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Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and 
sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO 
NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs’ different preparation 
methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation 
factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable 
properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental 
losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper 
introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the 
removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding 
innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the 
high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research 
should be developed on the cost–benefit analysis regarding the preparation methods, treatment processes, and value-added 
product regeneration efficiency.

Keywords Zinc oxide · Emerging pollutants · Nanocomposites · Green synthesis · Photocatalysts · Photodegradation · 
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Introduction

The significance of water quality underscores the formula-
tion of innovative design concepts for advanced nanoma-
terials, specifically tailored to address emerging pollutants 
in water bodies and wastewater treatment facilities (Al 
Ja’farawy et al. 2022). The aim is the creation of some facile 

and easily accessible products for rapid response and high 
sensitivity in pollution removal. The literature review indi-
cates that industrial facilities annually release 300–400 mil-
lion tons of waste into the world’s water, including organics 
and inorganics (Fanyun Chen et al. 2020a; Morasae Samadi 
et al. 2016). Nevertheless, pathogenic bacterial contaminants 
are also a major global health concern (M. Arunpandian 
et al. 2019). Due to the hazardous effects that solid and 
liquid wastes have on humans, animals, and aquatic envi-
ronments, their disposal is essential (Munawar et al. 2020; 
Chongyang Liu et al. 2019; Jaspal Singh and Soni 2020).

The concerns related to the pollutants have been 
addressed by adapting various wastewater treatments, 
including physical adsorption, biological, and chemical tech-
niques. These methods are difficult and ineffective at remov-
ing organic waste or harmful metal ions (Fanyun Chen et al. 
2020a; Morasae Samadi et al. 2016). Current research has 
focused on advanced oxidation process (AOP) technologies 
that promise effective water purification (M. Samadi et al. 
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2019). Due to the effectiveness, low cost, and environmen-
tally friendly approach, the use of photocatalysts is one of 
the AOP methods frequently employed for water treatment 
(M. A. Ahmed et al. 2019; M Arunpandian et al. 2020). 
When it comes to innovative physicochemical methods for 
the photodegradation of organic contaminants, semiconduc-
tor photocatalysts have attracted a lot of interest. They have a 
low energy requirement, are straightforward, and have mild 
reaction times (M. A. Ahmed et al. 2019; Pant et al. 2013).

Semiconductor metal oxides such as  TiO2, ZnO, 
ZnO, ZnS, chalcogenides (CdS, CdSe), or  Fe2O3 exhibit 
outstanding photocatalytic and antibacterial activity, 
making them the most promising materials in this field for 
the removal of organic pollutants and bacterial disinfection 
(Abebe et  al. 2020). The use of nanoscale zero-valent 
iron (ZVI) in wastewater treatment has drawbacks, and 
difficulties like the separation of iron ox-hydroxide (FeOOH) 
nanoparticles in the treated water are caused by the release 
of soluble iron ions and susceptibility to surface oxidation, 
which is difficult and expensive to remove from wastewater 
(Simeonidis et al. 2016). Additionally, ZVI NPs have a 
tendency to form clusters when subjected to magnetic 
attraction and are capable of interacting with oxygen 
and compounds that include oxygen. ZVI NP toxicity to 
microbial species is another issue that raises questions 
because it may have an impact on both single cells and 
large ecosystems. Researchers have investigated a variety 
of approaches to overcome these difficulties, including 
strengthening ZVI nanoparticles with solid materials, 
changing ZVI nanoparticle physicochemical features, and 
modifying pH-related factors to accelerate the Fenton 
reaction (Aragaw et al. 2021).

TiO2 and ZnO, two semiconductor metal oxides with 
comparable band gaps (ZnO, 3.37 eV, and  TiO2, 3.2 eV), 
make good photocatalysts for the purification of water (Pant 
et al. 2013; Raza et al. 2016). Due to its high excitation 
binding energy (60 meV), high electron mobility, high 
quantum efficiency, high photostability, non-toxicity, 
thermal stability, oxidation resistance, biosafety, and 
biocompatibility, ZnO is a possible replacement for  TiO2 
(Swati et al. 2020). Zinc (Zn) is a mineral nutrient that can 
have a positive impact on human health, whereas titanium 
(Ti) is a toxic heavy metal. ZnO is considered safe for 
contact with our skin and is even approved for use on baby 
skin. In contrast,  TiO2 generates more free radicals that can 
potentially harm the skin. The key difference between these 
two oxides is that ZnO is a better UV absorber across more 
wavelengths when compared to  TiO2. Numerous studies 
demonstrate that ZnO can exhibit efficiency comparable to 
 TiO2 in the photocatalytic degradation of certain organic 
substances, and in some instances, ZnO exhibits even 
greater photocatalytic activity than  TiO2 (G. G. Zheng et al. 
2015). For example, Poulios et al. (Poulios et al. 2000) 

examined the photocatalytic degradation of basic yellow 
2 dye, achieving a degradation rate of 95% after 60 min 
of exposure to UV light with  TiO2 P-25 as the catalyst. 
Conversely, when ZnO was employed, the solution degraded 
almost completely, reaching nearly 100% degradation within 
the same 60-min period. The study by Muruganandham and 
Swaminathan (Muruganandham and Swaminathan 2006), 
which investigated the photocatalytic degradation of reactive 
yellow 14 dye in an aqueous solution, also showcased ZnO’s 
superior efficiency over  TiO2. The research established the 
following reactivity order: ZnO >  TiO2-P25 >  TiO2 (anatase).

