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Abstract
High-resolution urban surface information, e.g., the fraction of impervious/pervious surface, is pivotal in studies of local 
thermal/wind environments and air pollution. In this study, we introduced and validated a domain adaptive land cover clas-
sification model, to automatically classify Google Earth images into pixel-based land cover maps. By combining domain 
adaptation (DA) and semi-supervised learning (SSL) techniques, our model demonstrates its effectiveness even when trained 
with a limited dataset derived from Gaofen2 (GF2) satellite images. The model's overall accuracy on the translated GF2 
dataset improved significantly from 19.5% to 75.2%, and on the Google Earth image dataset from 23.1% to 61.5%. The 
overall accuracy is 2.9% and 3.4% higher than when using only DA. Furthermore, with this model, we derived land cover 
maps and investigated the impact of land surface composition on the local meteorological parameters and air pollutant 
concentrations in the three most developed urban agglomerations in China, i.e., Beijing, Shanghai and the Great Bay Area 
(GBA). Our correlation analysis reveals that air temperature exhibits a strong positive correlation with neighboring artifi-
cial impervious surfaces, with Pearson correlation coefficients higher than 0.6 in all areas except during the spring in the 
GBA. However, the correlation between air pollutants and land surface composition is notably weaker and more variable. 
The primary contribution of this paper is to provide an efficient method for urban land cover extraction which will be of 
great value for assessing the urban surface composition, quantifying the impact of land use/land cover, and facilitating the 
development of informed policies.

Keywords  Urban surface recognition · Deep learning · Domain adaptation · Semi-supervised learning · Urban 
environment · Air quality

Introduction

Different land cover types have a dramatic and distinct 
impact on the urban environment, including local climate 
and air quality because of their physical properties or as 
indicators of human activity (Fan et al. 2019). For instance, 
deforestation–afforestation can alter the local climate 
through strong modifications on evapotranspiration and 
urbanization directly affects local air pollution due to the 
increasing number of emission sources (Zhao et al. 2020a). 
High spatial resolution urban land cover information is 
required for investigating the influence of urban surfaces as 
well as other urban climate studies, transportation, and urban 
planning applications (Oke et al. 2017; Sha et al. 2018; Xu 
et al. 2019), urban ventilation and pollutant dispersion mod-
eling (Yang et al. 2020; Zhao et al. 2020b), and carbon emis-
sion estimations (Zhang et al. 2014; Gao et al. 2014).
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Previous studies (Du et al. 2016; Zheng et al. 2018; Xu 
et al. 2020) have aimed to investigate the influence of urban 
indicators on neighborhood-scale urban climate. These 
studies often relied on one or two case studies due to the 
scarcity of high-resolution land cover data, which typically 
have limited spatial and temporal coverage. Acquiring urban 
land cover data is challenging due to the intricate compo-
sition of urban surfaces, comprising various elements like 
buildings, roads constructed from different materials, and 
diverse impervious surfaces (Fan et al. 2021). While these 
data can be manually labeled or mapped, this process is 
labor-intensive and time-consuming. In recent years, deep 
learning methods, such as convolutional neural networks 
(CNNs), have recently been demonstrated to be an effective 
automated tool for complex urban surface classification at 
the pixel level (Volpi and Tuia 2017; Chen et al. 2020; Fan 
et al. 2021). It provides a promising tool for large-scale land 
cover extraction which will be of great value for urban envi-
ronment studies at a larger scale, including the city, regional, 
or even global scale. However, deep learning methods are 
inherently data-driven and require a substantial volume of 
training examples, i.e., images, and corresponding manu-
ally labeled or annotated ground truth (Li et al. 2020). An 
additional challenge lies in achieving domain generaliza-
tion, as models must acquire generalized and precise fea-
ture representations from a limited number of training data 
originating from the source domain to effectively perform 
on unseen target domains (Xu et al. 2022). The primary 
issue arises from data discrepancies between the train-
ing samples (source domain) and the target images (target 
domain), where domains often refer to different datasets or 
data distributions. It is common for the imagery used to have 
a different acquisition time, atmospheric condition, or even 
origination (from different satellite sensors), resulting in 
discrepancies between the source and target domains (Fan 
et al. 2021). Poor domain generalization ability has become 
a major hindrance to obtaining high-resolution land cover 
data at a larger regional, national, or even global scale.

Studies have examined the domain generalization abil-
ity and the reliance on training samples of deep learning 
methods (Hoffman et al. 2016; Scott et al. 2017; Li et al. 
2019b). Transfer learning has emerged as a valuable tool 
for enhancing model generalization and has found applica-
tion in image mapping tasks (Pan and Yang 2010; Fu et al. 
2023b, a; Liu et al. 2023). A specific subset of transfer learn-
ing is domain adaptation (DA), which is specifically used to 
enhance the models trained on one domain (source domain) 
to perform well on a different domain (target domain) (Chen 
et al. 2018; Toldo et al. 2020; Wilson and Cook 2020; Peng 
et al. 2022). Transferring the images of different domains 
into a similar appearance or style is one of the effective ways 
to improve model generalization ability (Xu et al. 2022), 
such as the Cycle Generative Adversarial Network (Toldo 

et al. 2020). To enhance the performance, pretrained seman-
tic model can be used as a supervision model to encourage 
the model to maintain consistent semantic representations 
during translation (Hoffman et al. 2018). While DA models 
have been used in high-resolution image classification (Ji 
et al. 2021; Luo and Ji 2022), the primary focus has been 
on improving image translation performance. However, the 
translated images may still exhibit disparities with the target 
image, and this error can persist and propagate throughout 
subsequent training process if used as new training data. 
To address this problem, we employed the semi-supervised 
learning (SSL) (van Engelen and Hoos 2020; Jing and Tian 
2021) technique, which can leverage the labeled data to 
guide the model’s learning process, while also benefiting 
from the vast amount of unlabeled data. SSL can help reduce 
the influence of errors resulting from DA by extracting addi-
tional information from unlabeled data in the target domain, 
while also serving as an effective means to mitigate over-
fitting. Therefore, combining above-mentioned approaches 
will yield better results than using any single method alone 
(Zhang et al. 2022; Aryal and Neupane 2023).

