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Abstract
Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition 
of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a 
valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capa-
bilities of four deep learning (DL) models — namely, recurrent neural network (RNN), long short-term memory (LSTM), 
gated recurrence unit (GRU), and temporal convolutional network (TCN) — in forecasting Chl-a concentrations; (2) the 
incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting 
genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the 
developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed 
hourly Chl-a concentration lag times, extending up to 6 h, as models’ inputs to forecast Chla (t+1). The proposed models 
underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone 
DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN 
models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-
objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a 
concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model 
across a range of evaluation indices. For instance, considering the R-squared metric, the study’s findings demonstrated that 
the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements 
of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.

Keywords Water quality forecasting · Ensemble model · Deep learning (DL) · Single- and multi-objective optimization 
algorithms · Non-dominated genetic algorithm (NSGA-II)

Abbreviation
AI  Artificial intelligence
ANFIS  Adaptive neural-based fuzzy inference 

system
ANN  Artificial neural network
BPNN  Back propagation neural network
CD  Crowding distance
Chl-a  Chlorophyll-a
CNN  Convolutional neural networks
CEEMDAN  Complete ensemble empirical mode 

decomposition with adaptive noise
VMD  Variational mode decomposition
DL  Deep learning
DO  Dissolved oxygen
EC  Electrical conductivity
ELM  Extreme learning machine
EM  Ensemble model
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EM-GA  Ensemble model based on genetic 
algorithm

EM-NSGA-II  Ensemble model based on non-domi-
nated sorting genetic algorithm

FFNN  Feed-forward neural network
GA  Genetic algorithm
GRU   Gated recurrent unit
LSTM  Long short-term memory
LSSVM  Least-squares support vector machine
MAE  Mean absolute error
MARE  Mean absolute relative error
ML  Machine learning
MOO  Multi-objective
MP  Mutant population
MSE  Mean square error
ND  Non-dominated
NSE  Nash-Sutcliffe efficiency
NSGA-II  Non-dominated sorting genetic algorithm
OP  Offspring population
ORP  Oxidation-reduction potential
P  Population
pH  Power of hydrogen
PRMSE  Percentage root mean square error
RMSE  Root mean square error
RMAE  Root mean absolute error
RNN  Recurrent neural network
R-squared  (R2)  Coefficient of determination
Water Temp.  Water temperature
TCN  Temporal convolutional network
TDS  Total dissolved oxygen
SOO  Single objective
SPL  Small Prespa Lake
SVM  Support vector machine
SVR  Support vector regression
WQV  Water quality variable

Introduction

Sustainable water management entails using water in a way 
that fulfills present human needs while also ensuring its 
availability for future generations (Azizi et al. 2022; Nova 
2023). It requires careful consideration of three aspects, 
including economic efficiency, social quality, and environ-
mental preservation (Jahanshahi and Kerachian 2019; Jahan-
shahi et al. 2023). The concept of sustainable development 
is intricately tied to water quality management. This integra-
tion is explicitly embraced within the sustainable develop-
ment framework (Chapman and Sullivan 2022). In addition 
to playing an important role in environmental processes, 
water quality also has a profound effect on human and ani-
mal health. Water contamination can cause serious health 
problems, including gastrointestinal diseases, skin diseases, 

and cancer, among others (Lin et al. 2022; Babuji et al. 
2023). Therefore, monitoring the quality of water is a funda-
mental component of effectively managing water resources 
(Sinshaw et al. 2019; Uddin et al. 2021). Evaluating water 
quality involves the monitoring of diverse variables, with the 
resulting data finding application across multiple domains. 
For instance, the analysis of surface and groundwater quality 
through spatiotemporal data (Yan et al. 2022; Zamani et al. 
2023b; Uddin et al. 2023a, b, c) aids in the identification of 
emerging contaminants, thereby facilitating the formulation 
of effective strategies for safeguarding and conserving envi-
ronments (Nadiri et al. 2022). Additionally, WQVs can be 
integral in optimizing reservoir operations and water alloca-
tion (Nikoo et al. 2013), as well as in establishing dedicated 
networks for water quality monitoring (Jiang et al. 2020).

Globally, one of the noteworthy concerns considering 
water quality is the eutrophication of reservoirs and rivers, 
which poses significant economic, social, and environmental 
risks (Vinçon-Leite and Casenave 2019). This phenomenon 
entails water bodies becoming enriched with excessive plant 
nutrients, primarily phosphorous and nitrogen. The prolifera-
tion of these nutrients leads to an accelerated growth of algae, 
significantly deteriorating the quality of water across diverse 
sources (Boyd 2020; Uddin et al. 2022b). Chl-a is one of the 
commonly employed indicators for assessing eutrophication, 
offering the potential to supply an approximation of the algae 
concentration in a water body (Zhang et al. 2019). Thus, mon-
itoring the levels of Chl-a using AI tools, as an innovative 
and efficient approach, can help manage water bodies more 
sustainably (Shin et al. 2020; Barzegar et al. 2020). Numerous 
research studies are available within the scope. For example, 
Li et al. (2017) utilized hybrid ANNs to forecast Chl-a levels, 
as a representative index of eutrophication, in several lakes in 
China. Guo et al. (2018) assessed the condition related to the 
nutrient status of a water supply reservoir by analyzing Chl-a 
data during different seasons. Papenfus et al. (2020) investi-
gated the feasibility of utilizing spectral bands within remote 
sensing data to monitor Chl-a levels in lakes and reservoirs 
located in the USA by analyzing both in situ measurements 
and satellite imagery on a nationwide scale.

ML and its subset, DL, have transformed the field of AI 
with their applications. Such approaches have increasingly 
gained popularity in the field of water resources such as 
in hydrology (Khosravi et al. 2021; Meydani et al. 2022). 
Most traditional knowledge-driven methods are laborious 
and susceptible to prediction errors since they presume lin-
ear relationships among variables (Ma et al. 2014). Unlike 
traditional models, ML and DL models excel in manag-
ing complex and non-linear systems due to their ability to 
operate without the need for an initial hypothesis regard-
ing the data structure or underlying physical processes 
(Shen et al. 2018; Barzegar et al. 2019; Sahraei et al. 2021; 
Uddin et al. 2022a). Ewuzie et al. (2022) highlighted the 
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increasing interest in the use of ML and DL, particularly 
DL, in the domain of modeling and predicting/forecasting 
water quality. Numerous studies have explored the capability 
of different AI models, encompassing ML and DL models, 
such as NB (Bhardwaj et al. 2022; Uddin et al. 2023a, b, 
c), RF (Sakaa et al. 2022; Virro et al. 2022; Zamani et al. 
2023a), ANNs (Chen and Liu 2014; Dawood et al. 2021; 
Wang et al. 2022; Georgescu et al. 2023; Farshbaf Aghajani 
et al. 2023), RNN (Cho et al. 2014; Qi et al. 2020; Prasad 
et al. 2022; Ni et al. 2023), BPNN (Barzegar and Asghari 
Moghaddam 2016; Chen et al. 2023b), ANFIS (Gaya et al. 
2020; Rizal et al. 2023), SVM (Haghiabi et al 2018; Chou 
et al. 2018; Elkiran et al. 2019; El Bilali and Taleb 2020; 
Ortiz-Lopez et al. 2022; Uddin et al. 2023a, b, c), ELM (Zhu 
and Heddam 2020), MLR (Barzegar et al. 2017; Liu et al. 
2019), CNN (Pyo et al. 2020; Chen et al. 2020b), LSTM (Li 
et al. 2022; Liang et al. 2020; Kouadri et al. 2021), GRU 
(Luo et al. 2019; Fu et al. 2021), and TCN (Chen et al. 
2020a) for predicting/forecasting various WQVs, such as 
DO, salinity, fluoride, Chl-a (Choi et al. 2019), TDS, and 
EC (Li et al. 2019).

