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Abstract
The study aims to monitor air pollution in Iranian metropolises using remote sensing, specifically focusing on pollutants 
such as  O3,  CH4,  NO2,  CO2,  SO2, CO, and suspended particles (aerosols) in 2001 and 2019. Sentinel 5 satellite images are 
utilized to prepare maps of each pollutant. The relationship between these pollutants and land surface temperature (LST) is 
determined using linear regression analysis. Additionally, the study estimates air pollution levels in 2040 using Markov and 
Cellular Automata (CA)-Markov chains. Furthermore, three neural network models, namely multilayer perceptron (MLP), 
radial basis function (RBF), and long short-term memory (LSTM), are employed for predicting contamination levels. The 
results of the research indicate an increase in pollution levels from 2010 to 2019. It is observed that temperature has a strong 
correlation with contamination levels  (R2 = 0.87). The neural network models, particularly RBF and LSTM, demonstrate 
higher accuracy in predicting pollution with an  R2 value of 0.90. The findings highlight the significance of managing indus-
trial towns to minimize pollution, as these areas exhibit both high pollution levels and temperatures. So, the study emphasizes 
the importance of monitoring air pollution and its correlation with temperature. Remote sensing techniques and advanced 
prediction models can provide valuable insights for effective pollution management and decision-making processes.
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Introduction

Air pollution significantly contributes to global climate 
change. According to the World Health Organization 
(WHO), air pollution causes approximately 3 million 
deaths worldwide each year (Guo et al. 2021; Kalajdjieski 
et al. 2020), with over half of these fatalities occurring in 

developing countries. Research indicates that the risks asso-
ciated with pollution and premature death are high not only 
in developing nations but also in developed ones (Alimis-
sis et al. 2018; Bauer et al. 2019). Figure 1 demonstrates 
that the mortality rate resulting from pollution surpasses 
that of other hazards and diseases globally. Many urban 
areas in industrialized countries are witnessing escalating 
pollution levels due to factors such as population growth, 
increased vehicle usage, and industrialization accompanied 
by heightened energy demand (Liu et al. 2023; Yu et al. 
2021; Pedruzzi et al. 2019; Selvam et al. 2020). Therefore, 
it is crucial to accurately measure air pollutants with high 
spatial and temporal resolution at all levels to comprehend 
their distribution and impact and provide effective solutions 
to local, national, and international policymakers (Li et al. 
2019b). Recently, there has been a significant rise in atmos-
pheric pollutant levels, adversely affecting air quality, the 
environment, and human health. Some of the most critical 
air pollutants include nitrogen oxides (NOx), sulfur dioxide 
 (SO2), carbon dioxide  (CO2), carbon monoxide (CO), meth-
ane  (CH4), volatile organic compounds, chlorofluorocarbons 
(CFCs), and aerosols (He et al. 2022).
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Oil, coal, and other impure fuels contain sulfur and 
various organic compounds that contribute to air pollution 
(Jelonek et al. 2020). Additionally, air pollution arises from 
forest fires, soil fires, and vegetation fires, which release 
relatively small amounts of sulfur (Reddington et al. 2021). 
Notably, coal-fired power plants stand as the world's largest 
sources of sulfur dioxide, resulting in smoke, acid rain, and 
respiratory illnesses (Zhang et al. 2023; Dong et al. 2019). 
The significance of nitrogen oxides as pollutants and toxic 
gases cannot be underestimated (Czech et al. 2020). Human 
activities, particularly consumption, generate millions of 
tons of nitrogen dioxide and nitrogen oxide annually. In 
humid air, nitrogen dioxide leads to the production of nitric 
acid, causing severe metal corrosion and reduced visibility 
(Kwak et al. 2020). These gases also impose adverse effects 
on the human respiratory system and hinder plant growth 
(Almetwally et al. 2020; Jiang et al. 2018).

Carbon monoxide is one of the most prevalent and highly 
toxic air pollutants. Approximately two-thirds of carbon 
monoxide emissions stem from human activities, making it 
a significant hazard (Al-Ghussain 2019; Saevarsdottir et al. 
2019). This gas is primarily generated through the incom-
plete combustion of carbon. Its production is not limited 
to burning crop residues, fossil fuels, and oxidizing  CH4 
(Hu and Rein 2022). Another notable air pollutant is sus-
pended particles or aerosols, which serve as crucial sources 
of air pollution with both short-term and long-term effects 
on human health. The impacts of these pollutants on human 
health include the development of cardiovascular, respira-
tory, and dermatological conditions that can result in pre-
mature mortality (Mor and Ravindra 2023). The presence of 
aerosols in the atmosphere is considered another form of air 
pollution, making worldwide particulate matter monitoring 
essential (Guo et al. 2020 and 2023a, b). Numerous envi-
ronmental protection agencies employ ground stations for 
continuous surveillance in this regard. Suspended particles 
also scatter or absorb solar radiation, contributing to climate 
change (Tiwari and Kumar 2020; Tiwari et al. 2018).

Considering the impact of air pollution on human health, 
it is crucial to accurately predict and measure air pollu-
tion levels (Dong et al. 2022). Various methods exist for 
monitoring pollution and predicting air quality, with remote 
sensing being particularly significant due to its capacity to 
provide continuous data across time and space (Berman 
and Ebisu 2020; Grainger and Schreiber 2019; Vadrevu and 
Lasko 2018). Remote sensing relies on the transmission of 
air pollutant information through electromagnetic radiation, 
enabling the collection of data at both temporal and spatial 
resolutions, as well as at a vertical profile level.

Research has demonstrated that remote sensing tech-
niques can effectively predict air quality (Selvam et al. 
2020). Yuan et al. (2019) employed remote sensing data to 
establish that urban traffic and population growth are the 
primary contributors to atmospheric pollution in densely 
populated regions of China. Similarly, Yuan et al. (2019) 
reported a significant decrease (43%) in  NO2 pollution dur-
ing the Asian quarantine period in 2020, attributing it to 
reduced industrial activities amidst the Coronavirus disease 
(COVID-19) era. Utilizing Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite images, Nichol et al. 
(2020) concluded that industrial activity predominantly 
accounts for the elevated presence of aerosols in the air.

Forecasting air pollution is vital for effective pollution 
management. Neural networks offer a valuable method for 
predicting contamination levels. Boznar et al. (1993) were 
pioneers in employing a neural network to forecast sulfur 
dioxide concentrations in polluted industrial areas of Slove-
nia. Several studies have investigated and utilized artificial 
neural networks to predict air pollution, including the works 
of Awan et al. (2020); Cabaneros et al. (2019). Wen et al. 
(2019) employed Long Short-Term Memory (LSTM) neural 
networks to analyze aerosol levels in the air, demonstrating 
the method's ability to accurately detect air pollution caused 
by aerosols. In a study conducted in western Iran, Maleki 
et al. (2019) employed neural networks to investigate Ozone 
 (O3), Nitrogen dioxide  (NO2), PM10, PM2.5,  SO2, and CO 

Fig. 1  Death rates from various 
hazards in the world in the cur-
rent period
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levels in the atmosphere, highlighting the potential for pre-
dictive air pollution management through Artificial neural 
networks (ANNs)-based models. Liu et al. (2019) also found 
LSTM neural networks to be highly accurate in predicting 
air pollution levels. Muthukumar et al. (2021) examined the 
spatial patterns of Particulate Matter 2.5 (PM 2.5) in Los 
Angeles using Graph Convolutional Networks (GCN) and 
LSTM, and their results further underscored the capacity of 
remote sensing and LSTM methods to predict air pollution 
with high precision.