In this study, our objective is to propose a domain adap-
tive land cover classification model for extracting land cover 
from urban surface imagery from different domains. The 
model combines the DA and SSL techniques and thus can 
be further exploited with existing annotated datasets and 
applied to different images from Google Earth platform 
[Google Inc., California, USA]. Then, the urban surface 
information, specifically the surface land cover types in 
urban areas, around weather stations and air quality moni-
toring stations was extracted from Google Earth images. 
This information was then employed to study the correla-
tion between the urban surface types and the environmental 
parameters, i.e., air temperature and pollutant concentration.

The rest of the paper is structured as follows: “Data prep-
aration” section presents the preparation of the source train-
ing dataset and the target images within study areas used 
for the training and testing process, as well as the meteoro-
logical and air pollutant data for further correlation analysis. 
The proposed domain adaptive urban surface recognition 
methods are described in “Methods” section. “Results and 
discussion” section presents results and a discussion of the 
domain adaptive image classification model and correlation 
analysis with local environmental parameters. In the end, the 
conclusions are drawn in “Conclusions” section.

Data preparation

Source dataset

To initiate the procedure, the GF2 dataset is chosen as the 
source dataset (XS, LS), which was built in our previous 
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study (Fan et al. 2021). The GF2 dataset is a high-quality 
1-m resolution land cover dataset built with 41.9 km2 
of Gaofen2 (GF2) satellite imagery. Gaofen2 satellite 
is a sub-meter level optical Earth observation satellite, 
equipped with two high-resolution sensors (PMS) with 
a combined swath width of 45 km. The effective spatial 
resolutions for raw GF2 imagery are 4 m for multispec-
tral bands (MSS) and 1 m for panchromatic band (PAN). 
The raw GF2 imagery has four spectral bands, includ-
ing BLUE (450–520 nm), GREEN (520–590 nm), RED 
(630–690 nm), and Near-infrared (NIR, 770–890 nm). 
The Gram–Schmidt pan-sharpening method (Klonus and 
Ehlers 2009) was used to fuse MSS imagery (4 m) and 
PAN imagery (1 m) and produce 4-band multi-spectral 
images (RED, GREEN, BLUE, and NIR) with 1 m spatial 
resolution.

There are 10 sample images in the GF2 dataset cover-
ing both urban and sub-urban areas, and each sample image 
has a fixed size of approximately 4.2 km2 (2048 × 2048 
m), and four of them are illustrated in Fig. 1(a1–d1). Eight 
of the samples were taken in Hangzhou, China, while the 
remaining two images were from Beijing, China. In this 
study, Beijing and Hangzhou samples were used as the 
source training dataset to enhance generalization ability. All 
images were fully annotated with eight common land cover 
categories at pixel level using the proposed OSM-OBIA 
method (Fan et al. 2021). Considering the actual land cover 
behind the “Shadow” is not clear, the rest seven categories 
were grouped into two larger categories for further corre-
lation analysis, i.e., the “Artificial” (including “Building”, 
“Roads”, and “Other impervious”) and “Natural” (includ-
ing “Tree”, “Low vegetation”, “Bare land”, and “Water”) 

surface. The definition and fraction of each land cover cat-
egory are listed in Table 5 in Appendix A.

Study area and target images

We investigated the impact of urban land cover in China’s 
three most developed urban agglomerations: Beijing, Shang-
hai, and the Guangdong-Hong Kong-Macao Greater Bay 
Area (GBA). All those areas have an urban population of 
over 20 million (China Statistical Yearbook, 2015) (National 
Bureau of Statistics of China 2015). The urbanization rate 
in Beijing and Shanghai has exceeded 85%, including 
Guangzhou, Shenzhen in GBA. We collected land surface 
images from Google Earth around 33 meteorological moni-
toring sites and 107 air quality monitoring sites in those 
three regions, as listed in Table 1. The distribution of mete-
orological and air quality observation stations is shown in 
Fig. 9–10 in Appendix B.

To validate the model and obtain the urban surface infor-
mation, the land surface images around meteorological and 
air quality stations are first downloaded from Google Earth 

Fig. 1   Demonstration of the GF2 training dataset. Four sample images (2048 m × 2048 m) from the source dataset were taken in Hangzhou (a1, 
b1) and Beijing (c1, d1). Corresponding ground truth (a2–d2)

Table 1   Details of the environmental monitoring stations and obser-
vation data. (MT: meteorology, AQ: air quality)

Region name Number of 
MT sites

Number of 
AQ sites

Time range of observation

Beijing 12 24 2021/03/21–2021/9/20 
(Spring and Summer)Shanghai 9 16

GBA 12 66
Total 33 106
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as target images, referred to as Google Earth images hereaf-
ter. The Google Earth is a computer program that maps the 
Earth by overlaying satellite images, aerial photographs, and 
other Geographic Information System (GIS) data. Conse-
quently, it can be a repository of land surface images, typi-
cally acquired by diverse sensors under varying climate con-
ditions and at different times. According to existing studies 
(Li et al. 2019a; Liu et al. 2021), a buffer zone of 2 × 2 km 
square area was selected for the urban surface recognition 
and correlation analysis related to environmental parameters. 
The corresponding meteorological or air quality monitor-
ing sites are located in the center of the buffer zone. Thus, 
the target dataset consists of 556 km2 of unlabeled Google 
images.

These selected images were chosen after the year 2017 
to minimize the land surface difference in comparison to 
the source dataset. Then, images heavily obscured by cloud 
cover or mist were excluded by manual intervention. While 
the Google Earth platform can offer images with a spatial 
resolution as fine as 0.3 m, such high-resolution images were 
limited in availability. Therefore, images with a resolution 
of 0.6 m were chosen for our research., which were subse-
quently down-sampled to 1 m to be consistent with source 
images. The original GF2 imagery has four spectral bands, 
while images from Google Earth are RGB images that only 
contain three bands, i.e., RED, GREEN, and BLUE bands. 
For consistency, the NIR bands of the GF2 imagery in the 
training dataset were excluded. As a result, both source and 
target images are RGB with 1 m resolution. Detailed infor-
mation of the source and target images is listed in Table 2. 
To further evaluate the model performance on Google Earth 
images, an additional number of images from Google Earth 
was obtained which correspond to the same ground truth 
with GF2 dataset, hereafter referred to as the Google dataset, 
as shown in Fig. 11 (a1–a3) in Appendix C. Misalignments 
exist between the Google Earth and the ground truth in GF2 
dataset, and we have discussed the impact of these misalign-
ments in detail in Appendix C.