While individual ML/DL models can achieve satisfactory 
performance in predicting/forecasting WQVs, hybrid models 
combine diverse individual models to address limitations such 
as a restricted capacity to capture intricate patterns, limited 
generalization, challenges in handling noise and outliers, and 
constrained interpretability. These hybrid models harness the 
strengths of each singular model, including their simplicity, 
faster training, and robust interference capabilities (Barzegar 
et al. 2018; Chen and Dai, 2020; Bahrami et al. 2023). The 
main objective of an EM is to integrate standalone models 
in a way that enhances the precision of the outcomes of 
standalone models. The enhancement in the hybrid model 
is attained by maximizing the benefits of standalone models 
while minimizing their limitations (Rozinajová et al. 2018). 
In the past few years, hybrid procedures have found extensive 
application in the evaluation of water quality, modeling, and 
prediction/forecasting. Barzegar et al. (2018) investigated 
ELM and hybrid models designed to forecast EC values 
over multiple time steps and compared the results with the 
outcomes of an ANFIS and a wavelet-ANFIS model. Bui 
et al. (2020) explored four individual and twelve hybrid ML 
prediction models for WQVs in Iran. Barzegar et al. (2020) 
employed the CEEMDAN and VMD algorithms alongside 
ELM and LSSVM models to predict DO and Chl-a levels in 
the SPL in Greece. Cao et al. (2020) combined the GRU neural 
network and the K-means clustering method for the prediction 
of DO. Dehghani et al. (2021) developed four hybrid models 
by incorporating four metaheuristic optimization algorithms 
into SVR and observed improvement in their results. Alqahtani 
et al. (2022) presented individual ML algorithms alongside 
their amalgamation for the prediction of EC and TDS. This 
combination incorporated RF, GEP, and ANN. In a different 

light, Sakaa et al. (2022) formulated a hybridized model 
utilizing sequential minimal optimization and SVM to predict 
WQVs. Wu and Wang (2022) developed an ensemble model 
by integrating ANN and LSTM and their combination with 
wavelet transform for WQV prediction in a river in China. 
Moreover, Zamani et al. (2023a) proposed an innovative fusion 
model leveraging the Bayesian maximum entropy fusion 
approach to precisely estimate DO and Chl-a concentrations 
across various locations and depths within a reservoir in Oman.

Considering the existing literature, it is evident that 
various data-driven algorithms have been employed to 
accurately model WQVs. However, as far as the authors are 
concerned, the current literature still lacks a comprehensive 
comparative analysis of widely established DL forecasting 
techniques and their ensembling utilizing single- and multi-
objective optimization structures — specifically, GA and 
NSGA-II — for WQV forecasting. Moreover, the integration 
of DL models holds the potential to enhance the precision 
of forecasting WQVs, especially in situations characterized 
by incomplete or insufficient observed data, such as short-
period time series. Given these considerations, this study 
seeks to contribute to the realm of WQV (e.g., Chl-a) 
forecasting. The foundational framework for this modeling 
endeavor revolves around the training of four distinct DL 
models — namely, RNN, LSTM, GRU, and TCN — using 
Chl-a concentration data. Subsequently, these trained DL 
models are integrated through the application of MOO 
algorithms, resulting in the creation of EMs that is poised 
to forecast Chl-a concentration. Notably, this study marks 
the first endeavor to utilize an NSGA-II-based ensemble DL 
model for Chl-a forecasting. This study primarily aims to (1) 
comprehensively examine and compare the capabilities of 
diverse individual DL algorithms (e.g., RNN, LSTM, GRU, 
and TCN) in effectively forecasting Chl-a concentration 1 
h ahead in SPL, Greece; (2) combine these individual DL 
models into a harmonized ensemble model, leveraging the 
strengths of each constituent model through the application 
of meta-heuristic optimization algorithms, including GA and 
NSGA-II; (3) execute a comparative analysis, contrasting the 
results generated by the individual DL models with those 
yielded by the Ems; (4) compare the results obtained from 
the EMs, thereby highlighting and elucidating the proficiency 
of NSGA-II in seamlessly integrating the distinct individual 
DL models. Forecasting the concentration of Chl-a in the 
lake 1 h ahead holds practical significance in environmental 
monitoring, water management, and ecological research. This 
predictive capability aids in detecting harmful algal blooms, 
guiding eutrophication assessments, facilitating timely 
responses to water quality changes, ensuring safe recreational 
activities, and optimizing aquaculture and fisheries practices. 
By providing insights into Chl-a dynamics, this forecasting 
enhances decision-making for ecosystem health, water 
safety, and sustainable resource management.
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Methodology

The DL models are utilized to forecast the concentration of 
Chl-a in SPL in Greece. After assessing the effectiveness 
of these models using different statistical metrics, they are 
integrated into a hybrid model through the utilization of 
the GA and NSGA-II algorithms. The capability of these 
ensemble approaches to combine the results of diverse 
DL models is then compared to determine their effective-
ness. The models are generated considering the standard 
practice for developing the DL forecasting model which is 
briefly reviewed in the following. This is a general frame-
work suggested to ensure that the final hybrid model would 
work appropriately (Goodfellow et al. 2016; Chollet 2021; 
Géron 2022). Figure 1 depicts an illustrative depiction of 
the flowchart outlining the proposed methodology for the 
purpose of the Chl-a concentration. The framework com-
prises the subsequent stages.

Data collection and processing were initiated to assess 
water quality in this study. To obtain the required infor-
mation, a multi-probe sensor CYCLOPS-7, developed by 
TURNER DESIGNS, was employed to measure various 
parameters in SPL. This step is shown in Fig. 1a.

The development of DL models involves several steps that 
ensure a robust and effective solution to a given problem. 
These steps are depicted in Fig. 1b. First, it is crucial to 
define and understand the problem, as it guides the selection 
of an appropriate DL model. In this study, the objective is 
to forecast short-term Chl-a concentrations using historical 
data (i.e., lag times of Chl-a). The evaluation metrics, such as 
RMSE and R2, are explained as they are selected to evaluate 
the models during the training and testing phases. Relevant 
data were collected and preprocessed, involving cleaning, 
handling missing data, data transformation, and feature 
extraction (i.e., input variable selection). Splitting the data 
is also of utmost importance to assess the performance of 
the model on data. It was done by separating the dataset 
into two primary sets: the training and testing datasets. Four 
models were selected for their ability to work with time-
series data. Subsequently, the model underwent training 
using the preprocessed data through backpropagation to 
adjust the weights. Fine-tuning may be necessary to improve 
the model’s performance by adjusting hyperparameters, 
modifying the architecture, or adding regularization 
techniques. Finally, the models were tested on the validation 
dataset to guarantee its capacity to apply to novel data, 
ensuring generalizability. Achieving acceptable effectiveness 
on the testing dataset is a critical indication of the model’s 
capability to apply knowledge to unfamiliar data and its 
readiness for deployment in solving the given problem. To 
improve the results obtained from individual DL models, 
model ensembling strategies based on GA and NSGA-II 

were developed, as illustrated in Fig. 1c. The comparison was 
based on several evaluation indices and aimed to demonstrate 
the efficacy of the model ensembling approach.

RNN

An ANN known as a RNN falls within the realm of neu-
ral network models that can establish loops by connecting 
nodes, providing the ability for the output of one node to 
influence the output of the next node (Medsker and Jain 
2001). By utilizing their internal state or memory, RNNs 
exhibit the capability to handle input signals of diverse 
lengths due to their temporal dynamic behavior, in contrast 
to feedforward neural networks (Carcano et al. 2008). RNNs 
are a type of network characterized by their infinite impulse 
response, while CNNs refer to networks with a finite impulse 
response. Both classes of networks have a temporal dynamic 
component. Finite impulse recurrent networks are structured 
as directed acyclic graphs, allowing them to be unfolded 
and replaced with exclusively FFNN. Conversely, directed 
cyclic graphs are manifested by infinite impulse recurrent 
networks, making them non-unrollable. Figure S1 (a & b) 
illustrates the architecture of the developed RNN in the cur-
rent study, along with a detailed representation of the RNN 
structure.

LSTM

The LSTM consists of a sequence of LSTM cells, with each 
of these cells having gates that control the flow of informa-
tion within them (Fig. S2 (a & b)). The input gate selectively 
determines which data from the current input should be pre-
served and propagated through the cell state. Similarly, the 
forget gate decides which data should be discarded. Lastly, 
the output gate determines the specific data from the cell 
state that should be passed to the output. Alongside these 
gates, the LSTM cell includes a memory cell that accumu-
lates information over time (Schmidhuber and Hochreiter 
1997). This capacity allows the network to selectively retain 
or forget information as necessary, making it well-suited for 
processing lengthy sequences of data. During its forward 
pass, the LSTM network processes input sequentially, han-
dling one element at a time. As each new input element is 
processed, the network updates its hidden state and memory 
cell. The final output is often generated by a fully connected 
layer, taking the final hidden state as input. The gates use 
sigmoid activation functions to regulate data transmission 
and a hyperbolic tangent function to process data entering 
the cell state (Greff et al. 2016). For a detailed mathemati-
cal implementation of LSTM, refer to Graves et al. (2012).
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GRU 

The GRU is a recurrent neural network architecture initially 
introduced by Chung and colleagues (Chung et al. 2014) 
(Fig. S3). Similar to an LSTM unit, a GRU unit comprises 
gating mechanisms that regulate the flow of information 
through these gates. However, unlike LSTM, the GRU unit 

does not have a separate cell for storing information. The 
GRU structure consists of three gates — the candidate acti-
vation gate, the update gate, and the reset gate. The reset 
gate controls the extent to which the previous hidden state is 
overlooked, while the update gate manages the incorporation 
of new input data into the current state. By considering the 
previous hidden state and the current input, the candidate 

Fig. 1  The visual representa-
tion of suggested forecasting 
framework
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activation function calculates the hidden state of the new 
candidate. For a comprehensive mathematical explanation 
of GRUs, refer to Haverkos et al. (2016).