In Iran's major cities, air pollution has emerged as a sig-
nificant and palpable environmental issue (Mirsanjari et al. 
2020). The presence of elevated air pollution in Iran has 
been observed to lead to an increase of "up to 60%" in res-
piratory ailments among urban residents (Santamouris and 
Osmond 2020). The exacerbation of cardiovascular and pul-
monary diseases can be attributed to rising levels of pollut-
ants, including  NO2,  CO2,  SO2, CO, and suspended particles 
(aerosols) (Zahra et al. 2022). Given the critical nature of 
this matter, the present study employs Sentinel-5 satellite 
images to quantify pollution levels in Iran's metropolises. 
One key advantage of utilizing Sentinel-5 satellite images in 
pollution monitoring is the ability to obtain comprehensive 
and global observations of the Earth's surface at a specific 
moment, facilitating an effective exploration of spatial pol-
lutant distribution. Additionally, this study employs Markov 
and Cellular Automata (CA)-Markov methods to forecast 
thermal pollution levels in 2040. Moreover, deep neural net-
works and linear regression models are employed to predict 
air pollution levels. The research also identifies factories and 
industries as the primary sources of air pollution. In sum-
mary, the research objectives are as follows:

• Generating maps of  O3,  CH4,  NO2,  CO2,  SO2, CO, and 
suspended particles (aerosols) by utilizing Sentinel-5 sat-
ellite data.

• Analyzing satellite MODIS images to assess Land Sur-
face Temperature (LST) and Normalized Difference Veg-
etation Index (NDVI) for vegetation evaluation.

• Employing Markov and CA-Markov methods, along with 
deep neural networks, to forecast future air pollution lev-
els.

• Utilizing artificial neural network (ANN) techniques such 
as multilayer perceptron (MLP), radial basis function 
(RBF), and LSTM to predict air pollution levels.

It's worth noting that this article addresses several defi-
ciencies compared to previous studies. These improve-
ments encompass a comprehensive examination of a broad 
spectrum of pollutants, including  O3,  CH4,  NO2,  CO2,  SO2, 
CO, and airborne particles. The research delves into pollu-
tion levels in both 2001 and 2019, enabling the long-term 
comparison of changes through the utilization of Sentinel 

5 satellite imagery in the investigation of pollution across 
industrial cities. Furthermore, it thoroughly explores the 
connection between pollution and land surface tempera-
ture (LST). To enhance prediction accuracy and facilitate 
effective pollution management, this work employs neural 
network models, specifically MLP, RBF, and LSTM, for air 
pollution forecasting.

This essay contributes to a comprehensive understanding 
of air pollution dynamics, enabling better decision-making 
and proactive measures for pollution control and manage-
ment. The paper is organized as follows: Sect. 2 presents 
the data utilized in this study along with the characteristics 
of the study area. Furthermore, this section elucidates the 
methods employed to assess air pollution. Section 3 pre-
sents the findings of the research. Lastly, Sect. 4 offers the 
concluding remarks.

Materials and methods

Study area

The study area spans between 24°18΄ and 38°12΄ North and 
between 47°42΄ and 61°06΄ East (Fig. 2). Several major 
industrial cities in Iran, such as Tehran, Isfahan, Shiraz, 
Ahvaz, Khorasan, Bushehr, Mazandaran, Qom, Semnan, 
Yazd, Fars, Khorasan, and Bushehr, were chosen for moni-
toring air pollutants using Sentinel-5 data (Fig. 2). Detailed 
information on the area, population, and sources of air pol-
lution for the investigated provinces is presented in Table S1. 
Notably, the Tehran metropolis boasts the highest popula-
tion, approximately 13.27 million people, encompassing an 
area of 18,814  km2. On the other hand, Semnan city has 
the lowest population and covers an area of 97,481  km2. 
The total study area spans 673,193  km2 and exhibits diverse 
climatic conditions. The northern part experiences a humid 
and rainy climate, while the southern region is characterized 
by a dry, semi-arid, and hot climate.

Data used in this study

In this study, satellite images were used as input data to pre-
pare spectral, thermal and air-polluting gas indices. Further 
explanations related to satellite images for the preparation 
of these indicators are given below.

The spectral and thermal indices (NDVI and LST)

The spectral and thermal indices, specifically the NDVI 
and LST, were generated using images acquired from the 
MODIS sensor on board the Terra satellite. The Terra sat-
ellite was launched on December 22, 2000, and it houses 
five sensors, including MODIS. MODIS data consists of 36 
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spectral bands, encompassing visible, infrared, mid-infrared, 
short-wave infrared, and thermal wavelengths. While all 36 
bands capture data from the Earth's surface, only 20 of them 
provide information on radiance and reflectance. The satel-
lite's spatial resolution is categorized into three types: Bands 
1 and 2 have a resolution of 250 m, bands 3 to 7 have a 
resolution of 500 m, and the remaining bands have a resolu-
tion of 1 km (Campagnolo et al. 2016). The MODIS sensor 
boasts a 12-bit radiometric resolution and a swath width of 
2,330 km, which are among its notable advantages. In this 
study, bands 1 to 7 of the MODIS sensor were utilized to 
generate the vegetation index, as outlined in Table S2. By 
employing these specific bands from the MODIS sensor, 
researchers were able to derive valuable information regard-
ing vegetation density and health (through NDVI) as well as 
land surface temperature patterns (via LST). These indices 
served as essential indicators for assessing environmental 
conditions and studying the relationship between vegetation, 
land surface temperature, and air quality in the study area.

Atmospheric pollutants

O3,  CH4, aerosols, CO,  CO2,  NO2, and  SO2 were detected 
by using the images of Sentinel-5 satellite. Level three (L3) 
images of the Sentinel-5 TROPOMI satellite were used to 
monitor pollutant concentrations. In addition, three emission 
recording stations in the northwest, two in the center, and 
two in the west were used to verify the results of air pollu-
tion in this study (https:// aqms. doe. ir/). After preparing the 
images, various geometric and radiometric corrections were 
performed on the target image using ENVI software.