Environmental data

To collect as many available samples as possible, meteoro-
logical and air quality data were collected over a two-season 
period in 2021 (Mar. 21, 2021, to Sep. 21, 2021) when a 
significant number of new air monitoring sites had been built 

and put into use. Meteorological data were collected from 
China National Meteorological Information Centre (http://​
data.​cma.​cn/). Mean values of air temperature (AT), relative 
humidity (RH), and Wind speed (WS) of the selected period 
were used for analysis in this study. Air quality monitoring 
data were obtained from the China National Environmen-
tal Monitoring Center (CNEMC, http://​106.​37.​208.​233:​
20035/). For air quality data, six pollutants (PM2.5, PM10, 
SO2, NO2, CO, and O3) were measured and recorded hourly 
according to China Environmental Protection Standards HJ 
193–2013 and HJ 655–2013.1 Detailed information about 
the data can be found in our previous study (Fan et al. 2020).

Methods

In this study, we initially combined the DA and SSL tech-
niques to train a land cover classification model that can be 
applied on Google images, as shown in Fig. 2. Subsequently, 
the urban surface information around weather stations and 
air quality monitoring stations was extracted and was then 
used to study the correlation between the land surface types 
and the environmental parameters, e.g., air temperature.

Semi‑supervised domain adaptive urban surface 
classification model

The overall workflow can be separated into two steps. In the 
first step, the source dataset (XS, LS) and target images (XT) 
were used in the domain adaptation (DA) process to generate 
a translated GF2 dataset (XS’, LS), as described in “Domain 
adaptation (DA)” section. The translated GF2 dataset is con-
sidered a training dataset built with target domain images. 
In the second step, the classification model is trained with 
the translated GF2 dataset (XS’, LS) and the unlabeled target 
images (XT) in semi-supervised learning (SSL) style, which 
is described in “Semi-supervised learning (SSL)” section. 
As a result, the trained classification model can be used in 
target Google Earth images.

Table 2   Detail information on 
the source and target images

Dataset name Image origin Acquisition time Spatial resolu-
tion

Spectral bands

Source dataset GF2 image 2019/12 (Hangzhou), 
2019/08 (Beijing)

1 m RGB

Target dataset Google Earth 2017/01–2020/12 1 m RGB

1  available at: http://​engli​sh.​mee.​gov.​cn/​Resou​rces/​stand​ards/​Air_​
Envir​onment/​air_​method/

http://data.cma.cn/
http://data.cma.cn/
http://106.37.208.233:20035/
http://106.37.208.233:20035/
http://english.mee.gov.cn/Resources/standards/Air_Environment/air_method/
http://english.mee.gov.cn/Resources/standards/Air_Environment/air_method/
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Domain adaptation (DA)

As shown in Fig. 3, the DA process contains two steps. The 
first step is to use the source dataset to train an initial clas-
sification model (M0). DeepLab V3 (Chen et al. 2017) was 
used for the training process, which has an encoder-decoder 
architecture (Ronneberger et  al. 2015; Badrinarayanan 
et al. 2017). The ResNet101(He et al. 2016) was used as the 

backbone network for feature extraction as recommended 
in a previous study (Fan et al. 2021). The decoder part used 
to recover spatial details from the extracted feature map 
remains the same as in Li et al (2019b). In the second step, 
the image-to-image translation model, i.e., CycleGAN (Zhu 
et al. 2017), whose task is to translate the source image into 
the same style as the target image, is trained with the source 
dataset and the target data. Meanwhile, the training process 

Fig. 2   Overview of the proposed workflow

Fig. 3   Illustration of the domain 
adaptation (DA) process
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is conducted under the supervision of the initial model M0 
to improve the training performance (Hoffman et al. 2018). 
With the trained CycleGAN model, a translated GF2 dataset 
(XS’, LS) is produced, which can be considered a dataset built 
from target images (XT).

Semi‑supervised learning (SSL)

After the domain adaptation, SSL was used to enhance the 
model performance on target images. A new classification 
model M1 was trained with the translated GF2 dataset (XS’, 
LS) (Fig. 4). Then, the M1 model was applied to the target 
data (XT) to generate segmentation results as pseudo labels. 
Only the pseudo labels (Lpl) with high quality or predic-
tion confidence were selected for the next procedure. To 
obtain high-quality pseudo labels, the prediction confidence 
threshold is set as 0.9 (Li et al. 2019b). Following that, the 
translated GF2 dataset (XS’, LS) and the target data with its 
corresponding pseudo labels (XT, Lpl) were used to train 
the next generation of segmentation model M2(i), where i 
represents the ith loop. The quality of pseudo labels (Lpl) 
can be improved and more high-quality pseudo labels can 
be obtained for the next training loop when a better M2(i) 
model is achieved. Therefore, the model with better perfor-
mance is expected to be trained after each iteration. More 
detailed information for the models and configurations can 
be found in Appendix D.

Evaluation metric

In this study, we assess the model's performance in the 
target domain, specifically on both the translated GF2 

dataset and the Google dataset. We employ two evalu-
ation metrics: the F1 score and overall accuracy (OA), 
as defined in Eq. (1) and Eq. (2), respectively. The F1 
score is a metric that combines Precision (Eq. 3) and 
Recall (Eq. 4) into a single value. Precision quantifies 
the proportion of accurately classified pixels within a 
specific category. Recall, conversely, gauges the accu-
rate identification of pixels belonging to a particular cat-
egory. Good classification performance is characterized 
by high scores in both Precision and Recall, making the 
F1 score, which represents the harmonic mean of Preci-
sion and Recall, a more comprehensive evaluation metric. 
Meanwhile, OA is computed by dividing the total count of 
correctly predicted pixels across all categories by the total 
number of pixels. In this study, we assessed per-category 
performance using the F1 score and overall performance 
using OA.

where True Positives ( TP )/ True Negative ( TN ) are the num-
ber of pixels correctly classified as positive/positive; False 
Positives ( FP )/ False Negative ( FN ) are the number of pix-
els wrongly classified as positive/positive; Nall is the total 
number of pixels.