CNN

CNNs are a type of deep learning algorithm that has had a 
significant impact on computer vision, finding widespread 
use in such tasks as object detection, semantic segmentation, 
and image recognition (Sultana et al. 2020). The application 
of such sophisticated algorithms holds promise for enhanc-
ing water quality monitoring. These networks consist of 
multiple layers and encompass several crucial components, 
including fully connected layers, convolutional layers, and 
pooling layers. During the forward pass, the provided infor-
mation undergoes a sequence of operations. It starts by being 
fed into the initial layer, which contains a convolutional layer 
responsible for extracting features from the input data. This 
extraction is achieved through the application of learned 
filters acquired during the training process. Following the 
convolutional layer, the output goes through a pooling layer 
that reduces spatial dimensionality, thereby helping to pre-
vent overfitting. Finally, the output is passed through one or 
more fully connected layers that conduct classification or 
regression operations based on the extracted features. For 
further information on this methodology, refer to Chua and 
Roska (1993)

TCN

TCNs were introduced by Bai et al. (2018) as a specialized 
neural network architecture designed for sequence modeling 
and prediction/forecasting tasks. TCNs employ 1D convolu-
tional layers, which are adept at capturing temporal depend-
encies in data while using fewer parameters compared to 
traditional RNNs. This characteristic makes TCNs more 
efficient and easier to train. The core structure of a TCN 
consists of a series of 1D convolutional layers, optionally 
followed by a fully connected layer and an output layer. Each 
convolutional component employs fixed kernel sizes and 
strides, with the number of filters typically increasing as the 
sequence length decreases. The results from each convolu-
tional component are then passed through a ReLU activation 
function and merged with the input to the subsequent layer 
using a skip connection. The skip connection facilitates the 
flow of information through the network without undergoing 
filtration by the convolutional layers, thereby addressing the 
vanishing gradient problem. For a detailed understanding 
of the implementation of a TCN model, refer to Fu et al. 
(2021). Figure S4 illustrates the structure of the TCN model 
used in this study.

Ensemble models

EM integrates the obtained outcomes of different mod-
els. Such procedure combines the outputs from different 
algorithms or models to achieve more accurate results 
(Hall and Llinas 1997). Regarding the vector of weights 
w = [w1, w2, …wn]T for the results generated by standalone 
models, the result of the EM (pj) is performed in the fol-
lowing manner:

Subject to:

wherein n and y∗
ij
 are numbers and forecasted values by 

ith singular models, respectively (i.e., RNN, LSTM, GRU, 
and TCN). It is pertinent to highlight that the rationale 
behind opting for a variant of stacking, specifically weighted 
averaging, instead of pursuing boosting or bagging tech-
niques, is attributed to factors encompassing model diversity 
(Zhou et al. 2023), complexity and interpretability (Ribeiro 
and dos Santos Coelho 2020), adaptability (Tang et  al. 
2022), ensemble size (Zounemat-Kermani et al. 2021), and 
the careful navigation of trade-offs (Card et al. 2019; Tan 
et al. 2019). The decision to utilize GA and NSGA-II as 
optimization methodologies for weighted averaging is 
underpinned by a multifaceted set of advantages. Firstly, GA 
and NSGA-II are renowned for their inherent flexibility, 
making them highly adaptable to a wide array of complex 
optimization challenges (Goldberg 1989; Katoch et  al. 
2021). Secondly, these algorithms are adept at generating a 
rich diversity of solutions, an attribute that is indispensable 
for thoroughly investigating various combinations of base 
learners (Deb et al. 2002). Thirdly, their robust design ena-
bles them to effectively manage and filter out noisy or irrel-
evant base learners through integrated feature selection and 
robustness mechanisms (Sivanandam et al. 2008). Lastly, 
both GA and NSGA-II demonstrate exceptional proficiency 
in fine-tuning the weights assigned to each base learner, 
thereby enhancing the overall efficacy of the ensemble 
model (Zhang and Li 2007; Xu et al. 2022; Dai et al. 2022).

GA

A GA can function as an EM, which is a machine learning 
technique that combines multiple models using a GA optimi-
zation procedure to enhance the precision and effectiveness 
of an overall predictive water quality model (Barzegar et al. 

(1)Yj =

n∑

i=1

wiy
∗

ij

(2)
n∑

i=1

wi = 1 , wi ∈ [0, 1]
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2016; Chen et al. 2023a). In this approach, GA is employed 
to identify the most suitable subset of models from a pool 
of potential models, which are generally diverse and com-
plementary in their forecasting capabilities (Babatunde 
et al. 2014). GA optimizes the model ensembling process 
by iteratively selecting the best combination of models and 
refining the amalgamation through crossover and mutation 
procedures. The GA process commences with a population 
of potential models, subject to fitness evaluation based on 
their accuracy and other performance metrics. Models with 
higher fitness are selected and bred to generate offspring, 
inheriting genetic traits from their parents. The offspring 
then undergo mutation and crossover operations to introduce 
diversity and explore new solutions (Mirjalili and Mirjalili 
2019). Figure S5 illustrates the GA process used to deter-
mine optimal solutions for the Chl-a forecasting model.

EM based on NSGA‑II

NSGA-II, introduced by Deb et al. (2000), is a MOO algo-
rithm that combines the principles of GAs with the con-
cepts of dominance and CD. This optimization technique 
generates population members using crossover and mutation 
within the GA framework. These members are then catego-
rized into different fronts based on their non-dominance. 
Subsequently, population members within each front are 
ranked using the CD operator. In this study, the decision 
variables within NSGA-II pertain to the weights assigned 
to different DL models. The optimization process revolves 
around two objective functions, as outlined below:

where Z1 and Z2 represent the MARE between the EM 
output and the actual value assigned to the data used for 
both the training and testing phases. In accordance with the 
description of these two objective functions, NSGA-II is 
utilized to find weights that minimize these two objective 
functions. For clarity, the other variables in Eqs. 1–4 are 
elaborated on hereunder:

y∗
ij
  The ith output value of each model on the TD

yj      The observed output value of the TD
x∗
ij
     The ith forecasted value for each instance in the TD

xj      The recorded value of TD

(3)
Z1 =

∑k

j=1

���
�

∑n

i=1
wiy

∗
ij
−yj

yj

��
�
�

k
× 100

(4)
Z2 =

∑m

j=1

���
�

∑n

i=1
wix−xj

xj

��
�
�

m
× 100

k       The quantity of TD
m      The number of TD

The structure of NSGA‑II

MOO techniques, derived from competing objectives, 
result in multiple optimal solutions in contrast to SOO 
methods. One particularly effective technique is NSGA-
II, a robust method for optimizing multiple objectives 
(Deb et al. 2002; Zamani et al. 2022, 2023c). The process 
begins by creating an initial population of N individu-
als, followed by calculating the objective function values 
(Z1 to Zn). Subsequently, the initial population is evalu-
ated and ranked based on the criteria of ND and CD. To 
enhance the overall response, the process employs two key 
procedures: mutation and crossover. These operators are 
used to generate an MP and an OP, respectively. The total 
population consists of three subpopulations: the original 
P, the MP, and the OP (Ehsani et al. 2022). This process 
is iteratively repeated to determine the optimal solution. 
The flowchart in Fig. S6 illustrates this iterative process.

Cross‑validation approach for DL models

Cross-validation serves as a crucial approach for assessing 
the model’s predictive capacity on new and unseen data, 
offering essential insights into its ability to generalize 
beyond the training set. This methodology provides 
an estimation of the model’s potential performance 
when applied to unfamiliar data points (Zhou 2012). 
To mitigate concerns, a strategy involves withholding a 
portion of the dataset during the training phase. Prior to 
commencing the training process, this subset of data is 
segregated and kept separate. Following the completion 
of the training phase, the remaining data is then utilized 
to assess the algorithms’ proficiency. This foundational 
principle underlies a broad spectrum of model evaluation 
techniques collectively referred to as cross-validation.