Method

Extracting the temperature and vegetation indices using 
Terra satellite images

To calculate the LST and NDVI indices using the MODIS 
sensor, the following steps are followed:

Step 1. Converting digital values (DN) to spectral radia-
tion. The MOD11 products from the Terra and Aqua sat-
ellites include surface temperature and emissivity coef-
ficient, generated at Level 2 and Level 3, respectively, 
with a spatial resolution of 1 km and 5 km. For this study, 
MOD11—Level 2 images from the Terra satellite were 
utilized. Surface temperature was determined using the 
separate window algorithm proposed by (Wang et al. 
2008), as well as the night and day surface temperature 
algorithm. Following geometric corrections, the acquired 
images were transformed into two outputs: surface tem-
perature and emissivity coefficient. Equation 1 demon-
strates the conversion of digital values to spectral radia-
tion in the thermal bands of this satellite.

where QCal represents the digital value of the image, 
QCalmin represents the minimum gray level value, and 
QCalmax represents the maximum gray level value. 
Additionally, Lmin and Lmax represent the reference spec-
tral radiation values of bands 31 and 32 in DN (Digi-
tal Numbers), which are 0 and 255 (Wm-2Sr-1 μm-1) 

(1)L� =
[(Lmax − Lmin)][(

QCalmax − QCalmin
)
× QCal

]
+ Lmin

Fig. 2  Position of the study area

https://aqms.doe.ir/
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respectively. The specific values of Lmin and Lmax can be 
found in the header file of the images.
Step 2. Converting spectral radiation to spectral reflec-
tion. Using Eq. 2, MODIS thermal data were converted 
from spectral radiation to spectral reflectance by the fol-
lowing formula:

where TB is the effective temperature value in the satel-
lite in degrees Kelvin (Wm-2Sr-1 μm-1), lλ is the spectral 
radiance (Wm-2Sr-1 μm-1), and K1 and K2 are constant 
calibration coefficients in nanometers.
Step 3. Determining surface emissivity. The surface emis-
sivity was estimated using the normalized difference 
index thresholding method to analyze soil characteristics 
in each pixel and quantify the emission and the variation 
in emission. In this approach, pixels with NDVI less than 
0.2 were classified as dry soil, with a radiation power 
value of 0.978. Pixels with NDVI greater than 0.5 were 
associated with higher vegetation density, and a radiation 
power value of 0.985 was assigned to them. For pixels 
with NDVI values between 0.2 and 0.5, which represent 
a combination of vegetation and soil, the radiation power 
was determined using Eq. 3.

where Pv is the ratio of plant cover which is calculated using 
Eq. 4.

where NDVI index is calculated from the ratio of red and 
near infrared bands (Eq. 5).

where ρ is the reflection coefficient of multispectral bands 
(Eq. 6)

where Lλ is the spectral radiance, d is the distance from the 
earth to the sun, ESUNλ is the average solar reflectance and 
θ is the sun's zenith angle in degrees.

Step 4. Calculating LST index. To calculate LST was used 
Signal channel method (Eq. 7).

(2)TB =
K2

In

(
K1

I�
+ 1

)

(3)� = �VegPv + �Soil(1 − Pv)

(4)Pv =

(
NDVI − NDVImin

NDVImax − NDVImin

)2

(5)NDVI =
�band2 − �band1

�band2 + �band1

(6)� =
� × L� × d2

ESUN� × �s

(7)Ts = �
[
�−1(Lsensor + �2) + �3

]
+ �

In this context, the emissivity of the Earth's surface (ε) is 
determined using the given relationship. The atmospheric 
effect regulator (ψ) is applied to the thermal images. The 
thermal radiance  (Lsensor) is calculated for band 10. The 
parameter δ depends on the Planck function, and γ repre-
sents the wavelength at which the detector operates. All of 
these parameters are calculated using Eqs. 8, 9, 10 and 11.

 where Lsensor is the radiance of the thermal band, Tsensor is 
the temperature of the radiance of the thermal band, and 
both parameters were calculated for band 10. bγ is a constant 
number that is equivalent to 1,324 for band 10.

Finally, LST is calculated based on Eq. 12:

Multi linear regression

The linear regression method was employed to examine the cor-
relation between vegetation quantity, surface temperature, and 
pollutant levels. Linear regression is recognized as one of the 
most commonly used techniques for data and information mod-
eling. In this study, a simple regression model was utilized with 
the dependent variable Y (surface temperature, LST) and inde-
pendent variables (such as  SO2,  NO2,  CO2, CO, etc.) denoted as 
 X1,  X2,…,  Xp-1. The model can be defined as follows (Eq. 13):

This Eq. 14 can also be expressed as a matrix:

where the matrix X shows the observed values of p-1 vari-
ables for n samples. The Y vector is the observed value of 
the dependent variable for n samples.

(8)�2 = 0.00918w2 + 1.36072w + 0.27514

(9)�3 = 0.00918w2 + 1.36072w − 0.27515

(10)� == T2

sensor
∕b� × Lsensor

(11)� = Tsensor − T2

sensor
∕b�

(12)

LST =
T

⎛⎜⎜⎜⎝
+

⎛⎜⎜⎜⎝
y

T

hxc

s

⎞⎟⎟⎟⎠
x log (�)

⎞⎟⎟⎟⎠

(13)Yi = �2X1 + �2X2 +⋯ + �p−1Xp−1 + �ii = 1, 2,… , n

(14)Yn×1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1
Y2
.

.

.

Yn

⎤
⎥⎥⎥⎥⎥⎥⎦

Xn×p =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 X11 X12

1 X21 X22

. . .

. . X1,p−1

. . X2,p−1

. . .

. . .

. . .

1 Xn1 Xn2

. . .

. . .

. . Xn,p−1

⎤⎥⎥⎥⎥⎥⎥⎦
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Markov and CA‑Markov chains

The Markov chain method was used to predict thermal pol-
lution in the coming years. The Markov chain is based on 
developing a transition probability matrix for a parameter 
over time. Based on the Markov chain model, this matrix is 
used to estimate the probability of a pixel switching from 
one class to another over time. In the method, when a chain 
is considered a random process, its value at time t is deter-
mined only by its value at time 1-t, i.e. 1-Xt (Eq. 15). In a 
given period of time, the relation P{Xt = �j|Xt−1 = �i} calcu-
lates the probability that a process will transition from state 
ai to state aj. The probability of transition of n steps is shown 
as Pij when n steps are required to make this transition. First-
order homogeneous Markov chains are shown in Eq. 16.

where Pij is the transition probability matrix
The use of Markov chains alone does not allow for the 

determination of spatial distribution changes. While the 
transfer probabilities for each class in the model may be 
highly accurate, the spatial distribution of the classes 
remains unknown. To address this issue, this study employed 
the CA-Markov chain model. This model integrates cellular 
automata, Markov chains, and multipurpose land alloca-
tion (MOLA) to predict future land use changes. In order to 
assess the accuracy of the Markov and CA-Markov methods' 
results, the Kappa method was utilized (Eq. 17).

where O is correctly observed and PC is expected agreement.

Prediction methods

Multilayer Perceptron (MLP) method: The MLP method is a 
type of feedforward artificial neural network. It is comprised 
of three layers: input, hidden, and output. In this network, 
all nodes, except for the input nodes, are neurons that utilize 
nonlinear activation functions. The MLP utilizes a super-
vised learning technique known as feedback for training. 
It is widely employed for predicting and solving nonlinear 
problems. The Back Propagation algorithm is commonly 
utilized to train these networks. The input values for each 
neuron are calculated using Eq. 18.

