ing trends and improve its predictive performance. This 
finding is consistent with several studies that have used 

hybrid models. For example, Zamani et al. (2023) demon-
strated that a hybrid model incorporating the PNFF pre-
diction model outperformed other single ML algorithms 

Fig. 10  The Taylor diagram of different models. a Single models; b hybrid models

Fig. 11  Performance of the prediction model for Chl-a concentration at different prediction steps
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in predicting Chl-a concentration. Zhang et al. (2023b) 
found that variational mode decomposition (VMD) can 
effectively reduce the non-smoothness of water quality 
data. The PV-GRU model proposed in the study signifi-
cantly improved the accuracy of predicting Chl-a content 
in reservoirs. Moreover, this study considers the impact 
of the decomposition algorithm on the redundancy and 
correlation of sequences. KPCA is used to reduce the 
dimensionality of the input variables, thereby improving 
the computational efficiency and accuracy of the model. 
This is done while ensuring the validity and representa-
tiveness of the information. To improve the accuracy of 
algal bloom predictions, it is essential to utilize combined 
models, implement multi-level processing of water quality 
monitoring data, leverage the inherent features of the data, 
and integrate other intelligent models.

Comparison of different prediction steps

To evaluate the multi-step predictive performance of the 
SKB model, different prediction steps (1, 2, 3, 4, 5, and 6) 
were selected for prediction, and the SGMD-KPCA-LSTM 
model was chosen for comparison. The prediction results of 
the two models at different prediction time steps are shown 
in Fig. 11.

From the prediction results at different time steps, it is 
evident that the values of RMSE, MAE, and MAPE increase 
for each model as the prediction time step increases. Con-
versely, the R2 value gradually decreases, indicating a 
decline in predictive performance as the number of pre-
diction time steps increases. Additionally, the SKB model 
demonstrates slightly superior performance compared to 
the SGMD-KPCA-LSTM model in predicting step sizes. 
However, both models demonstrate a significant decrease in 
predictive performance as the prediction step size increases. 
Therefore, it is essential to investigate methods for maintain-
ing high predictive accuracy when employing a large step 
size for prediction.

Conclusions

In this study, a combined prediction model named SKB was 
developed using the SGMD, KPCA, and BiLSTM algo-
rithms. The model was developed based on online monitor-
ing of reservoir water quality data. The SKB model was then 
used to make short-term predictions of Chl-a concentration. 
The aforementioned findings can be summarized succinctly 
as follows:

 (1). Considering the inherent characteristics of severe 
nonlinearity and non-stationarity observed in online 
monitoring data related to water quality, the utiliza-
tion of a two-stage data processing approach can effec-
tively overcome the limitations of BiLSTM in handling 
nonlinear sequences. The utilization of this strategy 
improves the predictive capabilities of the SKB model.

 (2). The historical Chl-a concentration data can be utilized 
to train the combined prediction model, and the SSA 
intelligent optimization algorithm is employed to opti-
mize the hyperparameters of the BiLSTM model. The 
predicted results were significantly better than those 
of pure data-driven models, such as BP, SVR, LSTM, 
and CNN-LSTM. The prediction accuracy can reach 
96.19%. In conclusion, the SKB model proposed in 
this paper effectively captures the dynamic change 
trend of high-frequency algae monitoring data and 
accurately predicts short-term Chl-a concentration. 
This provides valuable insights for developing strate-
gies to manage algal blooms.

 (3). In the prediction process, both Pearson correlation analy-
sis and gray correlation analysis were employed to iden-
tify the main factors influencing the concentration of Chl-
a. This laid the foundation for future initiatives aimed at 
preventing and controlling reservoir eutrophication.

The objective of this study is to develop a prediction model 
that combines a two-stage data processing approach, ML, and 
optimization algorithms. This model will be used to predict 
water quality indicators by considering the interactions among 
environmental variables. The proposed combined prediction 
model only utilizes the time series data of monitored water 
quality. It can efficiently and accurately extract valuable 
information from the data, making it scalable and applicable 
to other tasks related to predicting multivariate time series. 
However, this study still has some limitations that can offer 
suggestions for future research directions. Chl-a is present 
in a variety of algae, each exhibiting distinct physiological 
characteristics. Further studies should aim to improve the 
applicability of models by effectively managing data and fully 
extracting characteristics of the water environment from each 
monitoring station. Furthermore, a limitation of using ML 
models is their lack of interpretability. Interpretable analyses 
of the model can be conducted using interpretable ML tech-
niques to improve the model’s credibility. In addition, incor-
porating spatial characteristics into the model to predict the 
concentration of Chl-a was challenging. By considering the 
spatial characteristics of reservoirs, such as thermal stratifica-
tion, it will be possible to make more accurate predictions of 
Chl-a concentration.
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