The process of partitioning the dataset holds the 
power to influence the outcomes of machine learning 
algorithms. Numerous methods have been proposed in 
previous research endeavors to implement the concept of 
cross-validation. Nevertheless, these methodologies all 
share fundamental elements that encapsulate a common 
essence (Wang et al. 2023). Among the various available 
techniques, this study opted for the hold-out procedure 
due to its straightforward and uncomplicated nature. 
Figure 2 visually presents the employed cross-validation 
approach used in this study.
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Model performance evaluation

This study evaluated the forecasting accuracy using various 
statistical metrics, including MSE, RMSE, MAE, RMAE, R2, 
NSE, and MARE %. The MSE and its variant, RMSE, delve 
into the squared differences between forecasted and actual 
values, effectively capturing both the magnitude and direc-
tion of errors. They range from 0 to ∞, with lower values 
indicating closer alignment between forecasting and observed 
values (Uddin et al. 2023a, b, c). These metrics emphasize 
the significance of larger errors due to the squaring process, 
making them particularly sensitive to outliers. While provid-
ing a comprehensive view of overall forecasting accuracy, the 
squared nature of these metrics might obscure the understand-
ing of the directional bias of errors. Consequently, they might 
not readily distinguish between underestimation and overes-
timation tendencies. The RMAE introduces a dimension of 
normalization, allowing for comparisons relative to the scale 
of the observed data, thereby aiding in discerning proportion-
ate inaccuracies (Hajikarimi et al. 2022). The R2 metric oper-
ates on a scale from 0 to 1. It measures the extent to which the 
model’s forecasting values can account for the variability in 
the recorded data. A value nearing 1 indicates a stronger align-
ment of the model with the data, highlighting a greater level of 
concurrence between forecasted and recorder values. However, 
R2 does not explicitly indicate the direction of errors, focusing 
more on the degree of fit. The NSE measures how well the 
model’s forecasting outperforms a reference (usually the mean 
of observed values). Spanning from negative infinity to 1, it 
shows values approaching 1 to signify enhanced performance. 
When negative values appear, they indicate that the man of 

recorder values serves as a more effective predictor than the 
model, potentially implying overestimation tendencies (Dargi 
et al. 2023; Ghadermazi et al. 2022). The MARE, expressed 
as a percentage, provides a relative insight into the accuracy 
of forecasting in relation to the actual values. The following 
statistical indices are elaborated upon below.
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Fig. 2  The utilization of CV 
methodology
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In Eqs. 5–11, ChlF and ChlF are forecasted Chl-a and 
forecasted Chl-a average, respectively. ChlO and ChlO are 
observed Chl-a values and their corresponding average, 
while n demonstrates the total number of samples.

The study employed the Taylor diagram to evaluate model 
accuracy. This visual tool provides a concise representation 
of model alignment with observed data across multiple met-
rics. It captures accuracy, precision, and bias dimensions, 
aiding informed decisions. Components like correlation, 
standard deviation ratio, and centered root-mean-square 
difference showcase model behavior. Reference data is at 
the center, model forecasting along radial lines. Distance 
indicates correlation, angle reflects root-mean-square dif-
ference, and standard deviation ratio quantifies variability. 
Insights identify models excelling in specific dimensions, 
aiding trade-off decisions. The Taylor diagram complements 
quantitative metrics, holistically assessing performance and 
aiding model selection. It enhances our understanding of 
model behavior relative to recorder data.

Case study

Study area

Positioned in northeastern Greece near the borders of Alba-
nia and North Macedonia, Small Prespa (Mikri Prespa) is 
one of two interconnected lakes covering approximately 
47  Km2, situated at an elevation of 853 m above sea level 
(Tziritis 2014). The lake primarily replenishes itself through 
surface runoff originating from various water bodies, as well 
as lateral sub-surface flow resulting from interconnected 
aquifer systems within the region. The climate in the area is 
continental, characterized by hot summers and chilly win-
ters. The landscape transforms into lush greenery during the 
spring months of March to May, with average temperatures 
ranging from 10 to 20 °C and increased rainfall. During the 
winter months, Small Prespa receives a substantial amount 
of precipitation throughout the year, with the highest rain-
fall occurring from December to February. Average monthly 
precipitation during this period ranges from 120 to 140 mm. 
In addition, snowfall is common during this time of the year 
(Fijani et al. 2019).

The lake’s water quality is compromised by pollution 
and human activities. The concentration of Chl-a, the pri-
mary pigment for photosynthetic activity in most algae and 
cyanobacteria, serves as a key indicator of phytoplankton 
abundance in aquatic environments. Monitoring Chl-a con-
centrations in Small Prespa provide valuable insights into 
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the lake’s productivity, overall health, and the potential risk 
of harmful algal blooms. This information is essential for 
assessing the lake’s ecological well-being and taking nec-
essary measures to preserve water quality and protect the 
surrounding ecosystem’s health (Van der Schriek, 2020). 
Figure 3 illustrates the location of Small Prespa, located in 
Greece.

Data source

During the period from June 1, 2012, to May 31, 2013, 
WQVs were meticulously obtained at 15-min gaps. Such 
data encompassed an array of parameters intricately tied to 
the chemical and physical attributes of the water, including 
EC, ORP, pH, water temp., DO, and Chl-a concentration. 
These measurements were meticulously captured through 
the utilization of a sensor that boasted multiple probes, 
each contributing to the comprehensive understanding of 
water quality dynamics. Strategically located at a depth 
of 1.5 m below the water’s surface along the northern 
shoreline of the lake, the sensor’s consistent placement at 
this depth, approximately 3 m below the water’s surface, 
was consistently achieved throughout the entire year. By 
carefully selecting the location for the installation, the 
acquired data represented the holistic aspects of the lake’s 
water quality. Moreover, ensuring the equipment’s safety 
was of paramount importance, safeguarding against any 
potential external influences that could disrupt or damage 
the equipment. The accuracy of the sensor measurements 
was ensured by rigorous calibration procedures prior to 
deployment. In this process, sensor readings were metic-
ulously compared with standards or reference measure-
ments, enabling potential systematic errors or biases to 
be identified and corrected. It was necessary to regularly 
calibrate the sensor during the study period in order to 
ensure its accuracy and reliability. Verifying the accuracy 
of the sensor measurements required the comparison of 
sensor data with measurements derived from well-estab-
lished laboratory methods. A benchmark was established 
by collecting samples of water and analyzing them thor-
oughly using trusted techniques in order to measure the 
precision of the sensor’s measurements. Using these strin-
gent criteria and adhering to a rigorous method, the data 
collection process was designed to mitigate the impact 
of potential errors and biases. Through this comprehen-
sive approach, the data were strengthened in terms of reli-
ability and accuracy, providing a substantial foundation 
upon which to conduct subsequent analyses and modeling 
efforts. Table 1 provides a statistical overview of the meas-
ured WQVs. Specifically, the Chl-a concentration spans a 
range from 0.82 to 16.97 μg/L, with a corresponding mean 
value of 2.66 μg/L. To forecast Chl-a concentration on an 
hourly basis, the dataset was transformed into hourly time 
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steps, resulting in a reduction of data points from 34,825 
to 8706. The transformation was performed using Google 
Colab’s resampling tool.

Figure 4(a–b) illustrates the temporal variations of WQVs 
collected in the SPL. As shown in Fig. 4(a–b), it highlights 
fluctuations in Chl-a, DO, pH, water temperature, EC, and 
ORP. Notably, water temperature, EC, and ORP in the study 
area exhibited significant fluctuations over the study period. 
In contrast, the pH value remained stable throughout this 
time. Additionally, the concentration of Chl-a peaked on 
October 7, 2012, reaching its maximum value, while it 

decreased to nearly 1 �g
/
l by the end of the water quality 

sampling period.
The correlation plot of all measured WQVs is presented in 

Fig. 5. There is no strong correlation between Chl-a concen-
trations and other measured WQVs. This correlation analysis 
contributes to a deeper understanding of the complex inter-
actions governing aquatic environments. It reveals how dif-
ferent parameters are interconnected and offers insights into 
potential cause-and-effect relationships (Zhou et al. 2016; Ly 
et al. 2018; Bui et al. 2020). Regarding the age of the data, no 

Fig. 3  The study area, situated in Greece (adapt ed from google. com/ maps

Table 1  A summary of 
statistical measures for the 
different WQVs in SPL

Water quality variable Mean Variance Standard 
deviation

Minimum Maximum Skewness Kurtosis

Chl-a (μg/L) 2.66 2.06 1.43 0.82 16.97 2.29 10.61
EC (μS/cm) 325.55 3277 57.24 219 484 0.86 −0.23
ORP (mV) 392.26 2766 52.59 52.59 473 −1.64 2.97
pH 8.04 0.04 0.18 0.18 8.6 −0.21 0.58
Temp. (°C) 15.48 66.31 8.14 3.02 28.95 −0.03 −1.49
DO (mg/L) 8.83 4.92 2.21 0.03 13.37 0.11 −1.21
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more recent water quality data for Small Prespa Lake has been 
made available. Although it is true that using up-to-date data 
can be more useful than that of in the past in the study area, 
the main purpose of our research is presenting a framework 
that can capable of forecasting water quality variable, namely, 
Chl-a using weighted averaging approaches and time-series 
water quality dataset. It is worth mentioning that various recent 
studies used such water quality data (Tziritis (2014); Fijani 
et al. (2019); and Barzegar et al. (2020)), and one of the main 
goals of the present study is the comparison of these studies 
with the present study.