ZnO is an n-type semiconductor, which in the last 
decade has attracted attention due to the possibility of use 
in various fields such as optics and electronics, medicine, 
and the environment (Anbuvannan et al. 2015; Sundrarajan 
et al. 2015; Jamdagni et al. 2018). Compared to  TiO2 or 
CuO, ZnO in the form of nanoparticles is a cheap, stable, 
and quickly obtained material (Jayaseelan et al. 2012). The 
semiconducting properties are given by the large band gap 
(3.37 eV) which offers superior catalytic, optical, anti-
inflammatory, anticancer, antidiabetic, antibacterial, and 
antifungal properties, but also the possibility of filtering 
UV, being successfully applied in cosmetics (Mirzaei and 
Darroudi 2017; Patel et al. 2015).

Various applications derive from the morphology and 
structure of ZnO NPs prepared by various methods, so 
that nanoflakes, nanoflowers, nanobelts, nanorods, and 
nanowires are obtained (Paulkumar et al. 2014; Rajeshkumar 
et al. 2014). Research has demonstrated that the morphology 
of nanoparticles has a significant impact on their optical, 
electrochemical, sensory, thermal, and mechanical 
characteristics (Velasco et  al. 2020). This influence on 
morphology is referred to as magnetic anisotropy (Fountain 
and Medd 2015). Additionally, the particle’s shape plays 
a role in the dispersion, degradation process, stability, 
and compatibility of ZnO nanoparticles (Garanin and 
Kachkachi 2003). The synthesis method used influences the 
morphologies the NPs obtained. Studies have shown that 
ZnO NPs prepared by the precipitation method can produce 
spherical and hexagonal morphologies (Velasco et al. 2020; 
Kolodziejczak-Radzimska and Jesionowski 2014). From 
hydrothermal synthesis, studies have reported bullet-like 
(100‒200 nm), rod-like (100‒200 nm), sheet (50‒200 nm), 
polyhedron (200‒400 nm), and crushed stone–like (50‒200 
nm)-shaped ZnO NPs (Ismail et al. 2005; Dem’yanets et al. 
2006).

The US Food and Drug Administration has also 
authorized ZnO as a safe antibacterial agent due to its 
efficient antibacterial activity, selectivity for bacterial 
cells, and low toxicity to human cells (Naskar et al. 2020). 
Many investigations were conducted to overcome some 
of the drawbacks of using ZnO for wastewater treatment, 
such as surface and structure modification, noble metal 
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deposition, coupling carbon materials, formation of 
heterojunctions, and doping with metals and non-metals 
(Qi et  al. 2017; Yadav et  al. 2023; Folawewo and Bala 
2022). ZnO is non-toxic, is environmentally friendly, and 
presents good stability properties; thus, it has been used 
for organic pollutant degradation (Phuruangrat et al. 2019; 
Tanji et al. 2023). Nevertheless, this approach falls short in 
enhancing photocatalytic activity, particularly in the visible 
light spectrum. Carbon materials serve as photoelectron 
reservoirs, storing and transporting the photogenerated 
electrons from ZnO to substrates, that is why they have 
undergone a tremendous increase in coupling to ZnO. The 
light absorption of ZnO expands into visible light and near 
infrared due to its photosensitizer characteristics (Qi et al. 
2017).

Within these considerations, nanomaterials remain a 
promising solution especially when single particles are 
integrated into different selective and reliable matrix 
avoiding their loss in working environments. We present 
an extensive scientific investigation covering the period 
from 2000 to 2023 regarding ZnO nanostructures as 
reliable catalyst materials for the degradation of emerging 
pollutants from water sources. Although the literature 
presents numerous researches on the methods of obtaining 
ZnO, testing, and improvement solutions through ZnO 
integration in different matrix, the novelty of this research 
is to bring together those green methods that offer safety to 
the environment and aim to degrade emerging pollutants 
resulted from pharmaceuticals, personal care products, and 
other anthropic activities. In particular, we emphasized the 
integration concept of ZnO NPs into matrix as a low-cost 
tool for rapid degradation of emerging pollutants.

Our objectives for the present research were to (i) identify 
green syntheses as alternative for classical syntheses for 
ZnO, (ii) offer a screening analysis on EP types, (iii) analyze 
the degradation performances on EPs, and (iv) offer future 
perspectives.