(15)
P
{
Xt = �j|X0 = �0,X1 = �1,… .,Xt−1 = �i

}
= P{Xt = �j|Xt−1 = �i}

(16)P
{
Xt = �j|Xt−1 = �i

}
Pij

(17)Kappa =
po − pc

1 − pc
× 100

(18)netn
i
=

m∑
j=1

wn
ji
On−1

j

where netn
i
 is the input values of the ith neuron in the  nth 

layer, Wn
ji
 is the connection weight between the  ith neuron in 

the  nth layer and the  jth neuron in the layer n-1, On−1
j

 is the 
output of  jth neuron in layer n-1 and M is the number of 
neurons in layer n-1.

The values calculated from Eq. 18 are converted into 
numerical values in each neuron. A sigmoid function is 
commonly used for this purpose, as defined by Eq. 19:

Using this equation, each neuron's calculated output is 
multiplied by its weight matrix before moving onto the 
next step. In the final step, the calculated output of the 
network is compared with the actual output.

Radial Basis Function (RBF) method The RBF networks are 
feedforward networks with an intermediate layer. Fig. S1 
illustrates a RBF. The training of RBF networks generally 
consists of two stages. The first part consists mainly of unsu-
pervised learning that clustering, the parameters of the base 
functions (centers and widths) are determined using the 
input information. In the second part, which is supervised 
learning, the weights between the intermediate layer and 
the output layer are determined using slope reduction and 
linear regression methods. The middle RBF neuron is con-
nected to each of the input neurons with weight parameters. 
These parameters are the centers of neurons. The output of 
each intermediate neuron depends on the distance between 
the input vector 

�
X = ⌊x1, x2,… xn⌋

�
 , and the radial center 

vector 
�
W = ⌊w1J ,w2J ,…wnJ⌋

�
 , which is defined as Eq. 20.

The output of the intermediate neuron was determined 
using the Gaussian function, which is calculated as Eq. 21:

where λ is a constant coefficient.
Finally, the outputs of the output layer are calculated from 

Eq. 22:

where bjk is the weight coefficient between the  jth neuron of 
the middle layer and the  kth neuron of the output layer and yj 
is the output of the  jth neuron of the middle layer.

(19)Sig
(
netn

j

)
=

1

1 + Exp(−netn
j
)

(20)� =

√√√√ n∑
i=1

(xi − wij)

(21)f
(
�j
)
= Exp(−��2

j
)

(22)Zk =

j∑
j=1

bjkyj
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Long‑term short‑term memory (LSTM) method The LSTM is 
a special type of Recurrent Neural Network (RNN) that is 
capable of learning long-term dependencies. Fig. S2 illus-
trates four interactive layers in an LSTM cell (Pal et al. 
2018).

As shown in Fig. 3, x is the input, h and C are memory 
vectors. C are cell activation vectors, all of which equal the 
hidden vector h. σ is a logistic sigmoid function. tanh puts 
values between -1 and 1. As a first step, the "forget gate 
layer" determines which information to remove. Second step, 
the "input gateway layer" determines which values need to 

be updated. Then, a tanh layer creates a vector of new can-
didate values. In the update operation, Ct updates the state 
of the old cell Ct-1 to the state of the new cell Ct. After that, 
the output gate layer decides which parts of the cell state 
to output. Equations 1, 2, 3, 4, 5, 6, 7 and 8 represent the 
equations calculated by a cell (Eqs. 23, 24, 25, 26 and 27).

(23)Forgetgatelayer
(
ft
)
= σ(wf .

[
ht−1, xt

]
+ bf )

(24)Inputgatelayer
(
it
)
= σ(wi.

[
ht−1, xt

]
+ bi)
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where w is a matrix, b is the bias, i is the input gate, f is the 
forget gate, and o is the output gate.

Validation of models

Mean Absolute Percentage Error (MAPE) was employed 
to evaluate the accuracy of pollution maps generated from 
satellite images for each pollutant, while Root Mean Square 
Error (RMSE) was utilized to assess the accuracy of the 
neural network models (Jiang et al. 2022a, b; Wang et al. 
2022) (Eqs. 28 and 29).

where A is the actual or observed vegetation index values 
from ground measurements or reference data. P is the vege-
tation index values predicted or estimated using remote sens-
ing data or models. N is the number of data points (samples) 
in the dataset.

where At is the actual value of temperature in meteorologi-
cal stations, Ft is the predicted value obtained from separate 
window algorithms, and N is the total number of meteoro-
logical stations (Guo and He 2021).

The research steps to investigate air pollution are shown 
in Fig. 3.

It is worth noting that in the selection of MLP, RBF, 
and LSTM as neural network models for pollution pre-
diction, we carefully considered their unique advantages 
within the study context. MLP, for instance, offers a high 
degree of versatility, enabling it to effectively capture 
intricate relationships within the data, rendering it well-
suited for our multifaceted pollutant predictions. Addition-
ally, RBF excels in modeling non-linear relationships, a 
pivotal feature when dealing with the intricacies of envi-
ronmental data. Furthermore, LSTM's proficiency in han-
dling time-dependent patterns significantly enhances our 
capacity to predict pollution levels over temporal scales. 
Amidst the diverse array of neural network architectures 
available, our decision to employ MLP, RBF, and LSTM 
stems from their alignment with our research objectives, 
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(
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)
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[
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]
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(26)Finalmemorycell
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(29)RMSE =

�∑n
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2

n

ultimately affording us the ability to attain superior accu-
racy and robust predictions in the domain of air pollution 
monitoring.

Results

Spatio‑temporal evaluation of spectral indices using 
MODIS sensor

The NDVI index was employed to evaluate the vegetation 
status in the study area, while the LST index was used to 
assess the land surface temperature. The analysis was con-
ducted for the years 2001, 2006, 2010, 2015, and 2019 dur-
ing the spring, summer, autumn, and winter seasons. Fig. S3 
illustrates the minimum, maximum, and average values for 
each examined year and month. Based on the findings pre-
sented in Fig. S3, it is evident that the vegetation amount 
decreased in 2019 compared to 2001, while the temperature 
exhibited an increase. Specifically, during the spring season, 
the LST index reached its highest value of 59.91 in 2019, 
and its lowest value of -16.95 in 2006. Furthermore, Fig. S3 
demonstrates that industrial cities like Yazd, Isfahan, Bush-
ehr, the southern region of Fars province, Khuzestan, and 
Tehran have recorded the highest LST values. This increase 
in LST values can be attributed to the expansion of industrial 
activities, which have had a significant impact on the tem-
perature (Wang and Wei 2020; Zhang et al. 2022).

The spatial and temporal distribution of these indices 
can be observed in Fig. S4 and Fig. S5. Fig. S4 illustrates 
that the highest values of the indices are concentrated in 
the northwestern and eastern halves of the region, indicated 
by green and yellowish-green colors with values exceeding 
0.8. Conversely, the lowest values of the index, represented 
by red areas, are predominantly located in the eastern and 
central regions where vegetation is scarce or absent. The 
index values exhibit a seasonal variation, with lower values 
observed during autumn and winter compared to spring and 
summer.