Model development

We established four DL models (RNN, LSTM, GRU, and 
TCN) individually, along with their combination through 
the GA and NSGA-II ensemble methods. These ensem-
bling techniques were applied to forecast Chl-a concen-
trations and enhance the predictive outcomes of the indi-
vidual DL models. Accordingly, the hourly Chl-a dataset 
was separated into two portions: 75% of the data was allo-
cated for the training phase, while the remaining 25% was 

Fig. 4  Temporal variations of WQVs (a) Chl-a, DO, pH, and water temperature and (b) EC and ORP

Fig. 5  Correlation plot among 
WQVs

124326 Environmental Science and Pollution Research  (2023) 30:124316–124340



1 3

designated for the testing phase. Furthermore, the mod-
els were implemented on a personal computer operating 
with the Windows 10 operating system. The computer was 
equipped with an Intel(R) Core(TM) i7-10750H processor 
running at 2.60 GHz and 16 GB of RAM. For develop-
ment, Python 3.9.7 was used, and the DL models were 
built using the Google Colab IDE and the Keras develop-
ment framework.

DL models

DL models were developed for forecasting Chl-a in the 
next time step (i.e., Chl-a (t+1)) in Small Prespa Lake 
using Chl-a at different lag times as inputs. Within the 
scope of this study, univariate forecasting was employed as 
the chosen methodology. Univariate forecasting using lag 
times offers certain advantages over multivariate forecast-
ing in specific contexts. Here are some key advantages of 
univariate forecasting using lag times: (1) simplicity and 
ease of implementation: univariate forecasting focuses on 
forecasting a single variable’s future values based solely 
on its past values. This approach is often simpler to imple-
ment compared to multivariate methods that require han-
dling multiple variables and their potential interactions. 
(2) Reduced complexity: univariate models are less com-
plex than multivariate models since they involve fewer 
variables. This simplicity can make univariate models eas-
ier to interpret and require less computational resources. 
(3) Less data preprocessing: univariate models require 
only the historical data of the variable being forecasted, 
reducing the need for extensive data preprocessing and 
alignment that’s often necessary in multivariate meth-
ods. (4) Data availability: univariate forecasting can be 
advantageous when historical data for other correlated 
variables might be limited or unavailable. In the context 
of our study, we observe an intriguing facet: the absence 
of a substantial correlation between Chl-a and other meas-
ured WQVs. This observation underscores the complexity 
of the relationships governing these variables, implying 
that univariate forecasting might be a valuable avenue 
to explore for forecasting Chl-a in this specific scenario. 
To develop the models, at first, the entire Chl-a dataset 
was divided into distinct training and testing periods. 
The training data served a dual purpose: validating and 
comparing the effectiveness of individual models devel-
oped over the training period. In Python, the scikit-learn 
library was utilized for normalization and scaling, which 
ranged from 0 to 1. This was achieved through the appli-
cation of normalization and minimum-maximum scaling 
techniques. This process helps mitigate abrupt changes in 
gradients, leading to smoother convergence during train-
ing of DL models. During the training of DL models, a 
function was iteratively refined through trial and error, 

ultimately selecting the model with the lowest RMSE. 
Here, lag times ranging from 1 to 6 h were considered: 
input variables included Chl-a (t), Chl-a (t-1), ..., Chl-a 
(t-6), and the forecasting focused on one step ahead Chl-a 
concentration Chl-a (t+1).

To find the best-performing DL model, various model 
structures were trained. Models with a one-layer input 
were selected for modeling due to demonstrating the low-
est RMSE during the training period, outperforming more 
complex structures. An essential goal of this research is to 
comprehensively compare DL models alongside other 
approaches. For the LSTM, GRU, and RNN models, the 
parameters of each layer were approximately consistent, 
comprising 50 neurons with the ReLU as the activation 
function. The return sequences parameter, which pertains 
to the return of the hidden state a<t>, was set to true due 
to the time-dependent nature of the data. Different activa-
tion functions were tested for all models, including eLU, 
Tanh, Softmax, SeLU, Softplus, and ReLU. Among these, 
the ReLU function yielded the lowest RMSE, demonstrat-
ing its suitability for analyzing time series data. At each 
training step, the dropout layer introduces randomness by 
setting input units to zero at a specified rate, aiming in 
mitigating the issue of overfitting. The remaining inputs, 
those not set to zero, are adjusted by scaling factor of 

1

(1−rate)
 to maintain the overall sum of all inputs, where the 

rate is the proportion of inputs that are set to 0. For exam-
ple, if 20% of the inputs are set to 0, then the rate would 
be 0.2, and the scaling factor would be 1.25. The objective 
of this study is to evaluate and compare the outcomes 
obtained from individual DL models with those of the 
EMs. To ensure an equitable comparison, a uniform drop-
out layer value of 0.001 was applied to all DL models. This 
value was chosen due to its superiority over other values, 
as it effectively mitigated overfitting, enhanced generaliza-
tion, and expedited the convergence of the DL model 
(Barzegar et al. 2021). Furthermore, the optimization of 
other parameters for the DL models was performed using 
a trial-and-error approach. For instance, in the LSTM 
model, multiple layers were utilized, with the input layer 
incorporating lag times of Chl-a as inputs to each subse-
quent stage. To construct this model, an LSTM-based hid-
den layer was employed, utilizing a ReLU activation func-
tion. The hidden layer comprised 64 and 32 units dedicated 
specifically to Chl-a. After the LSTM layer, a dropout 
layer with a rate of 0.001 was added to help reduce the 
degree of overfitting. Subsequently, a fully connected layer 
known as “Dense” was introduced. This model was devel-
oped using the “Adam” optimizer and the “MSE” loss 
function. The “Adam” optimizer is a gradient-based algo-
rithm that adjusts dynamically. Additionally, a learning 
rate of 0.01 was employed in the optimization process. 
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Notably, the number of epochs was set to 100, and a vali-
dation split of 0.15 was utilized. Figure 6 illustrates plotted 
graphs depicting the loss function of the developed DL 
algorithms, namely LSTM and GRU. In this representa-
tion, the x-axis corresponds to the training iterations or 
epochs, while the y-axis denotes the loss function’s values. 
Notably, the convergence observed in these graphs indi-
cates the models’ approach towards optimal performance. 
Both LSTM and GRU models exhibited commendable 
predictive performance in forecasting Chl-a concentration. 
Furthermore, the consistent decrease in loss values across 
both the training and testing sets attests to the models’ 
suitability, indicating a well-fitted and well-generalized 
behavior for both algorithms.

One of the principal aims of this study is to establish 
a Chl-a forecasting model using TCN in order to thor-
oughly investigate the capabilities of this model. Given the 
inherent complexity of DL models, the task of identifying 
the optimal TCN network structure and hyperparameters 
holds significant importance. The selected values for the 
residual block, kernel size, and number of filters were {1, 
2, and 3}, {4, 8, and 8}, and {32, 64, 128}, respectively. 

Furthermore, the input data size was set to six, indicat-
ing that a combined set of six-time intervals, comprising 
both present and past data, was utilized for forecasting 
future values. Subsequently, all structures were meticu-
lously explored, considering various permutations of the 
following parameters: batch size options {32, 64, and 
128}, and epoch values of {20, 50, and 100}. In total, 243 
experiments were conducted on the dataset as part of this 
research endeavor. The objective was to pinpoint the opti-
mal network structure and hyperparameter values across 
diverse scenarios. Table 2 provides an in-depth summary 
of the optimal parameters for the trained DL algorithms. 
The hyperparameter configuration by the trial and error 
procedure for the developed models brings forth a mul-
titude of distinct advantages. These encompass the fine-
tuning of models to align with the domain-specific char-
acteristics of the dataset, the maintenance of controlled 
model complexity to mitigate overfitting risks, the efficient 
utilization of computational resources compared to the 
automated techniques, the harnessing of domain expertise 
for informed parameter choices, and adeptness at adapting 
to scenarios with limited data to thwart overfitting.