(1)
F1 Score = 2 × (Precision × Recall)∕(Precision + Recall)

(2)OA = (TP + TN)∕Nall

(3)Precision = TP∕(TP + FP)

(4)Recall = TP∕(TP + FN)

Fig. 4   Illustration of the semi-
supervised learning (SSL) 
process
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Correlation analysis

After the land cover information around each weather station 
and air pollutant monitoring station was derived, bivariate 
correlation analysis was conducted between the Artificial/
Nature surface proportions and environmental data, i.e., 
meteorological and air quality data, over a two-season period 
(Mar. 21 to Sep. 20) in 2021. The Pearson’s correlation coef-
ficient (− 1 ≤ r ≤ 1) is used to measure the linear correlation 
between land surface proportions and seasonal averaged 
environmental values at each site, which is calculated by 
Eq. (5). Following Dugord’s work (Dugord et al. 2014), the 
significance of correlation was classified into three levels: 
strong correlation (|r|≥ 0.6), correlation (0.3 ≤|r|< 0.6) and 
weak correlation (|r|< 0.3). Bilateral t-test was conducted to 
evaluate the significance of the correlation coefficient.

where xi , yi denote value of the Artificial/Nature surface 
proportions and the environmental parameter at each moni-
toring station i , respectively; x , y denote their average value 
within the city/region.

Results and discussion

Urban surface classification

The overall accuracy of the final classification model on each 
dataset is presented in Table 3. The performance of the ini-
tial classification model M0, which is trained on the original 
GF2 dataset (XS, LS) serves as the benchmark. Our objec-
tive is to achieve performance as close to the benchmark 

(5)r =

∑
�

xi − x
��

yi − y
�

�

∑
�

xi − x
�2�

yi − y
�2

as possible for the final model on the target domain, i.e., 
the translated GF2 dataset and Google dataset. The “M1” 
row represents the performance of the model trained on the 
translated GF2 dataset without using the SSL technique. 
The following rows show the performance of the model 
trained on the translated GF2 dataset at each iteration of 
SSL. The model’s performance on each land cover category 
is assessed with the F1 score, as depicted in Fig. 5.

As listed in Table 3, the model M0 achieved 79.3% of OA 
on the source GF2 dataset but failed on the translated GF2 
and Google datasets (OA < 30%), which means that M0 can-
not be directly applied to land surface images from Google 
Earth. The model trained on the translated GF2 dataset could 
achieve 72.3% of OA using the domain adaptation technique. 
While using both DA and SSL techniques, the model perfor-
mance on the translated GF2 dataset has a significant increase 
(72.3%–74.2%) at the first loop (Table 3). The improvement 
becomes smaller and reaches its highest OA (75.2%) on the 
translated GF2 dataset at the 3rd loop of SSL, i.e., M2(3). 
This indicates that the quality of the extracted pseudo labels 
stops improving and the semi-supervised training process 
converges, which leaves limited space for further improve-
ment (Li et al. 2019b) with more SSL loops. Besides, the 
achieved accuracy closely resembles the score attained by 
M0, indicating that the model is not suffering from under-
fitting. The final classification model [M2(3)] achieved a 
significant improvement on the Google dataset, as listed in 
Table 3, from 23.1% to 62.3%. This score is relatively lower 
compared with the one on the translated GF2 dataset (75.2%). 
This result may be attributed to the fact that the DA process 
might not entirely eliminate the domain differences. It could 
also be partially influenced by misalignments with ground 
truth due to changes in land cover and variations in camera 
angles, as illustrated in Fig. 12 in Appendix C.

The models exhibit performance imbalances on each 
land cover category, as shown in Fig. 5. The performance 
of model M0 is relatively low for the “Low vegetation” and 
“Other impervious” categories, mainly due to the limited 
sample size of these two categories in the GF2 dataset 
(Table 5 in Appendix A) and high intra-class variances and 
interclass similarities (Liu et al. 2020). However, this issue 
is significantly mitigated while using M2(3), as shown in 
Fig. 6, which has been trained additionally on substantial 
amount of unlabeled data. the F1 score on translated GF2 
dataset are higher than that of M1, as well as M0 on GF2 
dataset. This indicates the SSL technique can alleviate per-
formance imbalances across land cover categories resulting 
from uneven distribution of labeled training data (Yang and 
Xu 2020). While tested on Google dataset, the model expe-
riences a general decline in performance across all catego-
ries, with the exception of “Water” and “Bare land”. This 
phenomenon may be attributed to the fact that these two 
categories have smaller interclass differences compared to 

Table 3   The overall accuracy of each trained model. M0: the model 
trained with the origin GF2 dataset. M1: the model trained with trans-
lated GF2 dataset. M2(i): the model in the ith iteration of semi-super-
vised learning using translated GF2 dataset and the source dataset

Note: The highest and lowest scores on each dataset are highlighted in 
bold

Overall accu-
racy (OA)

GF2 dataset Translated GF2 
dataset

Google dataset

M0 79.3% 19.5% 23.1%
M1 67.3% 72.3% 58.1%
M2(1) 71.4% 74.2% 61.2%
M2(2) 72.0% 74.6% 62.3%
M2(3) 72.2% 75.2% 61.5%
M2(4) 72.0% 74.9% 61.4%
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others, such as buildings and roads. Additionally, they are 
less susceptible to image misalignment caused by variations 
in view angles. The most significant performance difference 
is observed in the “Shadow” category, which is likely to be 
affected by climate condition and the solar angle at the time 
of photography.

The trained model has demonstrated performance 
improvement when tested on the translated GF2 dataset 
and the Google dataset. This method effectively enhances 
the model's generalizability across the two domains, mak-
ing it suitable for application to satellite images exhibiting 
data discrepancies. However, the model’s performance may 

Fig. 5   Model’s performance on each land cover category measured by F1 score 

Fig. 6   The classification results on (a) the target image using (b) the M1 model and (c) the M2(3) model
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remain constrained by the limited diversity in the original 
training dataset, particularly concerning regional variations 
and spatial resolutions (Fan et al. 2021). The original GF2 
dataset was built with satellite images captured in Chi-
nese cities, where modern urban construction practices 
have led to similarities in building and road materials in 
recent decades. Consequently, the method may be applied 
to other similar cities such as Guangzhou, China, as the 
result shown in Fig. 7. But the model may not perform as 
well in areas characterized by diverse building character-
istics, such as European regions with historic structures.

