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Abstract
Water hyacinth (WH) is used as the substrate for biogas production due to its high lignocellulosic composition and 
natural abundance. The present study used thermal and chemical (alkali) pretreatment techniques to enhance biogas 
production from water hyacinth used as a substrate by anaerobic digestion. Thermal pretreatment was done using an 
autoclave at 121 °C and 15 lb (2 bar) pressure and alkali pretreatment by NaOH at two concentrations (2% and 5% w/v). 
The inoculum:substrate ratio for biogas production was 2:1, where cow dung was used as inoculum. Results indicated 
that the pretreatments increased biomass degradability and improved biogas production. Water hyacinth pretreated with 
5% NaOH produced the highest amount of biogas (142.61 L/Kg VS) with a maximum methane content of 64.59%. The 
present study found that alkali pretreatment can modify the chemical structure and enhance WH hydrolysis, leading 
to enhanced energy production.
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Introduction

Researchers have mainly concentrated on the bioenergy sector 
as a step towards a low carbon future due to its rising energy 
demand. It is noteworthy to mention that the biogas sector is 
receiving greater attention compared to other renewable sources 
because of the availability of feedstocks, effectiveness in green-
house gas (GHG) mitigation, and value addition to biomass 
waste (Show et al. 2022; Chan et al. 2019; Loy et al. 2018; Luo 
and Zhou 2012). Yan and Guo (2017) reported that water hya-
cinth (WH), also known as Eichhornia crassipes, is an invasive 
plant species native to the Amazon Basin of South America 
(Ilo et al. 2021) and is linked to its distinguishing biological 
structures apart from intense eutrophication of water bodies.

WH is considered a promising feedstock for anaerobic 
digestion (AD) due to its high reproductive capability, no 
risk to food security worldwide, easy hydrolyzable sugars, 
and lower lignin content (Koley et al. 2023a, b; Basu et al. 
2021; Ilo et al. 2021). Numerous researches have been car-
ried out on AD of WH using various types of inoculums 
such as cow dung (Bhui et al. 2018; Ali et al. 2022), buf-
falo dung, poultry litter (Castro and Agblevor 2021), and 
anaerobic sludge (Barua and Kalamdhad 2019) in various 
inoculum:substrate (I:S) ratios (Show et  al. 2023). The 
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availability of nutrients is directly related to the degrada-
tion of substrates (Zhou et al. 2017). The addition of cow 
dung ensures the carbon-nitrogen (C/N) balance, enriches 
the microbial consortia, and enhances the degradation kinet-
ics. This method needs future and critical investigations. A 
challenge encountered in using lignocellulosic biomass for 
the bio-conversion process is the structural resistance of 
lignocellulosic biomass cell wall components, which needs 
to be pretreated before the bioconversion process (Banerjee 
et al. 2022; Show et al. 2022; Sinha et al. 2021).

Pretreatment is essential when utilizing biomass (Sheng 
et al. 2021) as a feedstock for the bioenergy process. It is 
vital for accelerated biomass conversion into hydrolyz-
able sugars (Sankaran et al. 2020). Bioenergy and biofuels 
derived from lignocellulosic and microalgal biomass are 
substitute renewable energy sources (Bajpai and Nemade 
2023; Roy et  al. 2022). Previously, WH was pretreated 
with a wide variety of methods like acid (Sathyanagalak-
shmi et al. 2011), alkali (Aswathi et al. 2013), biological 
(Sinegani et al. 2005), hot water (Saha et al. 2014), micro-
wave-alkali (Zhang et al. 2016), ultrasound combined alkali 
(Soontornchaiboon et  al. 2016), catalytic hydrothermal 
liquefaction (Singh et al. 2015), calcium peroxide (Cheng 
et  al. 2015), thermo-chemical conversion (Huang et  al. 
2016), and microwave-assisted alkali-organosolvent (Das 
et al. 2016) to increase their biodegradability for enhanc-
ing bioenergy production capability with increasing their 
methane yield (Patil et al. 2011; Lin et al. 2015; Zhang et al. 
2018). Mathew et al. (2011) suggested that alkaline pretreat-
ment is more energy efficient than acid pretreatment. NaOH 
pretreatment has shown an effective ability to remove amor-
phous substances than other techniques (Singh and Singh 
2021). The biogas production from WH can be accelerated 
by the thermal process (Barua and Kalamdhad 2017a, b) 
using an autoclave (Kurniawan et al. 2014). It is still neces-
sary to fine-tune pretreatment technologies for various bio-
mass types and improve an economically feasible technique 
(Sankaran et al. 2020). The objective of the present study 
encompasses the effect of thermal (autoclave) and alkali (5% 
and 2% NaOH) pretreatment on WH to enhance the biogas 

production through various analytical techniques, such as 
pH, COD, reducing sugar, production of volatile fatty acids 
(VFA) like acetic acid, and methane concentration.