Fig. 6  Loss function of the DL models for Chl-a forecasting

Table 2  The summary of DL 
algorithms in the current study

Model Target variable Structure

RNN, LSTM, GRU Chl-a (t+1) 1 RNN, LSTM, GRU layer (50 neurons, ReLU 
activation, return sequences = True) + 1 
Dropout layer (0.001) + 1 Dense layer (2 
neurons, linear activation) + Compile (MSE 
loss, Adam, Learning rate = ‘0.001’, metrics 
= ‘MSE’, ‘RMSE’, ‘MAE’, ‘RMAE(%)’, 
‘RMSE(%)’, ‘R-Squared’, ‘NSE’) + Fit 
(epochs = 100, validation_split = 0.15)

TCN Chl-a (t+1) Convolutional layer (64 filters + 2 filter sizes + 
ReLU activation + padding ‘same’ + 1 stride) 
+ Maxpooling (1 pooling size) + Flatten + 
Dense layer (24 neurons, linear activation) + 1 
Dropout layer (0.01) + 1 Dense layer (0.001) 
+ 1 Dense layer (1 neuron) + compile (MSE 
loss, Adam, Learning rate = ‘0.001’)
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Ensemble‑based singular algorithms

The ensembling of DL models using GA and NSGA-II was 
utilized to enhance the optimal values of EMs parameters. 
In this approach, both GA and NSGA-II algorithms were 
utilized to discover the optimal combination of weights or 
coefficients for individual DL models. For GA, a MATLAB-
based optimization method inspired by natural selection was 
developed. It involves generating a population of candidate 
solutions and then iteratively evolving them using principles 
from genetics and evolution. In terms of the objective func-
tion for GA, the evaluation metric, MARE, was minimized 
to achieve its minimum value. Table 3 presents the parame-
ters of the GA algorithm along with its optimal value. Addi-
tionally, Fig. 7(a) illustrates the optimal solutions achieved 
for forecasting Chl-a using GA. This result emerged when 

the fitness value and best fitness exhibited equal values under 
specific circumstances.

The optimization process of NSGA-II entails generating a 
set of potential solutions that are at a superior level, followed 
by evaluating the optimization criteria for each individual 
solution. From this set, the ND solutions are selected. The 
solutions chosen through this algorithm constitute the opti-
mal Pareto front, offering a spectrum of trade-off solutions 
that balance multiple objectives.

Considering objective functions in NSGA-II, minimizing 
the MARE between EM output and actual value for training 
the model was considered. Figure 7(b) illustrates the com-
promises between two distinct objective functions pertain-
ing to the EMs designed for Chl-a forecasting. In Fig. 7(b), 
the presentation showcases individuals within the popula-
tion found on a particular non-dominated front, where none 
of the members exhibit dominance over others. Within the 
NSGA-II model, a count of 100 members and generations 
was adopted. Careful consideration was given to the num-
ber of members and generations within the NSGA-II model, 
resulting in a curated list of five members. This selection 
was meticulously ranked based on the CD criteria. The uti-
lization of the CD criteria serves as a pivotal aspect of the 
model’s design, aimed at augmenting the diversity and rep-
resentation of non-dominated solutions spanning the Pareto 
front. This strategic approach bolsters the robustness and 
efficacy of the NSGA-II algorithm, especially when tackling 
complex MOO problems. By prioritizing a well-distributed 

Table 3  The optimal parameter values for the GA and NSGA-II algo-
rithms

GA NSGA-II

Parameter Value Parameter Value

Stall generations 40 Initial population size 100
Population size 40 Maximum population size 200
Termination tolerance on 

the constraint violation
0.1 Probability of crossover 0.9

Generations 80 Probability of mutation 0.2

Fig. 7  The Ems’ results: a the 
MARE between the forecasted 
and observed Chl-a values 
during the training and testing 
periods and b the tradeoff 
between two considered objec-
tive functions

Table 4   The initial quintet 
acquired through NSGA-II

W1, the weight of the RNN model; W2, the weight of the LSTM model; W3, the weight of the GRU 
model; W4, the weight of the TCN model; Z1, the first objective function; Z2, the second objective function

Rank Decision variables Objective functions

W1 W2 W3 W4 Z1 Z2

1 0.21 0.22 0.30 0.27 8.08 11.78
2 0.00 0.02 0.51 0.47 10.28 10.48
3 0.08 0.09 0.42 0.40 9.04 10.89
4 0.04 0.05 0.47 0.44 9.67 10.66
5 0.15 0.15 0.36 0.34 8.35 11.30
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set of solutions that showcase Pareto optimality, the NSGA-
II algorithm achieves a refined equilibrium between compet-
ing objectives, resulting in optimal outcomes that resonate 
with the inherent intricacies of real-world scenarios. Table 3 
presents the parameters of NSGA-II and their corresponding 
optimal values. Additionally, Table 4 displays the five opti-
mal solutions generated by NSGA-II, indicating the optimal 
weights for each DL model and the optimal values of the 
objective functions.

Results

DL models were developed based on hourly time steps of 
Chl-a data in SPL, located in Greece. The test data were 
employed to evaluate the performance of each individ-
ual DL model and EMs, respectively. Table 5 provides a 

comparative analysis of the evaluation metrics for the devel-
oped DL models, as well as the model ensembling, for both 
the training and testing periods. Additionally, Figs. 6 and 7 
provide graphical comparisons of some of these evaluation 
metrics.

Figure 8 illustrates the comparison of evaluated indices 
for the models developed throughout the training and testing 
periods. Considering R2 metric, EM exhibited the highest 
accuracy in comparison to the other DL models. With the 
R2 metric ranging from 0 to 1, these findings indicate that 
the EM outperformed the other models in terms of accuracy. 
Specifically, these differences amounted to 14%, 6%, 4%, 
and 7% for RNN, LSTM, GRU, and TCN, respectively. Dur-
ing the testing period, the Nash-Sutcliffe efficiency (NSE) 
values ranged from 0.72 to 0.84, classifying the performance 
as good (0.65 ≤ NSE ≤ 0.75) to very good (0.75 < NSE ≤ 
1.00) according to the classification by Moriasi et al. (2007). 

Table 5  Performance of the developed DL (RNN, LSTM, GRU, and TCN) and ensemble-DL models for Chl-a forecasting

I: MSE; II: RMSE; III: MAE; IV: RMAE (%); V: PRMSE (%);VI: R-squared; VII: NSE; VIII: MARE (%)

Variable Metrics Training Testing

RNN LSTM GRU TCN EM-GA EM-NSGA-II RNN LSTM GRU TCN EM-GA EM-NSGA-II

Chl-a (t+1) I 0.83 0.79 0.75 0.801 0.69 0.61 0.87 0.83 0.79 0.83 0.74 0.658
II 0.76 0.71 0.71 0.725 0.70 0.70 0.80 0.75 0.75 0.79 0.74 0.724
III 0.34 0.33 0.32 0.34 0.32 0.30 0.46 0.45 0.43 0.45 0.43 0.432
IV 12.81 11.80 10.96 11.75 10.88 10.10 11.02 11.00 8.14 10.24 10.91 9.51
V 25.84 25.24 25.01 26.01 24.94 24.76 24.61 24.24 24.13 23.41 23.01 22.83
VI 0.82 0.88 0.901 0.88 0.921 0.94 0.84 0.88 0.91 0.89 0.93 0.94
VII 0.77 0.80 0.812 0.77 0.82 0.87 0.77 0.82 0.83 0.79 0.84 0.88
VIII 12.83 12.52 11.24 12.71 12.24 10.28 12.21 11.14 10.81 11.21 11.83 9.16

Fig. 8  The assessment of the 
models’ accuracy — R-squared 
as well as NSE — for DL and 
EMs
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This assessment pertains to the forecasting of Chl-a using 
both individual models and EM. Better model performance 
is indicated when the RMSE is closer to 0. Across both the 
training and testing phases, EM consistently outperformed 
the other DL models. Further analysis of this index, consid-
ering the nature of individual DL models, revealed that RNN 
had the weakest performance due to challenges related to 
gradient vanishing and exploding. In contrast, the develop-
ment of EM capitalized on the strengths of each individual 
model, resulting in the lowest RMSE.

All the models assessed in Table 5 exhibit remarkably 
effective performance, evident from their high R2 values, 
which are close to 1. Notably, EM-NSGA-II stands out with 
exceptional effectiveness compared to DL and EM-GA mod-
els, showcasing improvements of 14% (RNN), 8% (LSTM), 
6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing 
phase.