The NDVI index values for 2019 have decreased com-
pared to 2010 and 2001, reaching values below 0.2, which 
indicates a reduction in vegetation. Industrial activities in 
these areas have contributed to the decline in the index 
values and further degradation of vegetation (Zeng and He 
2019). On the other hand, the LST index reflects the amount 
of heat on the Earth's surface, serving as an indicator of 
thermal pollution. The lowest LST values are observed in 
the northwestern and central regions, where vegetation cover 
is most prominent. Conversely, the central and southern 
regions exhibit the highest LST values, indicating elevated 
temperatures.
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Atmospheric pollutants

In this study, Sentinel 5 images were utilized to monitor 
air pollutants in 17 provinces over a span of two years, 
encompassing the periods before and during the COVID-
19 pandemic. The average levels of various air-polluting 
gases, such as  CH4, CO,  CO2,  NO2,  O3,  SO2, and aerosols, 
were measured during the months of February, November, 
August, and May from 2018 to 2021. Fig. S6 presents the 
mean, maximum, minimum, and standard deviation values 
for each pollutant. The results indicate that the highest con-
centrations of these gases were observed in August, while 
the lowest levels were recorded in February. Additionally, 
the study found that these pollutants were less abundant 
during the COVID-19 pandemic, attributed to a decrease in 
industrial activities.

The estimated maximum amounts of  O3,  SO2, CO, and 
 CO2 were 0.21 ppm (November), 0.0088 ppm (February), 
0.062 ppm (February), and 0.00083 ppm (November) respec-
tively, while the minimum levels were 0.105 ppm, 0 ppm, 
0 ppm, and 0 ppm respectively. For aerosols,  CH4, and 
 NO2, the maximum values in May and February were 3.94 
(August), 2004.91 nanomol/mol, and 0.0022 ppm respec-
tively, while the minimum levels were 0, 1757 nanomol/
mol (February), and 0 respectively. Figs. S7 to S13 present 
the spatio-temporal analysis of each of these gases. Based 
on Fig. S7, it is evident that the maximum concentration of 
CH4 gas in August 2021 reached 2004.98 nanomol/mol in 
the northern (Tehran) and eastern (Yazd) parts of the study 
area. In February 2019, the western regions of the study 
area recorded the minimum concentration of this pollutant 
at 1757.19 nanomol/mol. There are significant areas in the 
south and small portions in the west where this pollutant is 
absent. The changes in  CH4 levels from 2019 to 2021 indicate 
a decreasing trend in most areas and months. Notably, the 
concentration of  CH4 has also decreased in November and 
February 2021, likely due to the quarantine measures and 
reduced industrial activities during the COVID-19 outbreak. 
There is a clear correlation between industrial activities and 
the presence of  CH4 in the atmosphere.  CH4 is a greenhouse 
gas that contributes to global warming and can persist in the 
atmosphere for an extended period (Wang et al. 2021a).

In February 2019, the highest concentration of CO was 
recorded at 0.051 ppm in small areas located in the northern 
and southern parts of the study area, as shown in Fig. S8. 
The minimum concentration of this pollutant in August 2021 
was 0.005 ppm in the northern, central, and western regions. 
The analysis reveals a decreasing trend in the levels of CO 
over time, leading to a decrease in its atmospheric distribu-
tion in August 2021.

CO is produced through the incomplete combustion of 
carbon. It is a highly toxic gas that lacks specific color or 

odor. CO poses a significant threat to human health and can 
be lethal. When inhaled, it combines with hemoglobin in the 
blood to form carboxyhemoglobin, which hinders oxygena-
tion in the body and can ultimately lead to death. Human 
activities, such as metal smelting, industrial processing 
plants, chemical industries, the use of fossil fuels, and even 
vehicles, contribute to the release of CO into the atmosphere 
(Prockop and Chichkova 2007; Oves et al. 2018).

Fig. S9 illustrates the spatio-temporal distribution of  CO2 
in the studied area. The highest concentrations of this gas were 
observed in the northern regions (Golestan and Tehran) and 
the southern regions (Khuzestan and Bushehr) in August 2019. 
In February 2021, parts of the northern and western areas of 
the region exhibited no pollution. The changing trend of  CO2 
indicates a decreasing pattern in the region, with the maximum 
concentrations observed in highly polluted cities like Tehran or 
Khuzestan, which are major consumers of fossil fuels.

CO2 is primarily released into the atmosphere through 
the combustion of fossil fuels such as coal, oil, and gas, as 
well as the burning of organic materials. The accumulation 
of  CO2 in the atmosphere contributes to the depletion of the 
protective ozone layer and leads to an increase in the Earth's 
temperature. This phenomenon, known as global warming, 
is responsible for the melting of glaciers and the escalation 
of flood events (Soeder 2021; Roy et al. 2022).

Fig. S10 depicts the spatio-temporal distribution of  NO2. 
The highest concentrations of this gas were observed in Teh-
ran (northern region), Ahvaz (western region), Isfahan and 
Yazd (central region), and Bushehr (southern region). The 
highest recorded level of  NO2 was in Tehran in May 2019, 
reaching 0.0021 ppm. On the other hand, the southern and 
southeastern regions exhibited the lowest concentrations of 
this pollutant. The decrease in  NO2 levels can be attributed 
to the quarantine measures implemented during the COVID-
19 pandemic, which resulted in a reduction in industrial 
activities.  NO2 is a significant air pollutant primarily emitted 
from the consumption of fossil fuels. Its reaction with  H2O 
forms nitric acid, which can cause severe corrosion of metals 
(Li et al. 2019a). At high concentrations,  NO2 contributes to 
the formation of intense smog and reduces visibility. Indi-
viduals with asthma may experience worsened respiratory 
symptoms due to the presence of this pollutant.

Fig. S11 illustrates the spatio-temporal distribution of 
 O3 in the study area. The results indicate a decrease in the 
concentration of this gas in 2021 compared to 2019, with a 
decreasing trend over time. In February 2019, the highest 
level of  O3 was recorded in Tehran, reaching 0.163 ppm. 
Conversely, the lowest level of  O3, 0.103 ppm, was observed 
in the northern areas (Golestan province) in November 2020.

O3 is a highly reactive and strong oxidizing gas, making 
it a hazardous pollutant. The maximum acceptable standard 
for  O3 concentration is 0.125 ppm in air volume, and values 
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exceeding this threshold are considered very dangerous, par-
ticularly on hot and sunny days. Human health, especially 
that of the elderly, children, and individuals with respiratory 
conditions, is significantly affected by this gas (Luong et al. 
2018). Various pollution sources contribute to the release of 
 O3 into the atmosphere, including vehicle emissions, power 
plants, refineries, and petrochemical plants. Tehran, with its 
higher industrial activities and traffic volume, has a higher 
likelihood of experiencing air pollution from  O3 compared 
to other areas (Tondelli et al. 2022).