Materials and methods

Feedstock collection and preparation

In this study, fresh WH was collected from ponds in San-
tiniketan, West Bengal, India (23.6800° N, 87.6800° E). The 
ponds were clean and received no pollutants from the nearby 
area. The harvested WH plants were carried to the labora-
tory in polyethylene plastic bags and cleaned to eliminate 
impurities, like dead plant parts, and the root portions were 
also removed before milling before the pretreatment. Wet 
biomass was milled in a mixer blender and kept at 4 °C 
for 48 h prior to anaerobic digestion. Locally collected and 
stored cow manure was used for anaerobic digestion. WH 
and cow dung’s total solids (TS) and volatile solids (VS) 
contents were separately calculated, and the digester was 
loaded based on the volatile solids concentration (Table 1) 
(Mathew et al. 2015). The TS content of pretreated and 
untreated WH varied between 3.7 and 4.8%. The pH was 
determined employing the Thermo Scientific Orion ROSS 
electrode and electrical conductivity by DuraProbe 4-Elec-
trode Conductivity Cells using the Thermo Scientific 
ORION Star A329 meter. Total nitrogen content, in the form 
of Kjeldahl nitrogen, was determined using the N-Kjeldahl 
method developed by Kjeldahl (1883). Organic carbon con-
tent was measured through the Walkley and Black method 
(Walkley and Black 1934).

Pretreatments of water hyacinth

Chemical pretreatment

Sodium hydroxide (NaOH) was used for chemical pretreat-
ment. The NaOH was purchased from Sigma-Aldrich with 
a purity of ≥ 97%. Two different strengths of NaOH were 

Table 1  TS and VS concentration

*500 mL of distilled water was added additionally in each reactor

Sample VS% Moisture 
content 
(%)

Weight of 
substrate in the 
digester (g)

Weight of inocu-
lum in the digester 
(g)

pH EC (mho/cm) TN (Kg/Ha) C/N ratio

Pretreatment of WH 2% NaOH* 61.19 96 117.84 235.68 8.3 7.637 616 19.3 ± 1.3
Pretreatment of WH 5% NaOH* 51.19 95.6 141.22 282.44 11.07 12.50 616 18.7 ± 1.3
Pretreatment of WH autoclave* 67.61 95.2 106.92 213.84 5.82 6.087 308 25.7 ± 1.3
Control* 72.97 96.3 99.08 198.16 7.16 4.441 184.8 29.0 ± 1.3
Cow dung* 72.3 87 00 200 6.89 4.936 739.2 17.0 ± 2.6
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used: 2% (w/v) and 5% (w/v). The pretreatment was con-
ducted for 48 h. This chemical pretreatment aims to break 
down and solubilize organic matter in the WH, making it 
more accessible for bacterial degradation and subsequent 
biogas generation.

Thermal pretreatment

An autoclave was used for thermal preparation. The thermal 
treatment was carried out at 121 °C (approximately 250 °F). 
The pressure during thermal preparation was 15 lb (2 bar) 
for 15 min. The thermal preparation involves subjecting the 
WH to high temperature and pressure conditions. This helps 
in sterilizing the material and further breaking down com-
plex organic compounds.

Anaerobic digestion of aquatic weeds

Cow dung was employed as an inoculum and WH as a sub-
strate in a biogas generation process with a 2:1 inoculum 
to substrate ratio using the Mathew et al. (2015) technique, 
employing a 2-L digester bottle (Tarsons, India) (Fig. 1) in a 
batch culture. The anaerobic environment in the digesters was 
created by flushing them with nitrogen gas for 5 min and then 
sealing them. A temperature-regulating water shaking bath 
at 37 ± 2 °C was used to maintain the anaerobic digesters. 
Experiments were carried out in triplicate for each treatment.