Correlation analysis

The classification model [M2(3)] derived the land cover 
information around each environmental monitoring sta-
tion, including weather stations and air pollutant monitor-
ing stations. The correlation analysis results are listed in 
Tables 4 and 7 in Appendix F. The correlations between 
the land cover fraction of a certain type and mean values 
of the weather data and air pollutant data are shown in 

Fig. 8, 13 and 14 in Appendix F. The meteorological data 
in 2020 is also used for analysis and the result is shown 
in Table 6 in Appendix E.

Correlation of land cover with meteorological parameters

As shown in Fig. 8(a, d) and Table 4, there is a strong posi-
tive correlation (0.60 to 0.73) between artificial surfaces 
and air temperature in all three areas. All correlation coef-
ficients are significant except for those in GBA. This result 
is in line with previous case studies (Yan and Dong 2015). 
Zhang et al. (2020) found 70% of the variance in daytime air 
temperature can be explained by building footprint ratio. Air 
temperature can be affected by changed physical land surface 
properties and anthropogenic heat emissions (Stewart and 
Oke 2012). A larger proportion of artificial surfaces means 
more natural land cover is reformed into buildings, roads, 
and other impervious surfaces. Therefore, the increased 
heat storage, anthropogenic heat emissions, and decreased 
water storage capacity result in a warmer environment with 
reduced relative humidity (Oke 1982). Those correlations 
are ubiquitous in all three areas and have small seasonal 

Fig. 7   The land cover map derived from Google Earth image. The blue solid line represents the administrative districts in Guangzhou, China
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variations, which are also supported with data from the year 
2020, as shown in Table 6 in Appendix E.

There is a negative correlation (− 0.32 to − 0.43) 
between relative humidity and impervious land cover in 
Shanghai and GBA (Fig. 8(b, e) and Table 4). Lin et al. 
(2020) also found a negative correlation between urbani-
zation and humidity in the urban areas of Guangdong, 
which is the so-called urban dry island effect (Loko-
shchenko 2017). Given the definition of relative humid-
ity, the urban–rural difference in RH is governed by 
thermal and moisture differences (Oke et al. 2017). The 
thermal difference between artificial and natural areas 
has a significant contribution to the RH difference. How-
ever, the emission of water vapor from industrial sources 
and transpiration may offset this phenomenon. This 

likely explains the weak correlation between artificial 
surface and RH in Beijing, except for summer (Table 4), 
This can also be witnessed in the analysis result in 2020 
(Table 6 in Appendix E). Compared with Shanghai and 
GBA, Beijing has a drier climate with less rainfall, except 
for its rainy season (summer) (Liu et al. 2009). In dry 
seasons, the irrigation of urban green spaces, additional 
water vapor from human activities, and the evaporation 
of water bodies become the dominant contributor to air 
humidity in urban areas, causing a similar or even higher 
RH than rural areas, i.e., an urban wet island effect (Liu 
et al. 2021). In this scenario, the correlation between RH 
and the fraction of artificial surface can be weakened 
significantly.

Fig. 8   Relationship between urban land cover and meteorological indicators (two-season average values) in three regions

Table 4   Pearson correlation 
coefficients between land 
cover and meteorological 
factors for each season in 2021. 
Bold values (with |r|≥ 0.3) 
indicate a correlation. (AT: 
air temperature, RH: relative 
humidity, WS: wind speed)

** . Significant correlation at 0.01 level (bilateral, p < 0.01)
* . Significant correlation at 0.05 level (bilateral, p < 0.05)

Artificial Natural

Season Beijing Shanghai GBA Beijing Shanghai GBA

AT Spring (Mar. 21 to Jun. 20) 0.71** 0.68** 0.66  − 0.75**  − 0.62**  − 0.62**

Summer (Jun. 21 to Sep. 20) 0.73** 0.66* 0.60  − 0.75**  − 0.60**  − 0.41*

Overall (Mar. 21 to Sep. 20) 0.72* 0.65** 0.60  − 0.75**  − 0.60**  − 0.54**

RH Spring (Mar. 21 to Jun. 20)  − 0.09  − 0.33**  − 0.43** 0.11 0.28** 0.31**

Summer (Jun. 21 to Sep. 20)  − 0.45**  − 0.34**  − 0.33** 0.47** 0.10**  − 0.10**

Overall (Mar. 21 to Sep. 20)  − 0.23*  − 0.36**  − 0.32** 0.25 0.21** 0.20**

WS Spring (Mar. 21 to Jun. 20)  − 0.60**  − 0.28**  − 0.10** 0.62** 0.43** 0.03**

Summer (Jun. 21 to Sep. 20)  − 0.40**  − 0.24** 0.07** 0.44** 0.40**  − 0.15**

Overall (Mar. 21 to Sep. 20)  − 0.53**  − 0.26**  − 0.02** 0.57** 0.41**  − 0.05**
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There is a negative correlation (− 0.40 to − 0.60, Beijing) 
and a weak negative correlation (− 0.24 to − 0.28, Shanghai) 
between wind speed and artificial surfaces fraction, as high-
rise buildings and their complex layouts reduce mean wind 
speed (Fan et al. 2019; Zhao et al. 2020b). This phenomenon 
has been intensively observed in previous studies (Du et al. 
2016; Tao et al. 2018). This relationship is not obvious in 
GBA. The meteorology stations in GBA are more scattered 
than in the other two cities (Fig. 10 in Appendix B). The 
different background wind conditions at these stations could 
be the dominant influencing factor. For instance, the wind 
speed in an urban area near the coast may be higher than in 
rural areas inland due to the sea breezes.