Fig. S12 presents the spatio-temporal values of  SO2 gas 
during the seasons of November, February, August, and May 
from 2018 to 2021. The results indicate that this gas is most 
prevalent in the southern region, particularly in Khuzestan 
province, and least prevalent in parts of the north. In February 
2019, Tehran, Khuzestan, and Bushehr provinces recorded the 
highest concentrations of  SO2. Conversely, in February 2021, 
the lowest levels of this gas were observed in the northwestern 
parts of the region. Over the studied time period, there has 
been a decrease in the concentration of this pollutant, which 
can be attributed to the implementation of quarantine measures 
during the COVID-19 pandemic.  SO2 typically remains in the 
atmosphere for approximately two to three days. Research indi-
cates that 90% of sulfur oxides, including  SO2, are produced 
by the combustion of fossil fuels (Park et al. 2021). Cities like 
Khuzestan, with higher levels of fossil fuel consumption, tend 
to exhibit higher concentrations of this gas compared to other 
regions. Patients with respiratory diseases are particularly vul-
nerable to the adverse effects of  SO2 exposure.

Fig. S13 illustrates the spatial–temporal distribution of 
aerosol concentrations. The results indicate that the mini-
mum amount of aerosols is observed in the northern regions, 
specifically in Golestan province and the Persian Gulf 
waters, while the maximum amount is found in the southern 
and southeastern parts of the study area. In August 2019, the 
highest concentration of aerosols reached 3.194 ppm.

To assess the accuracy of each pollution map generated 
from satellite images, MAPE values were calculated at 10 
specific locations within the region where ground station 
measurements of pollution values were taken. The results 
indicated MAPE values of 3% for  CH4, 5% for CO, 2% for 
 CO2, 4% for  NO2, 8% for  O3, 3% for  SO2, and 5% for aero-
sols, respectively. Based on the MAPE values, which fall 
within the "very good" classification, it can be concluded 
that the accuracy of the satellite images is sufficiently high 
for determining the pollution levels.

The trend of aerosol concentration shows a reduction 
over time, which can be attributed to the decrease in human 
activities during the COVID-19 pandemic. Increased con-
centrations of suspended particles in the atmosphere con-
tribute to higher aerosol levels. These particles, which can 
include substances such as silica, asbestos, or diesel, pose 

risks to human health. Inhalation of these particles can lead 
to various respiratory problems. Research indicates that a 
significant portion of aerosols is composed of sulfate par-
ticles originating from fossil fuel combustion (Wang et al. 
2021b). Aerosols also have climate implications, as they can 
block sunlight from reaching the Earth's surface, leading to 
cooling effects. Furthermore, when these particles enter the 
respiratory system, they have the potential to cause cancer 
(Nho 2020).

Figure 4 provides information on the concentrations of 
various pollutants in different cities. According to Fig. 4, 
Tehran had the highest methane  (CH4) concentration at 2,004 
nanomol/mol, while Ahvaz had the lowest concentration at 
1,900 nanomol/mol. Tehran, Ahvaz, Asaluyeh, and Bushehr 
recorded the highest levels of carbon dioxide  (CO2), nitro-
gen dioxide  (NO2), ozone  (O3), and sulfur dioxide  (SO2), 
respectively. Ahvaz had the highest aerosol concentration 
at 3.94 ppm. Khuzestan province, particularly the Ramin 
region, exhibited the highest  CO2 levels, which can be attrib-
uted to the presence of multiple power plants in the area. The 
Ramin region is home to one of the largest thermal power 
plants globally, with a capacity of 1,903 MW. Khuzestan 
relies on this power plant for 42% of its electricity needs, 
while the entire country relies on it for 6%. The Fig. 4 also 
indicates that cities like Bandar Abbas, Tehran, and Ahvaz 
had high carbon monoxide (CO) levels. These cities experi-
ence increased levels of CO due to car fuel combustion and 
emissions from smoke. In Ahvaz, the majority of suspended 
particles in the atmosphere are caused by severe wind erosion 
and the subsequent increase in suspended particles.

Figure 5 presents the results of the total concentration 
of seven pollutants, which were spatially normalized and 
combined to create a final air pollution map. According to 
the map, Tehran and Bushehr were identified as the most 
polluted cities during the examined period. The overall trend 
indicated a decrease in pollution levels in 2021 compared 
to 2019. This reduction can be attributed to the impact of 
quarantine measures implemented during the Coronavirus 
period, resulting in reduced industrial activities and fewer 
vehicle trips. To create the final air pollution map, each pol-
lution map was normalized within the GIS environment, 
ranging between 0 and 1. These normalized maps were then 
summed to generate the final air pollution map. The results 
highlight that the city, particularly industrial areas, exhibited 
higher levels of pollution compared to other regions. This 
observation reinforces the strong connection between air 
pollution and industrial activities.

Fig. S14 illustrates the relationship between air pollu-
tion and high traffic congestion, indicating that areas with 
high pollution levels often coincide with areas of heavy traf-
fic. The presence of a large number of cars on the roads 
can contribute to increased emissions of pollutants such as 



122896 Environmental Science and Pollution Research (2023) 30:122886–122905

1 3

1800

1900

2000

2100

Tehran Ahvaz Isfahan Bushehr Asaluyeh

C
H

4
2018-2019 2020-2021

0

0.01

0.02

0.03

0.04

0.05

Tehran Ahvaz Isfahan Bushehr Asaluyeh

C
O

2018-2019 2020-2021

0

0.0001

0.0002

0.0003

0.0004

0.0005

Tehran Ahvaz Isfahan Bushehr Asaluyeh

C
O

2

2018-2019 2020-2021

0

0.0002

0.0004

0.0006

0.0008

0.001

Tehran Ahvaz Isfahan Bushehr Asaluyeh

N
O

2

2018-2019 2020-2021

0.11

0.12

0.13

0.14

Tehran Ahvaz Isfahan Bushehr Asaluyeh

O
3

2018-2019 2020-2021

0

0.0004

0.0008

Tehran Ahvaz Isfahan Bushehr Asaluyeh

SO
2

2018-2019 2020-2021

0
0.5
1

1.5
2

2.5
3

3.5
4

Tehran Ahvaz Isfahan Bushehr Asaluyeh

A
er
os
ol

2018-2019 2020-2021

Fig. 4  Comparison of air pollution level of 17 studied cities in 2018–2019 and 2019–2020



122897Environmental Science and Pollution Research (2023) 30:122886–122905 

1 3

carbon monoxide (CO), nitrogen dioxide  (NO2), and particu-
late matter (PM), which are known to be harmful to human 
health and the environment.

Three emission recording stations in the northwest, two 
in the center, and two in the west were used to verify the 
results of air pollution in this study (http:// aqms.doe.ir/
home/AQI). Sentinel 5 satellite images were found to be 
highly correlated with ground station values ( R2

SO2

=0.81, 
R2

CO
=0.81, R2

O3

=0.95, R2

NO2

=0.9). Thus, Sentinel-5 satellite 
images can be used for pollution monitoring and air quality 
management. Also, the results showed that the most pollu-
tion is in the areas with the most industrial activities. There 
is an accumulation of residential lands and industrial centers 
in parts of the northwest (Tehran province), east (Khuzestan 
province), west (Isfahan province), and south (Bushehr and 
Asaluye provinces), as shown in Fig. 6. There is a lot of air 
pollution in these areas, which can be attributed to the 
increase in industrial activities.