Analytical methods

The COD was analyzed by the method of Yadav et  al. 
(2006). COD tests were conducted using the reflux method 
and determined by oxidizing the organic matter in the sam-
ple with the  K2Cr2O7 solution. Titration with a ferrous 

ammonium sulfate solution determines the oxygen required 
for this oxidation, comparable to the COD. The procedure 
guarantees that all organic matter is oxidized, and the find-
ings are represented as COD, which measures the quantity of 
organic and inorganic compounds in a sample that chemical 
agents may oxidize.

The biogas volume was measured by the water displace-
ment method (Sunarso et al. 2010). The volume of gas pro-
duced was equal to the volume of water displaced from the 
measuring cylinders.

The methane and carbon dioxide percentage in the biogas 
was measured by gas chromatograph (GC) with a thermal 
conductivity detector (Mathew et al. 2015) using helium 
as the carrier gas. The column used was HP-molesieve; its 
dimensions were 30 m in length, a diameter of 0.32 mm, and 
a film thickness of 12 m. The injector and detector tempera-
tures were maintained at 200 °C and 250 °C, respectively. 
The temperature range was set to rise from 40 °C for 5 min 
to 250 °C at a rate of 20 °C for 10 min. The GC was cali-
brated using a synthetic gas combination of 3 standards like 
(i) 75% methane, 5% carbon dioxide, 5% hydrogen, and 15% 
nitrogen; (ii) 50% methane, 10% carbon dioxide, 2% hydro-
gen, and 38% nitrogen; and (iii) 25% methane, 20% carbon 
dioxide, 1% hydrogen, and 54%.

The VFA sample was extracted using the method of 
Manni and Caron (1995). The volatile fatty acid (VFA) was 
analyzed by GC-FID using an EBX-70 column (length of 60 
m, a diameter of 0.25 mm, and a film thickness of 0.25 m) 
with helium as a carrier gas and hydrogen as a combustion 
gas. One microliter of the sample was purged using an auto-
injection system. The injector and detector were set at a tem-
perature of 250 °C. The column temperature was designed 
to start at 70 °C with a holding period of 3 min, which was 
raised to 180 °C at a rate of 10 °C with a holding period 
of 6 min. The VFA standard (Volatile Free Acid Mix) was 
procured from Sigma-Aldrich (Supelco Bellefonte, USA).

Results and discussion

Changes in pH in various treatments

The pH value decreased significantly over the first few days 
of incubation in all treatments. It recovered as a result of 
the hydrolysis/acidogenesis process using VFA (Wang et al. 
2017). The pH range of 6.5–8.2 is known to be optimum 
for methane generation (Kothari et al. 2014). In the pre-
sent study, the pH range was found to be optimum in all the 
treatments. The pH range for pretreatment with 5% NaOH 
was 8.32 to 6.86; for pretreatment with 2% NaOH, it was 
8.13 to 6.92; for thermal pretreatment, it was 7.51 to 6.9 
(Fig. 2). Adding NaOH will increase the concentration of 
hydroxide ion which raises the pH, so that 5% NaOH has Fig. 1  Laboratory biogas setup
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the maximum pH value in the present study. In all the treat-
ments, the maximum pH was reduced on day 5 as organic 
acids were produced. After that, the pH again increased as 
the concentration of ammonia increased due to the digestion 
of nitrogen (Angelidaki and Ahring 1993). A similar trend in 
pH change was observed in a study conducted by Dai et al. 
(2018), where maximum pH reduction was found on day 6 
and increased pH.

Changes in COD in various treatments

COD is a crucial metric in the AD process. Syaichurrozi and 
Sumardiono (2013) state that biogas production is directly 
proportional to COD removal. There, the maximum removal 
of COD was 38%, where vinasse was used as a substrate. 
The present study found a maximum COD reduction in 5% 
NaOH alkali pretreatment (68.17%). The initial COD was 
208.65 mg/L; at the digestion end, the COD was 66.4 mg/L. 
The COD reduction in 2% NaOH pretreatment was from 
198.35 to 72.56 mg/L (63.41%), and in thermal pretreatment, 

it was 190.5 to 90.44 mg/L (52.52%) (Fig. 3). In a previous 
study, WH pretreated with 121 °C and pH 13 (pH adjusted 
by NaOH) can solubilize 66.64% of COD (Patel et al. 1993). 
However, the previous study suggests that biological pretreat-
ment can help in more COD reduction (Sinha et al. 2021). 
Studies suggested that COD removal depends upon various 
physiological parameters like pH, temperature, hydraulic 
retention time, and organic loading (Chen et al. 2014; Jiang 
et al. 2014; Fu et al. 2015; Wu et al. 2016).