Figure 8 illustrates the comparison of efficiency among 
the developed models. From both Fig. 8 and Table 5, it is 
evident that the RMSE, MAE, and MSE values for the mod-
els are all below 0.3, signifying highly accurate models for 
forecasting Chl-a concentration. Regarding model perfor-
mance assessed through errors, the results indicate that most 
of the DL and EM models demonstrated similar performance 
in forecasting Chl-a concentration during both the training 
and testing periods. However, the EM-NSGA-II model dis-
tinctly stood out as the top performer (Fig. 9).

In Fig. 10, the spider plot visually represents the perfor-
mance metrics employed in the present study. These dia-
grams pertain to the evaluation of the developed models dur-
ing the testing phase of DL and EMs development. Notably, 
based on this analysis, it is evident that the EM-NSGA-II 
algorithm consistently outperformed the other developed 
models, which include RNN, LSTM, GRU, TCN, and 

GA-based EMs, across a spectrum of evaluation criteria. 
This superior trend was pervasive across nearly all algo-
rithms. Conversely, the RNN model exhibited the least accu-
racy in forecasting Chl-a concentration, as evidenced by its 
highest values for MSE, MAE, and RMSE, coupled with 
the lowest values for NSE and R-Squared. As for the other 
individual DL and EM-GA models, their efficacy for Chl-a 
forecasting is generally satisfactory, with the EM-GA model 
demonstrating a marginally superior performance compared 
to the other developed models.

The time series plots in Fig. 11(a) depict the forecasted 
versus observed Chl-a concentrations during TSP. The 
plots provide a visual comparison of the actual and esti-
mated Chl-a values for four DL models (e.g., RNN, LSTM, 
GRU, and TCN) and two EM models (e.g., EM-GA and 
EM-NSGA-II). Among the individual DL models, GRU is 
better suited to capturing the low and high concentrations 
of the observed Chl-a compared to RNN and LSTM, likely 
due to its specialized gating mechanism.

According to Fig. 11(b), the R2 metric demonstrates the 
model’s tendency to underestimate positive errors while 
overestimating negative errors. In the scatter plots shown in 
Fig. 11(b), points positioned above the line of equivalence 
indicate that the predicted Chl-a concentration is lower than 
the actual Chl-a concentration. The proximity of points to 
the line of equality directly corresponds to the quality of 
forecasting performance. The high similarity between actual 
and estimated Chl-a concentrations, coupled with the major-
ity of points positioned close to the line of equality, signifies 
that the GRU model outperforms the other DL models in 
terms of the R2 metric.

The study demonstrates that EMs perform better than 
individual DL models in forecasting Chl-a concentrations. 
The comparison of time series plots between observed and 

Fig. 9  The assessment of the 
models’ accuracy — MSE, 
RMSE, and MAE — for DL 
algorithms and EMs
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forecasted Chl-a levels shows that EMs, in general, are 
more effective in handling complex datasets and produc-
ing accurate forecasting. The EM-NSGA-II, which uses 
two objective functions, was found to be more accurate 
than the EM-GA in forecasting both low and high concen-
trations of Chl-a. However, the NSGA-II-based EM model 
required more training time than the GA-based EM model. 
Despite this, the increased accuracy of the NSGA-II-based 
EM highlights the importance of using multiple objective 
functions in EM models to enhance their forecasting effi-
ciency. Overall, the study suggests that the combination of 
DL models through EMs provides a powerful approach for 
forecasting the Chl-a concentration. Furthermore, the use 
of optimization techniques such as NSGA-II and GA can 
further enhance the accuracy and robustness of EMs.

To evaluate the effectiveness of the models, a Taylor dia-
gram (Fig. 12) was employed. This diagram offers a visual 
representation for comparing models and determining their 
accuracy. It illustrates how well a model’s forecasts align 
with observed data and aids in identifying the most realistic 
model. As per the diagram, the EM-NSGA-II model exhib-
ited the best results for Chl-a forecasting. Upon examination, 
the EM-NSGA-II model displayed a strong positive relation-
ship, as evidenced by a correlation coefficient of 0.98, along 
with a standardized deviation of 0.93. These values indicate 
a robust correlation and a close match between actual and 
forecasted Chl-a levels. This substantiates the EM-NSGA-II 
model as the most accurate and realistic representation of 
Chl-a forecasting among the tested models. Conversely, the 

RNN model yielded the least favorable results, with a cor-
relation coefficient of 0.91, indicating a substantial positive 
association, and a normalized standard deviation of 1.06, 
reflecting moderate variability. These metrics suggest a 
lower correlation and greater variability between observed 
and forecasted Chl-a concentrations. The relatively poorer 
performance of the RNN model suggests that it might not be 
the most suitable choice for Chl-a concentration forecasting.

Discussions

While the developed DL models revealed that the RNN 
exhibited relatively weaker performance compared to other 
individual DL models in Chl-a forecasting, it’s important 
to note that the RNN model still demonstrated acceptable 
accuracy. This can be attributed to RNN’s inherent capabil-
ity to retain information from past inputs and incorporate 
them in processing new inputs, making it suitable for time 
series analysis. However, the RNN model encounters chal-
lenges when forecasting high values of Chl-a in an accurate 
manner. This limitation can be attributed to the gradient 
vanishing problem that arises during the backpropagation 
process. When gradients become exceedingly small, they 
tend to vanish, resulting in prolonged training periods and 
suboptimal performance. Conversely, gradient exploding 
occurs when gradients become overly large during backprop-
agation, causing weights to update too rapidly and introduc-
ing instability during training. Despite these challenges, the 

Fig. 10  Spider diagram illustrat-
ing the model’s performance in 
Chl-a forecasting
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RNN model’s capacity for temporal memory and sequence 
processing underscores its viability for certain aspects of 
Chl-a forecasting.

The LSTM model, a variant of RNN, stands out as a 
powerful tool for forecasting time series data. Given the 

current parameters, it proves to be a valuable choice for 
forecasting upcoming Chl-a levels. In contrast to the basic 
RNN model, LSTM offers numerous advantages. These 
include its ability to handle dependencies over extended 
timeframes, its resilience against the vanishing gradient 

Fig. 11  The hydrographs of 
actual and estimated values 
during the TSP for DL models, 
including RNN, LSTM, GRU, 
and EM-NSGA-II as EMs
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issue, and its flexibility in accommodating input sequence 
lengths. Consequently, the LSTM model tends to deliver 
superior performance compared to RNN, particularly 
when it comes to forecasting high Chl-a values. Fur-
thermore, the accuracy of the GRU model surpasses the 
results achieved by both RNN and LSTM. Notably, the 
primary distinction between LSTM and GRU lies in their 
architectural design. While LSTM employs three gates to 
regulate information flow and a cell state to store informa-
tion, GRU uses reset and update gates along with a hidden 
state acting as a memory unit. The simplicity and reduced 
parameter count of GRU make it ideal for faster training 
and more suitable for smaller datasets. However, LSTM 
has demonstrated its prowess in tasks that require han-
dling long-term dependencies. Consequently, the choice 
between the two models hinges on the specific task and 
dataset characteristics. Differentiating itself from the 
other DL models developed in this study, the TCN lever-
ages temporal convolutions for sequential data process-
ing, diverging from the recurrent connections employed 
by other models. TCNs employ convolutional layers to 
capture higher-level temporal dependencies by convolving 
the input sequence with a set of filters in a sliding window 
manner. EMs, combining the predictive outputs of RNN, 
LSTM, GRU, and TCN, stand as a robust approach for 
enhancing Chl-a concentration forecasts. This ensemble 
of models leads to more accurate Chl-a forecasting, lever-
aging the strengths of each constituent model. The use of 
EMs in the present study outperformed the individual DL 
models for several reasons:

1. Reducing model bias and variance: Individual mod-
els may suffer from bias or variance, which can limit 
their accuracy. By combining the forecasting values of 
multiple models, the bias and variance can be reduced, 
leading to more accurate forecasting. Therefore, in the 
present study, EM-GA and EM-NSGA-II had better per-
formance in comparison with the individual models.

2. Capturing diverse perspectives: Individual models may 
have different strengths and weaknesses. By combining 
models with diverse perspectives, an EM can capture 
a wider range of information and make more accurate 
forecasting. For instance, while the RNN model is an 
acceptable model to predict time series analysis, it can-
not forecast high value of Chl-a concentration due to 
the gradient vanishing and exploding. Traditional RNNs 
can suffer from gradient vanishing and exploding gradi-
ents, which can hinder their ability to learn and converge 
to a solution. LSTM and GRU models solve this prob-
lem through the use of gated cells that choose to keep 
or discard information selectively as time progresses. 
While LSTMs are recognized for their capacity to cap-
ture extended relationships over time, GRUs have a sim-
pler architecture that makes them faster to train and less 
prone to overfitting. The EMs used in this study combine 
the strengths of RNNs, LSTMs, GRUs, and TCNs to 
produce more accurate forecasting of Chl-a concentra-
tions.