Correlation of land cover with air pollutant concentrations

The results of correlation with air pollutant concentrations 
are detailed in Appendix F, with the corresponding 
discussion presented here. The correlations between most 
air pollutants and land cover are not as strong as those of 
meteorological indicators, as shown in Table 7 in Appendix 
F. One reason is that the emission or generation of each 
air pollutant is complex and can be affected by multiple 
factors ranging from the building scale, neighborhood 
scale, city-scale to regional scale (Tao et al. 2018; Fan et al. 
2020). Most air pollutants are related to human activities, 
e.g., traffic, agriculture, and industry, and have different 
formation mechanisms (Fan et  al. 2020). For instance, 
traffic is a major emission source for NO2 (Lin and Cheng 
2007) and CO (Hrebtov and Hanjalić 2019). The NO2 
concentration is also affected by industrial emission and 
photochemical reactions with VOCs (Liu et al. 2013). This 
all causes the heterogeneous distribution of air pollution 
within a region. Solely land cover information does not 
contain land use information, traffic density and the location 
emission source. For example, residential and industrial 
land use have distinct impacts on local air quality, but such 
information cannot be recognized by this model at present. 
Besides, the impervious land cover or the recognized road 
cannot reflect the traffic volume, a large proportion of 
road cover in the sub-urban industrial area may have small 
traffic flows. Therefore, the impact of human activity on 
air pollution may be more clearly revealed if more impact 
factors can be included in the analysis. Another limitation 
of this analysis is that all monitoring stations in Shanghai 
are located in areas with a similar impervious surface 
fraction, ranging from 25 to 55%. In contrast, the range for 
Beijing is 0% to 70%, and for the Great Bay Area (GBA), it 
is 5% to 80%. The absence of data points in rural and highly 
densely built areas may introduce deviations into the current 
results. Therefore, our future work will prioritize including 
a more diverse set of sample points.

Conclusions

In this study, we combined the domain adaptive (DA) and 
semi-supervised learning (SSL) techniques to achieve domain 
adaptive land cover classification. With a small labeled data-
set built from Gaofen2 (GF2) satellite imagery, the trained 
model can be applied to images from Google Earth. The 
model was jointly trained with a significantly larger amount 
of unlabeled data. Compared to the result using only DA, 
this study utilizes the SSL technique to further improve the 
model’s performance and mitigate performance imbalances 
across land cover categories that often arise from an uneven 
distribution of labeled training data in a small dataset. As a 
result, the model’s performance on Google Earth images was 
improved significantly. The best performance was achieved 
after three SSL iterations, represented by the M2(3) model. 
With this model, the overall classification accuracy on the 
translated GF2 dataset was improved from 19.5% to 75.2%. 
Although the performance of the Google dataset is underesti-
mated due to misalignments between image and ground truth, 
the overall accuracy can be improved from 21.3% to 62.3%.

The classification model [M2(3)] was used to derive land 
cover data for analyzing the relationship between urban sur-
face information and environmental parameters in the three 
most developed cities/areas in China: Beijing, Shanghai, and 
GBA. The results provide indicate a strong positive correla-
tion (|r|≥ 0.6) between air temperature and artificial land sur-
face. The relative humidity is negatively related (|r|≥ 0.3) to 
the artificial land surface except for Beijing. The wind speed 
in Beijing is negatively related (|r|≥ 0.3) to the artificial land 
surface, but the correlation is weak in Shanghai and GBA. In 
terms of air pollutants, we found most correlations between 
air quality parameters and land cover are weaker than those 
among meteorological parameters, and show a regional dif-
ference. Detailed land use information, traffic volume, and 
location of emission source are needed for investigating the 
distribution of air pollutants in future studies.

This study makes contributions to both high-resolution 
land surface classification in complex urban areas and 
understanding the influence of land surface on urban cli-
mate. However, the model’s performance remains con-
strained by the origin training dataset, which only contains 
training samples in Chinese cities. For future studies, inte-
grating diverse sources of training samples into the scheme 
to build a more generalized model. The correlation analy-
sis also provides useful insights for the parameterizing the 
impact of land cover in urban environment modelling. The 
high-resolution land cover information will be important 
data for assisting urban climate studies. Coupling high-
resolution land cover data with other impact factors and 
more sophisticated urban climate models will be of great 
interest in the future.
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Appendix A

See Table 5

Appendix B. The locations of meteorological 
and air quality monitoring stations

The locations of meteorological and air quality monitoring 
stations in Beijing, Shanghai, and GBA are demonstrated 
in Fig. 9, and 10. The meteorological monitoring stations 

are national surface meteorological monitoring stations and 
location information is provided by China National Mete-
orological Information Centre. The air quality monitoring 
network is built by The China National Environmental Mon-
itoring Center (CNEMC).

Table 5   Detailed information of the eight land cover categories in the GF2 dataset

No Category Description Fractions 
in the GF2 
dataset

1 “Building” Buildings, including residential, public, and industrial buildings, as well as buildings under construc-
tion

24.4%

2 “Road” Traffic roads, including cement and asphalt road 15.0%
3 “Other impervious” All impervious surfaces except building and road, e.g., parking lots, construction area, and sports 

fields
6.6%

4 “Tree” Trees of all species with dense canopy, including forest and street trees 19.5%
5 “Low vegetation” Grass and shrubs, agricultural areas with low crops or vegetables 6.8%
6 “Bare land” Unpaved natural surfaces with bare land or soil with no vegetation 1.8%
7 “Water” Open natural or man-made water bodies, including rivers, streams, ponds, lakes, and outdoor swim-

ming pools
2.6%

8 “Shadow” Areas shaded by shadows of tall objects like buildings and trees 23.3%

Fig. 9   The location of meteorological monitoring sites (9 MT sites) and air quality monitoring sites (16 AQ sites) in Shanghai, and 12 MT sites 
and 24 AQ sites in Beijing
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Appendix C. the impact of the misalignment 
in Google dataset

The Google dataset is built with image from Google 
Earth and ground truth from GF2 dataset, as shown in 
Fig. 11(a1–a3). The misalignments exist between the Google 
Earth and GF2 images mainly because they were obtained 
at different acquisition times and off-nadir angles. There-
fore, after being clipped into smaller tiles, tiles with severe 
misalignment (Fig. 11(b1–b3)) caused by the large land 
cover change were excluded. As a result, the target data-
set now consists of 31 km2 of Google images with ground 
truth. Misalignments caused by different shading or off-nadir 
view angle are hardly evitable, as shown in the red frame in 
Fig. 11(c1–c3). Therefore, the classification accuracy evalu-
ated on the target dataset will be underestimated and can 
only be used for reference.