Changes in day‑wise reducing sugar production 
in various treatments

In the initial process of biogas production, complex poly-
mers of lignocellulosic material are converted into reducing 
sugars which play a crucial role in the hydrolysis and acido-
genesis step in AD (Xu et al. 2019). Finally, the concentra-
tion of these reducing sugars aids in determining the degree 
of hydrolysis (Vanegas et al. 2015), which leads to VFA 
formation and the final product as biogas. Across the present 

Fig. 2  Comparison of day-wise 
pH change in various treatments

Fig. 3  Comparison of day-wise 
COD change in various treat-
ments
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study, maximum reducing sugar production was observed 
at day 2 in 5% NaOH alkali pretreatment, leading to maxi-
mum biogas production (294.74 mg/mL). In 2% NaOH pre-
treatment, the reducing sugar production was (212.42 mg/
mL), while in thermal pretreatment, it was (261.58 mg/mL) 
(Fig. 4).

Changes in day‑wise VFA production in various 
treatments

VFA concentration plays a vital role as a sensitive indica-
tor in the AD process. Accumulation of VFA could inhibit 
methanogenesis. The present study monitored the total VFA 
production during the anaerobic digestion of WH pretreated 
with different concentrations of NaOH and autoclaving. 
A maximum VFA accumulation was found in 5% NaOH 
alkali pretreatment (1876.12 ppm), followed by thermal 
(1641.82 ppm), and 2% NaOH pretreatment (1614.32 ppm) 
(Fig. 5). Maximum amount of VFA was found at day 9, and 

the beginning of the methanogenesis phase might indicate 
the progressive decrease of VFA. According to Barua and 
Kalamdhad (2017a, b), the highest VFA production levels 
for untreated and hot air oven-pretreated WH were found 
on day 14 in concentrations of 1491 mg/L and 1758 mg/L, 
respectively. The present study reports higher VFA produc-
tion than WH pretreated with dilute acid-thermal pretreat-
ment and cattle dung biochar (Suthar et al. 2022). This study 
justified the methanogenic activity as the previous study 
suggests a VFA concentration of more than 6000–8000 
mg/L inhibits methanogenesis (Karthikeyan and Visvana-
than 2013). In this study, acetic acid production with alkali 
and thermal (autoclave) pretreated WH has been monitored; 
it was observed that with the 5% NaOH pretreatment, the 
maximum accumulation of acetic acid was 380 ppm and 350 
ppm, 326 ppm with the 2% alkali and thermal pretreatment 
on the 9th day with the gradual decrease till the end of the 
fermentation period (Fig. 6). Although the AD process took 
25 days, no significant changes were seen after day 9. The 

Fig. 4  Comparison of day-wise 
reducing sugar production in 
various treatments

Fig. 5  Comparison of day-wise 
VFA production in various 
treatments
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considerable decline in acetic acid suggests that the methane 
produced from the VFAs is created during hydrolysis (Sinha 
et al. 2021). Consequently, the reactors’ VFA production was 
within the available range; thus, there was no operational 
imbalance brought on by VFA buildup.

Comparison of methane and biogas production 
in various treatments

Biogas and methane production from WH with different 
pretreatment techniques was monitored for 25 days. Barua 
and Kalamdhad (2017a, b) previously reported that WH 
pretreated with hot water produced 193 ± 22 mL  CH4/g 
VS on the 14th day with 67.4 ± 0.3% methane content. In 
this present study, the pretreatment process with the most 
significant methane concentrations was 5% NaOH alkali 
(64.59%), followed by thermal pretreatment (54.24%), and 
2% NaOH alkali (51.47%) (Fig. 7). On day 12, the meth-
ane concentration was highest in 5% alkali treatment. Still, 

the methane concentration peaked on day 25 for the other 
treatments, which was not more significant than the con-
trol. Pretreated WH also shows maximum biogas production 
with 5% NaOH (142.61 L/Kg VS), while 2% NaOH alkali 
treatment results in lower biogas production (137.47 L/Kg 
VS) than thermally treated WH (139.11 L/Kg VS) (Fig. 8). 
The model’s variance analysis (ANOVA) result produces 
an F value of 300.091 and predicted R2 values of 0.995 and 
0.998, indicating a well-fitted model. Table 2 provides a 
summary of the ANOVA results that were used to determine 
the regression validation for modifying the biogas produc-
tion. The significance of regression, as determined by the F 
test, indicates the model’s suitability, reliability, and accu-
racy. According to the present analysis, total biogas produc-
tion has increased considerably within 25 days. Overall, 5% 
NaOH and thermal treatment enhanced biogas production 
significantly (P ≤ 0.01) compared to 2% NaOH treatment.