3. Handling complex data: Some datasets may be too com-
plex for a single model to capture all the nuances. An 
EM can leverage the strengths of multiple models to 
handle complex data and make more accurate forecast-
ing.

4. Robustness: Ensemble models tend to be more robust to 
noise or outliers in the data, as the forecasting of indi-
vidual models can cancel each other out. This can lead 
to more stable and reliable forecasting.

The findings of the current study, which highlight the 
superiority of EMs over individual DL models in forecast-
ing Chl-a concentrations, align with several existing studies 
in literature. For instance, Barzegar et al. (2020) showcased 
the enhanced performance of a model combining LSTM 
and CNN when predicting Chl-a and DO, outperforming 
individual CNN and LSTM models. Interestingly, the cur-
rent study’s results demonstrated that the developed EMs 
exhibited even better Chl-a forecasting performance than 
the CNN-LSTM combination proposed by Barzegar et al. 
(2020). Similarly, the investigation conducted by Barzegar 
et al. (2018) indicated that ML models employing wavelet 
functions yielded improved forecasts for EC compared to 
individual models. Nonetheless, the current study developed 
EMs surpassed the accuracy achieved even by the combina-
tion of ML models with wavelet transforms. Another study 

Fig. 12  Graph illustrating the performance of the models in estimat-
ing Chl-a using the Taylor diagram
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by Gao et al. (2020) concluded that their developed EMs 
outperformed a hybrid model, showcasing the advantages 
of ensemble strategies. Furthermore, Song et al. (2023) inte-
grated metaheuristic optimization algorithms with LSTM to 
optimize DO forecasts, with their results demonstrating the 
superior performance of EMs based on GA and NSGA-II. In 
yet another context, Wu and Wang (2022) presented a fusion 
model incorporating ANN, discrete wavelet transform, and 
LSTM to forecast DO, yielding improved results compared 
to individual models. Remarkably, our study’s EMs for Chl-a 
concentration forecasting delivered even higher accuracy in 
terms of evaluation indices, further emphasizing the strength 
of our proposed ensemble approach. Uddin et al. (2023a, 
2023b, 2023c) introduced the Irish Water Quality Index 
(IEWQI) framework, which was developed to assess the 
quality of transitional and coastal waters. The primary goal 
was to enhance the methodology and establish a tool relevant 
to environmental regulators with the aim of tackling water 
pollution. The study’s findings underscored the promising 
effectiveness and reliability of this index as a more accurate 
means of evaluating the quality of transitional and coastal 
waters. Lingxuan Chen et al. (2023b) developed a hybrid 
algorithm for WQVs forecasting in rivers, which outper-
formed individual models. It is worth mentioning that, con-
sidering the evaluation indices, the EMs developed in the 
current research lead to better results in comparison with 
their model.

The application of developed models in water 
resource management

DL and EMs show great potential for forecasting WQVs, 
including Chl-a. Chl-a serves as a widely employed measure 
of water quality, as it is a proxy for the abundance of phyto-
plankton in the water, which can impact aquatic ecosystems 
and human health. Traditional approaches for Chl-a forecast-
ing involve statistical models or physics-based models that 
require a significant quantity of input variables, including 
meteorological and hydrological data, and WQVs. However, 
DL and EMs can provide a more accurate and efficient alter-
native to traditional models by leveraging the power of neu-
ral networks to learn complex relationships between data.

In addition, EMs can be used to improve the accuracy of 
Chl-a forecasting by combining data from multiple sources, 
such as satellite images, in situ measurements, and envi-
ronmental parameters. For example, an EM can combine 
satellite images of the water surface with in situ measure-
ments of Chl-a concentrations to provide more accurate and 
comprehensive forecasts. DL and EMs have benefits in their 
ability to manage extensive and intricate datasets, making 
them especially valuable in modeling Chl-a levels in water 
bodies. Another advantage is that these models can learn 
from historical data to forecast future Chl-a concentrations, 

which can be useful for monitoring water quality over time 
and detecting potential problems before they become more 
serious.

Integrating a hybrid DL model into water quality sys-
tems can significantly improve the management of water 
resources by providing accurate and timely data on Chl-a 
concentrations in water bodies. The occurrence of algal 
blooms resulting from high Chl-a levels can be mitigated 
by implementing an early warning system. The hybrid DL 
model can help water managers mitigate the risks of harmful 
algal blooms, which can result in fish kills, unsafe drinking 
water, and even human and animal illness or death. Addi-
tionally, the model can function as a tool for supporting deci-
sion-making in forecasting and managing water quality by 
providing information on when and where Chl-a levels will 
be high. The hybrid DL model helps water managers mini-
mize harmful algal bloom risks, make informed decisions, 
and enhance monitoring efficiency. Traditional monitoring 
methods require frequent, costly sampling, while the hybrid 
DL model allows for continuous monitoring and real-time 
data analysis, reducing the need for manual sampling.

We acknowledge limitations in this study, most notably 
concerning the period of the dataset used. The data, which 
only extends up to 2013, imposes constraints on the appli-
cability of our findings. Specifically, our model does not 
account for potential changes in the lake’s ecosystem that 
may have occurred post-2013 — a significant concern given 
the dynamic nature of ecosystems and their susceptibility to 
both natural and anthropogenic influences over time. While 
this limitation is mitigated to some extent by the current 
lack of more recent, publicly accessible data, it remains a 
constraint. Our study, therefore, serves as the most current 
analysis possible within these data limitations. On the meth-
odological side, our approach does not employ a multivari-
ate forecasting strategy, which means it is not influenced by 
other potentially impactful variables, such as climate data 
or additional water quality parameters. While this simpli-
fies our model, potentially increasing its robustness given 
the age of the data, it is a limitation that future research 
could address. Nevertheless, the methodology and analyses 
presented here could be applied directly to newer datasets 
as and when they become available, thereby validating and 
enhancing the utility and relevance of our current findings.

Conclusions

Monitoring and forecasting water quality in water bodies is 
crucial for managing water resources, as it has a substan-
tial influence on environmental processes and the welfare 
of both humans and animals. This study aims to develop an 
EM using single- (GA) and multi-objective (NSGA-II) opti-
mization algorithms that utilize DL models separately, with 
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the goal of forecasting the Chl-a concentration in the SPL 
located in Greece. Data on Chl-a levels and other WQVs 
were collected using a sensor from June 1, 2012, to May 31, 
2013. To forecast the Chl-a concentration, four different DL 
models — RNN, LSTM, GRU, and TCN — were developed, 
and their results were assessed and compared with each 
other. Subsequently, EMs based on the GA and NSGA-II 
algorithms were developed to improve the obtained results of 
individual models. The study revealed that the GRU model 
exhibited superior performance in comparison with other 
individual DL models in Chl-a forecasting due to its simpler 
structure compared to LSTM and its ability to address the 
problems of RNNs. Additionally, EMs, which are based on 
SOO and MOO algorithms, demonstrated superior results 
when compared to individual DL models.

Based on the insights gained and the results achieved in 
this study, several promising avenues for future research 
in water management and water quality forecasting can be 
outlined:

1. Subsequent studies could delve into the application of 
decomposition tools before implementing DL models. 
Among these tools, continuous wavelet transform, fast 
Fourier transform, and VMD, among others, hold poten-
tial.

2. Future research could delve into exploring additional 
hybrid models such as RNN-LSTM, RNN-TCN, GRU-
TCN, WT-GRU-TCN, LSTM-TCN-WT, and GRU-TCN-
VMD, and comparisons drawn with the present study 
could be insightful.

3. Understanding and modeling uncertainty emerges as 
a pivotal endeavor within the realm of DL and EMs. 
Addressing this facet can significantly enhance the reli-
ability of forecasting and ensuing decisions. Within this 
context, various types of uncertainty, including aleato-
ric, epistemic, and model uncertainty, warrant thorough 
consideration.

The primary contribution of this study lies in the formu-
lation of an ensemble approach that harnesses the comple-
mentary strengths of distinct DL models, effectively address-
ing the complexities tied to forecast dynamic water quality 
variables. Our approach demonstrates heightened predictive 
performance compared to individual models, highlighting 
the potency of synergistic model amalgamations. Addition-
ally, the availability of the water quality data used for the 
training and testing phase, model assumption, transferabil-
ity, temporal and spatial variability, model interpretability, 
computational resources, and so on can be considered as 
limitations and implication of the research.
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