With minor land cover change and camera angle differ-
ence the classification overall accuracy can reach a high 
level (Fig. 12 (a1–a4)). However, severely underestimated 
score will occur when there is a land cover change or camera 
angle difference, even if the model has correctly classified 
the images. As shown in Fig. 12(b1–b4) and Fig. 12(c1–c4), 
the underlying land cover has been well recognized, but 
the overall accuracy score is significantly low because of 
the misalignment between Google image and ground truth 
caused by land cover change and difference caused by off-
nadir view angles. Although we have excluded image tiles 
with significant land cover changes, misalignment caused by 
different camera angles still exists in most test images. This 
is because buildings in the study areas were mostly high-rise 
buildings with more than seven floors. Therefore, the evalu-
ation result on Google dataset is underestimated.

Fig. 10   The location of meteorological monitoring sites (12 MT sites) and air quality monitoring sites (66 AQ sites) in GBA
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Fig. 11   Difference between the Google dataset and the source data-
set. The differences are highlighted using red frames. (a1–a2) Google 
image and GF2 image of the same area. (b1–b2) Google image and 

GF2 image with large land cover changes. (c1–c2) Google image and 
GF2 image has large difference caused by different off-nadir view 
angle. (a3–c3) The ground truth corresponds to the GF2 image
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Appendix D. Detailed settings 
for the training of deep learning models

The whole process was coded in the PyTorch (v1.10) (Mazza 
and Pagani 2020) framework. To reduce the dependence on 
the computer memory size, each training sample was furtherly 
divided into 64 patches [256m × 256m for one patch and 8 × 8 
patches (2048/256 = 8)]. 80% of the training dataset was used 
for training and the remaining 20% was reserved for perfor-
mance evaluation. Data augmentation is a common strategy 
used in deep learning training (Wong et al. 2016; Diakogiannis 
et al. 2020), especially when the training dataset is not suf-
ficient. In this study, training samples were augmented with 
the transform modules implemented in torchvison(Mazza 
and Pagani 2020) including RandomHorizontalFlip, Ran-
domVerticalFlip, ColorJitter, RandomAdjustSharpness, and 
RandomAutocontrast. Following Li’s work (Li et al. 2019b), 
the initial learning rate for training the classification model 
is 2.5 × 10−4 and decreased with a ‘poly’ learning rate policy 
with power as 0.9. The batch size is set to 4 and the CycleGAN 

model was trained for 15 epochs. The training process was 
conducted on a computer platform with an Intel(R) Core i7 
9700K CPU, 64 GB of RAM, and two Nvidia RTX 2080Ti 
graphics processing units (GPUs).

Appendix E. Correlation analysis result 
in 2020

Correlation analysis was conducted using meteorological param-
eters from 2020. Seasonal and annual average values were used 
for analysis. Additional analysis for air quality parameters hasn't 
been conducted, because the available air quality stations in 
Shanghai are all located in compact urban areas which are inap-
propriate for analysis. As listed in Table6, the results indicate a 
small seasonal variation for most of the correlation coefficients 
except for two cases: first, the relative humidity is correlated 
with artificial surfaces in the summer of Beijing which is not 
shown in other seasons; Second, in the autumn of Beijing and 
GBA, the correlation coefficients is different from other seasons.

Fig. 12   The classification result on the Google image of the M2(3) 
model. Image differences are highlighted using red frames. (a1-a4) 
classification result on Google image with minor difference. (b1-b4) 

classification result on Google image with the difference caused by 
the off-nadir view angle. (c1-c4) classification result on Google image 
with large land cover change
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Appendix F. Correlation analysis result 
for air pollution

The PM2.5 and PM10 concentrations are positively correlated 
with artificial land cover fraction in Shanghai, whereas this rela-
tionship is insignificant in Beijing and GBA (Table7). The strong 
background PMs pollution and regional transport of pollutants 
can weaken the significance of intra-urban differences (Wang 
et al. 2014; Tao et al. 2017; Liu et al. 2017; Fan et al. 2020). 
Studies have shown that the air pollution in Beijing and GBA 
is significantly affected by its surrounding area (Liu et al. 2013; 
Xue et al. 2016; Tao et al. 2017). The local industrial activi-
ties and vehicle emission are the major contributors to PMs in 
Shanghai (Wang et al. 2014), which may explain its stronger 
correlation than the other two areas.

There is a ubiquitous correlation (0.26 to 0.38) between 
NO2 concentrations and artificial land cover in all areas 
(Table 7). The traffic in urban areas with dense populations 
is usually heavier than that in rural areas as a major source 
for NO2 in urban areas (Lee et al. 2014; Fan et al. 2020; 
Xue et al. 2020). The NO2 concentrations of those sites vary 
significantly even with a similar artificial surface fraction 
(Fig. 13(c, e)). This can be explained by the fact that the 
traffic intensity can be significantly different even when the 
fraction of artificial land cover is similar. Furthermore, other 
local factors like ship emissions can be an important factor 
affecting the correlation result (Xue et al. 2020).

Traffic is also a major factor in total CO emissions 
(Hrebtov and Hanjalić 2019). The results show that the 

CO concentration also has a distinct variation even in 
areas with a similar artificial surface fraction (Fig. 14 a, 
d). However, the correlation between CO concentration and 
artificial land cover in GBA is weaker (− 0.02 to 0.23) than 
that of NO2. This is probably because the concentration 
of CO is also affected by agricultural and/or residential 
heating-related biomass burning in rural areas (Sokhi et al. 
2021).