The structure of the WH cell wall was altered by alkali 
pretreatment using 5% NaOH; the organic matter content is 

Fig. 6  Comparison of day-wise 
acetic acid production in vari-
ous treatments

Fig. 7  Comparison of methane 
production in various pretreat-
ments
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made more vulnerable to bacterial assault, which enhances 
the biogas generation process (Martin and Hadiyanto 2020). 
An increase in the intensity of NaOH pretreatment can lead 
to higher lignin reduction (Jung et  al. 2020). However, 
it is important to note that an increase in the intensity of 
NaOH pretreatment can also cause a greater loss of total 
biomass (Fahmayanti and Abtokhi 2018). A similar trend 
was in Barua and Kalamdhad (2017a, b), where hot water 
pretreated WH produced maximum biogas and methane at 
day 14. This performance supports past findings by other 
researchers that pretreatment of WH with NaOH catalyzes 
the production of biogas, which results in a higher yield 
(Patil et al. 2011). In this study, the final methane concen-
tration was higher in 5% alkali treatment than the untreated 
WH reported by Chanakya et al. (1993) and pretreated with 
dilute acid-thermal pretreatment and cattle dung biochar 
(0.5 and 1.5% of biochar) reported by Suthar et al. (2022). 

Yet, methane yield was similar, as reported by Ferrer et al. 
(2010). However, a study by Bhui et al. (2018) suggested 
that inoculum to substrate ratio of 3:1 can produce a maxi-
mum biogas of up to 383 L/Kg. Still, the methane concentra-
tion was lower than in this current study with the 5% NaOH 
alkali pretreatment technique.

Energy equivalent: an environmentally friendly 
strategy

Using the fundamental energy equivalents, the potential of 
WH-derived biogas for power generation with alkali treat-
ment was estimated. In this present study, the total biogas 
production from 5% NaOH pretreated WH was 142.61 L/Kg 
VS with 64.59% methane content. To estimate the electrical 
potential, it was assumed that 1  m3 of biogas has a calorific 
value of 22 MJ, and 1  m3 of methane has a calorific value of 
36 MJ. One cubic meter of biogas will produce 2.14 kWh 
of power, and 1  m3 of methane will produce 10 kWh of 
electricity under the premise that the electrical conversion 
efficiency is 35%. Therefore, according to this current study, 
it was estimated that 0.305 kWh of electricity from biogas 
and 0.92 kWh of electricity from the methane content could 
be generated from 5% NaOH pretreated WH. Families may 
benefit from using the generated biogas instead of the pol-
luting firewood, kerosene, and dung cake, and the electricity 
will help in human welfare.

Conclusion

The research emphasized the potential of the aquatic weed 
Eichhornia crassipes, used to produce biogas. The pretreat-
ment process with alkali and thermal was utilized to increase 
biogas generation. Results show that the pretreatments 
boosted gas generation and increased biomass degradability. 

Fig. 8  Comparison of biogas 
generation across different 
treatments

Table 2  Analysis of variance (ANOVA) between days and pretreat-
ments (thermal and NaOH)

***Significant level: < 0.01

Time Sum of squares Mean square F Sig.

Model 14.971 2.139 300.091*** 0.000
Day 5 558.854 186.285 41.480*** 0.000
Day 9 775.044 258.348 94.963*** 0.000
Day 12 405.225 135.075 48.441*** 0.000
Day 16 275.194 91.731 24.641*** 0.000
Day 20 185.730 61.910 16.014*** 0.001
Day 22 135.266 45.089 11.654*** 0.003
Day 25 154.178 51.393 20.288*** 0.000
R square 0.998
Adjusted R 

square
0.995

Significance 
level

<0.000
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Thermal pretreatment did not result in any additional enhance-
ment or appreciable changes to WH digestion. The methane 
concentration is highest in the 5% NaOH alkali pretreatment 
(64.59%), which can produce 0.92 kWh of electricity, fol-
lowed by thermal pretreatment (54.22%) and 2% NaOH alkali 
pre-treatment (51.47%). Pretreated WH with 5% NaOH shows 
maximum biogas production (142.61 L/Kg VS) than WH pre-
treated with thermal treatment (137.56 L/Kg VS).
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