Relationship between thermal index and pollutants

Fig. S15 presents the results of the correlation analysis 
between land surface temperature (LST) and air pollution 
levels in 100 locations. The correlation coefficients  (R2 
values) indicate the strength and direction of the relation-
ship between LST and three pollutants:  O3,  CO2, and CO. 
According to the results,  O3 has the highest correlation with 
LST, with an  R2 value of 0.969. This indicates a strong posi-
tive relationship between  O3 levels and land surface tem-
perature. Similarly,  CO2 and CO show moderate positive 
correlations with LST, with  R2 values of 0.72 and 0.728, 
respectively. These findings suggest that as land surface tem-
perature increases, the levels of  O3,  CO2, and CO tend to rise 
as well. The positive correlation implies that higher tem-
peratures can contribute to the formation or accumulation of 

these pollutants in the atmosphere. Table 1 likely provides 
additional statistical values related to the correlation analy-
sis between LST and air pollution. The  R2 value of 0.942 
indicates a strong positive relationship, and the F statistic 
of 0.0001 suggests that the relationship is statistically sig-
nificant. These values support the conclusion that there is 
a significant and positive association between LST and air 
pollution levels.

Predicting LST using ANNs

Predicting LST using Markov and CA‑Markov

In this section, the study utilizes Landsat satellite data 
from MODIS to analyze land surface temperature (LST) 
maps in 2001 and 2019 and predict future LST values for 
2040. The Cellular Automata (CA) model is employed 
with 20 iterations to predict changes in the LST index 
for the future. The probability matrix in Table S3 rep-
resents the distribution of LST classes for each season 
in 2001 and 2019, while Fig. 7 displays the LST index 
map for 2040. Based on the observed changes and the pro-
jected increase in LST for future years, several indices are 
expected to be affected. Table S3 highlights the most sig-
nificant changes in LST values from 2001 to 2019 across 
different seasons. For instance, the transition from class 
1 to 2 shows a 47% increase in LST values during spring. 
In autumn, transitions from class 1 to 2 and from class 4 
to 5 account for 25% of the changes. In summer, a 41% 
increase is observed in the transition from class 4 to 5, 
while in winter, the transition from class 1 to 2 represents 
a 53% increase in LST values. These changes indicate a 
consistent trend of increasing temperatures across dif-
ferent seasons. The study suggests that the CA-Markov 
method can be utilized to predict future changes in land 
cover and guide effective land management strategies. 

Fig. 5  Final maps of air pollu-
tion in 2019 and 2021



122898 Environmental Science and Pollution Research (2023) 30:122886–122905

1 3

Figure 8 provides a visualization of the projected LST 
values for 2040, indicating the anticipated temperature 
increase in urban areas. Consequently, it emphasizes the 
need for appropriate management practices in these areas 
to mitigate the removal of vegetation, the expansion of 
urban land use, and the proliferation of bare land. These 
measures aim to prevent adverse environmental impacts 
associated with urbanization and promote sustainable land 
development.

Predicting LST using MLP and RBF method

In this study, the relationship between LST and CO and  O3 
indices is examined. The prediction of these parameters is 
performed using MLP and RBF neural networks (Table 2). 

The accuracy of each method is evaluated and presented in 
Tables 5, along with network features such as  R2 (coefficient 
of determination) and RMSE. Additionally, Fig. 8 provides 
a visual representation of the accuracy comparison. Results 
indicate that the MLP network outperforms the RBF network 
in the investigated seasons when comparing the two meth-
ods. The MLP method, with 3 neurons in the first hidden 
layer, and the RBF method, with 4 neurons in the hidden 
layer, demonstrate the highest accuracy. It is observed that 
the number of neurons in the hidden layer plays a crucial 
role in determining the accuracy of both MLP and RBF 
methods. In this regard, the RBF neural network with 4 neu-
rons in the first hidden layer yields the most accurate struc-
ture for LST prediction, exhibiting an  R2 value of 0.99 and 
an RMSE value of 1. While the RBF method shows higher 

Fig. 6  Land use status in polluted areas

Table 1  Accuracy of Pearson correlation model

a. Predictors: (Constant), Aerosol,  CH4,  NO2,  CO2,  SO2, CO,  O3

Model R R Square Adjusted R Square Std. Error of the Estimate Change Statistics

R Square Change F Change df1 df2 Sig. F Change

1 .971a .942 .936 1.072808154026374 .942 142.038 7 61 .0001
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 R2 and lower RMSE, suggesting greater consistency with 
real-world observations, the MLP method also demonstrates 
good accuracy in predicting LST values. To further enhance 

the accuracy of the network, increasing the number of hid-
den layers to 3 or 4 may be considered (Souza et al. 2022).

Fig. 7  Area of LST indices predicted using Markov and CA-Markov chains for four seasons in 2040

Fig. 8  Performance of the model (a): MLP, (b): RBF
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Predicting LST using LSTM method

In this section, LSTM neural networks were employed to 
predict temperature values while considering the influence 
of industrial activities and environmental pollution. LSTM 
networks, which are a type of recurrent neural network, 
were utilized to analyze and forecast time-series data (Vidal 
and Kristjanpoller 2020; Yadav et al. 2020). Unlike MLP 
and RBF methods, LSTM networks utilize memory blocks 
instead of neurons, allowing for better performance (Chang 
et al. 2018). The LSTM architecture includes different input 
and output gates to control the state of these memory blocks. 
In this study, the tanh function was used in LSTM to assess 
the impact of data scaling on prediction. Prior to the train-
ing and testing stages, the data were normalized to a range 
between 0 and 1 and then fed into the network for predicting 
the last value. Similar to the RBF and MLP models, 30% of 
the data was allocated for testing and 70% for training. The 
offline stage of the LSTM network was configured accord-
ingly, while the online settings determined the size of cat-
egories and stages for training and prediction (Laib et al. 
2019). To evaluate the accuracy of the LSTM model,  R2 
(coefficient of determination) and RMSE were employed. In 
this particular implementation, the LSTM network consisted 
of 6 neurons and a cluster size of 10. The input layer, repre-
senting LST values, consisted of one neuron (one memory 
block). LSTM blocks were selected with sigmoid activation 
functions, and the batch size was set to 1. The number of 
training epochs was limited to 120, as longer training times 
did not significantly improve accuracy. The LSTM model 
was then used for forecasting, and its accuracy was assessed 

by comparing the predicted data with the original dataset. 
Figure 9 visualizes the original dataset in pink and the pre-
dicted data in blue, demonstrating the comparison between 
the two. Additionally, Table 3 presents the accuracy results 
of the LSTM method for testing and training phases. The 
outcomes of Table 3 indicate the high accuracy of the LSTM 
model in predicting temperature values in the studied area.