A negative correlation (− 0.42 to − 0.46) exists between 
the fraction of artificial surface and SO2 concentrations in 
the summer of Shanghai and Beijing. The major sources of 
SO2 are heavy industries and coal-fired power stations (Yoo 
et al. 2015; Xue et al. 2016, 2020; Li et al. 2017), and these 
heavy industries are normally located in suburban or rural 
areas. Therefore, the SO2 emissions in rural industrial land 
can be larger than in urban residential areas. For instance, 
with a heavier industrial intensity, the SO2 emission in the 
northern region of Shanghai is larger than in the denser 
urban central region (Xue et al. 2020). The local concentra-
tion of SO2 also depends on the wind direction. In the sum-
mer of Shanghai, the prevailing southeast monsoon from the 
sea brings cleaner air, causing a lower SO2 concentration in 
urban areas (Xue et al. 2020). However, in other seasons, the 
north wind from more polluted inland may lead to a similar 
SO2 concentration throughout the city, making it a regional 
pollution problem and reducing the intra-urban variability. 
Therefore, the correlation in Spring can be weak. The corre-
lation between SO2 and artificial surfaces in GBA is weaker 
than in Shanghai and Beijing. Unlike Shanghai and Beijing, 

Table 6   Correlation coefficients 
between land cover and 
meteorological factors for each 
season in 2020. Bold values 
(with |r|≥ 0.3) indicate a linear 
correlation. Spring: Mar. 21 
to Jun. 20; Summer: Jun. 21 
to Sept. 20; Autumn: Sept. 21 
to Dec. 20; Winter: Dec. 21 to 
Mar. 20

** . Significant correlation at 0.01 level (bilateral)
* . Significant correlation at 0.05 level (bilateral)

Artificial Natural

Season Beijing Shanghai GBA Beijing Shanghai GBA

AT Spring 0.70** 0.64** 0.60  − 0.75**  − 0.62**  − 0.60**

Summer 0.70** 0.67* 0.60  − 0.73**  − 0.64**  − 0.52**

Autumn 0.68** 0.83** 0.59**  − 0.73**  − 0.81**  − 0.66**

Winter 0.66** 0.71** 0.60**  − 0.71**  − 0.75**  − 0.64**

Annual 0.70** 0.73** 0.66  − 0.75**  − 0.73**  − 0.68*

RH Spring  − 0.24  − 0.33**  − 0.41** 0.31 0.28* 0.31**

Summer  − 0.41**  − 0.41**  − 0.39** 0.45** 0.34** 0.25**

Autumn  − 0.03**  − 0.49**  − 0.64** 0.06 0.44* 0.59
Winter  − 0.02  − 0.41**  − 0.55** 0.05 0.39* 0.49
Annual  − 0.16**  − 0.42**  − 0.53** 0.20 0.37** 0.44

WS Spring  − 0.47**  − 0.29**  − 0.20** 0.50** 0.44** 0.14**

Summer  − 0.38**  − 0.21**  − 0.05** 0.42** 0.37**  − 0.02**

Autumn  − 0.26**  − 0.19**  − 0.41** 0.27** 0.34** 0.30**

Winter  − 0.36**  − 0.27**  − 0.26** 0.36** 0.40** 0.19**

Annual  − 0.39**  − 0.25**  − 0.25** 0.41** 0.39** 0.18**
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there still are heavy industries and electric power stations 
(Hu et al. 2021) in the center of GBA (Foshan city), which 
can weaken urban–rural differences.

There is no clear correlation shown for the O3 
concentration, which may be because O3 has a more complex 

photochemical generation mechanism than other pollutants 
(Ren et al. 2021). The formation of O3 can be affected by 
factors like air temperature and reduced solar radiation in 
rainy seasons. Therefore, the O3 concentration shows a 
strong seasonal variation (Fan et al. 2020).

Table 7   Correlation coefficients 
between land cover and air 
quality factors for two seasons 
in 2021. Bold values (with 
|r|≥ 0.3) indicate a correlation

** . Significant correlation at 0.01 level (bilateral)
* . Significant correlation at 0.05 level (bilateral)

Artificial Natural

Season Beijing Shanghai GBA Beijing Shanghai GBA

PM2.5 Spring (Mar. 21 to Jun. 20) 0.00 0.35** 0.11**  − 0.13**  − 0.44  − 0.08**

Summer (Jun. 21 to Sep. 20) 0.15** 0.22** 0.13**  − 0.28**  − 0.31**  − 0.13**

Overall (Mar. 21 to Sep. 20) 0.06** 0.28** 0.13**  − 0.19**  − 0.39**  − 0.11**

PM10 Spring (Mar. 21 to Jun. 20) 0.17** 0.44** 0.19  − 0.25**  − 0.43**  − 0.17**

Summer (Jun. 21 to Sep. 20) 0.10 0.44** 0.15**  − 0.22**  − 0.45**  − 0.16**

Overall (Mar. 21 to Sep. 20) 0.15** 0.44 0.18**  − 0.24  − 0.45**  − 0.17**

NO2 Spring (Mar. 21 to Jun. 20) 0.34** 0.38** 0.26**  − 0.49**  − 0.30**  − 0.30**

Summer (Jun. 21 to Sep. 20) 0.31** 0.35** 0.28**  − 0.48**  − 0.18**  − 0.31**

Overall (Mar. 21 to Sep. 20) 0.33** 0.38** 0.27**  − 0.49**  − 0.27**  − 0.31**

CO Spring (Mar. 21 to Jun. 20)  − 0.03** 0.12** 0.23**  − 0.03**  − 0.31**  − 0.21**

Summer (Jun. 21 to Sep. 20) 0.05** 0.05** 0.20**  − 0.16**  − 0.18**  − 0.17**

Overall (Mar. 21 to Sep. 20) 0.01** 0.09** 0.22**  − 0.12**  − 0.27**  − 0.20**

SO2 Spring (Mar. 21 to Jun. 20)  − 0.02** 0.13**  − 0.18**  − 0.05**  − 0.23** 0.14**

Summer (Jun. 21 to Sep. 20)  − 0.42**  − 0.46**  − 0.10** 0.42** 0.42** 0.04**

Overall (Mar. 21 to Sep. 20)  − 0.31**  − 0.29**  − 0.14** 0.27** 0.21** 0.09**

O3 Spring (Mar. 21 to Jun. 20)  − 0.29**  − 0.05**  − 0.05** 0.38** 0.07** 0.13
Summer (Jun. 21 to Sep. 20) 0.24** 0.10** 0.00**  − 0.30**  − 0.13** 0.01
Overall (Mar. 21 to Sep. 20)  − 0.03**  − 0.01**  − 0.03** 0.05** 0.00** 0.08

Fig. 13   Relationship between urban land cover indicators and air quality indicators (two-season average values, PM2.5, PM10, NO2) in three 
regions
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