Discussion

In comparing the results of this study with findings from 
prior research, it becomes evident that the utilization of the 
NDVI and LST indices has yielded critical insights into the 
spatial and temporal dynamics of vegetation and land sur-
face temperature in the study area. To put these insights into 
context, it is essential to examine the contrasts between the 
present study's observations and those from previous works. 
The temporal analysis of the NDVI index reveals a concern-
ing trend of decreasing vegetation in the study area over the 
years, particularly between 2001 and 2019. This decline in 
NDVI values, signifying reduced vegetation cover, is a cause 
for alarm and aligns with the findings of Kabiraj (2021), who 
observed a similar pattern and attributed it to the adverse 

Table 2  Accuracy of ANN 
models

Models Input Model structures Training Validation

RMSE R2 RMSE R2

MLP CO 1:4:1 1 0.98 1 0.99
O3 1:3:1 2 0.95 1 0.98

RBF CO 1:3:1 3 0.88 3 0.87
O3 1:2:1 3 0.86 4 0.83

Fig. 9  Results of LSTM method

Table 3  Accuracy of LSTM method

Input Training Validation

R2 RMSE R2 RMSE

LST 0.94 6.5 0.98 5
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impacts of industrial activities. This shared observation 
underlines the long-term ecological consequences of these 
activities on the region. Conversely, the temporal analysis 
of the LST index suggests an alarming increase in land sur-
face temperatures, with the highest values concentrated in 
industrial cities such as Yazd, Isfahan, Bushehr, and oth-
ers, similar to the findings by Hojamberdiev et al. (2019). 
These studies have noted a direct correlation between indus-
trial expansion and rising temperatures, substantiating the 
concerns raised in this research. The implications are far-
reaching, as elevated LST values signify the presence of 
thermal pollution, which can have profound environmental 
and public health implications.

In comparison to prior research, our study contributes 
by providing comprehensive and detailed insights into the 
correlations between LST and multiple key pollutants, 
which include  O3,  CO2, and CO. While existing literature 
has examined the relationship between LST and individual 
pollutants, our research delves into the broader context, 
shedding light on the complex interplay between land sur-
face temperature and a range of pollutants. This enhanced 
understanding can inform policy and decision-making pro-
cesses, particularly in the realm of air quality management 
and climate change mitigation. Our findings corroborate the 
general trend observed in prior studies that suggest higher 
temperatures can exacerbate air pollution levels, specifically 
with regard to  O3,  CO2, and CO (Lee et al. 2021). How-
ever, the strengths of these correlations and the nuances of 
these relationships are better elucidated in our study. The 
robust statistical values and the large-scale, multi-pollutant 
analysis further contribute to the body of knowledge in the 
field, making our research a valuable addition to the exist-
ing literature.

In addition, this study leveraged advanced neural network 
models, including MLP and RBF, to analyze the intricate 
relationship between Land Surface Temperature (LST) and 
the concentrations of carbon monoxide (CO) and ozone  (O3) 
indices. Furthermore, it employed LSTM, a recurrent neural 
network, for predicting temperature values while account-
ing for the influence of industrial activities and environ-
mental pollution. These methods represent significant con-
tributions to the field of air pollution monitoring, and their 
results can be compared to findings from prior research for 
valuable insights (Nanda et al. 2021). The MLP method 
also displayed commendable accuracy in predicting LST 
values, indicating the promise of this approach. To further 
enhance network accuracy, increasing the number of hidden 
layers to 3 or 4 may be considered, as suggested by previ-
ous research (Mohammadi et al. 2020). In contrast, LSTM 
demonstrated superior performance in modeling temperature 
values over time, benefiting from its recurrent architecture. 
These findings collectively contribute to our understanding 
of the complex dynamics between pollution, temperature, 

and prediction methodologies, offering valuable insights 
for air quality management and decision-making processes. 
The results of this study showed that neural network meth-
ods such as LSTM can accurately predict spectral indices 
such as the LST index (Shen et al. 2022). The advantage 
of this method is the combination of stored neurons, which 
enhances the network's performance. This study found that 
there is a close relationship between spectral indices and air 
pollution levels. So, the ambient temperature can be used to 
predict pollution caused by polluting gases such as  SO2,  O3, 
and  CO2, which is one of the innovations of this research. 
Additionally, this study found that thermal pollution is 
higher in urban areas than in rural areas, which is consistent 
with the studies of Shi et al. (2021). According to studies 
(Bera et al. 2020), the reason for the increase in tempera-
ture in city areas can be attributed to the type of materials 
used, traffic, and industrial activities (Baldasano 2020; Mül-
ler et al. 2020). Compared to urban areas, there is a lower 
increase in surface temperature in rural areas due to more 
vegetation (Duncan et al. 2019; Rahaman et al. 2022; Yao 
et al. 2019). According to the results of this study, metropo-
lises such as Tehran, Isfahan, and Ahvaz suffer from more 
air pollution due to overcrowding and industrial activities, 
which is consistent with studies of Kazemi et al. (2022). This 
study also shows that air pollution decreased during COVID-
19 because traffic and human activities were reduced, which 
is in line with the results (Barua and Nath 2021; Othman 
and Latif 2021). Therefore, to reduce pollution in metropo-
lises, managers and politicians should monitor cities exten-
sively to reduce pollution caused by urbanization and human 
activities.

Conclusion

The findings and contributions of this study hold signifi-
cant policy implications for addressing the critical issue of 
air pollution and its impact on climate change. In today's 
world, where air pollution is a growing concern, the accu-
rate measurement of air pollutants with high spatial and 
temporal resolution is crucial. Our research, which har-
nessed remote sensing technologies, satellite imagery, and 
advanced prediction models, offers valuable insights for 
policymakers and environmental stakeholders. The identi-
fication of Tehran as one of the most polluted cities in both 
2019 and 2021 underscores the urgent need for targeted air 
quality improvement measures in metropolitan areas. The 
observation of a slight decrease in pollutant levels in 2021, 
attributed to the Coronavirus pandemic's effects on human 
and industrial activities, demonstrates the potential for 
immediate air quality improvements in response to policy 
interventions during exceptional circumstances. Moreover, 
our study revealed a decline in vegetation cover and an 
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increase in LST in 2019 compared to 2001, highlighting 
shifts in vegetation and temperature patterns over time. 
The significant correlations found between LST values and 
specific pollutants, such as  O3, CO, and  CO2, suggest the 
complex interplay between pollution and local tempera-
ture variations. These relationships emphasize the need 
for comprehensive urban planning and sustainable prac-
tices to address these challenges. The predictions made 
using Markov and CA-Markov chain models, indicating a 
temperature rise in 2040 followed by increased pollutant 
levels, serve as a warning of the potential future scenarios 
if corrective actions are not taken. This information can 
guide long-term climate and environmental policy plan-
ning, helping policymakers prepare for the challenges 
posed by climate change and air pollution. Lastly, the 
applicability of advanced neural network models, includ-
ing LSTM, MLP, and RBF, in accurately predicting pol-
lution levels showcases the potential for incorporating 
cutting-edge technology in pollution forecasting. This 
technology-driven approach can enhance the accuracy of 
early warning systems and aid policymakers in making 
informed decisions to improve air quality. In conclusion, 
our research underscores the crucial role of remote sensing 
technologies and advanced prediction models in monitor-
ing air pollution, temperature, and vegetation dynamics. 
By leveraging the knowledge gained from these findings, 
policymakers can develop and implement effective strate-
gies to mitigate air pollution and its associated environ-
mental impacts, leading to a healthier and more sustain-
able future.
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