Methodology and results

For the present purpose, we extensively reviewed a 
large number of research papers as the most suitable 
methodological tool for conveying the correct data in 
the field to academic scholars. Thus, a comprehensive 
literature review ranging from theory to experimental 
results was analyzed. Besides these, our research included 
a number of existing guidelines referring to the literature 
reviews available today (Snyder 2019; Tranfield et al. 2003; 
Palmatier et al. 2018). Many of these guidelines describe 
different methodology approaches in order to achieve 
specific targets. Based on these considerations, the present 
literature research review was structured into 4 phases: 

design, conduct, analysis, and structuring and writing the 
review, as it is presented in Snyder’s paper (Snyder 2019).

The literature review was based on a number of publica-
tions between 2000 and 2023, according to the search engine 
of Web of Science. The primary keywords “green synthesis, 
ZnO” were chosen, for which a number of 4679 publications 
were recorded. According to the citations and publication 
number, it could be observed that in the last 10 years, there 
has been a continuous interest in the field of green synthesis 
for ZnO preparation. Thus, from only two or three papers 
at the beginning of 2000, a number of 725 papers were 
published in 2022. The number of citations was significant 
from 2020 where over 10,000 citations were recorded. Fig-
ure 1 includes these data from the Web of Science platform. 
By adding as the keyword “photocatalysis”, the number of 
papers was reduced to 371, with a constant tendency of the 
published articles since 2020 and a positive impact of the 
researches proved by the number of citations, as it can be 
seen in Fig. 1.

The selected publications, based on mentioned keywords, 
were collected and organized in accordance with the 
following criteria:

– Research design and methods of synthesis
– Photocatalysis performances for emerging pollutants
– Characterization investigation for ZnO NPs in order to 

validate structure and material performances

From the presented publications, an important impact for 
our research was identified at a number of 342 references 
that was chosen for EndNote as reference manager, with high 
impact as scientific information regarding ZnO NPs obtained 
with green synthesis and high efficiency as photocatalyst. 
The results of these publications are presented in the next 
chapters of this paper.

Methods used for ZnO nanostructure 
preparation and their characterization

Conventional syntheses

Based on conventional methods, ZnO NPs can be 
synthesized by applying controlled chemical and physical 
methods, such as sol–gel, sonochemical, solvothermal/
hydrothermal, precipitation, microemulsion, and polyol 
(Verma et al. 2021). Physical methods involve physical 
processes such as colloidal dispersion, vapor condensation, 
amorphous crystallization, and physical fragmentation 
(Agarwal et al. 2017; Vidya et al. 2013; Aladpoosh and 
Montazer 2015; Chandrasekaran et  al. 2016), using 
equipment to maintain adequate temperature and pressure. 
Chemical methods are recognized for the accuracy and 
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reproducibility of the results, but they involve chemical 
agents that are often toxic and have a negative impact on 
the environment, so the interest in ecological methods is 
rapidly growing.

There are advantages and disadvantages for any of these 
methods, some being difficult to scale up, such as spray 
pyrolysis or low reproducibility for the sol–gel method or 
with a high consumption of solvents and reagents, as in the 
case of microemulsion or polyol methods.

Sol–gel synthesis method

The sol–gel method is a wet chemical method, being the 
most widespread method for the synthesis of photocatalytic 
semiconductors (Medina-Ramírez et al. 2015; Adeola et al. 
2022; Thiagarajan et al. 2017). The final products can be 
crystalline and non-crystalline nanoparticles, ceramics, 
aerosols, and xerosols, depending on the final stage of 
thermal treatment. Precursor soil can be deposited on a 
substrate by coating or spin (Jamjoum et al. 2021). The 
method is cheap and allows control of the composition and 
the final product (Adeola et al. 2022). Through this method, 
semiconductors such as  TiO2 can be doped with boron 
and nitrogen in order to develop materials with advanced 
properties applied to water decontamination processes with 
various pollutants, such as methyl orange (MO) (Gombac 
et al. 2007). Other examples would be obtaining hybrid 
nanocomposite magnesium aminoclay (MgAC)-Fe2O3/TiO2 
used for the degradation of about 95% methylene blue (MB) 
and about 80% phenol from water (Bui et al. 2019).

Coupled oxide semiconductors of the p-n heterojunction-
type ZnO/GO,  Fe2O3/GO, ZnO/CuO,  Nb2O5/TiO2,  Ta2O5/
TiO2, and  SnO2/TiO2 were obtained by the sol–gel method, 
the metal oxide precursors being hydrolyzed under stirring, 
and the surface area of the metal oxide synthesized coupled 
leads to increased photocatalytic activity (Medina-Ramírez 
et al. 2015; Bayode et al. 2021a, b; Gajendiran and Rajen-
dran 2014; Arbuj et al. 2013b, a; Nur et al. 2007).

The sol–gel technique is a versatile but complex method 
for preparing metal oxide nanoparticles. It involves a 
series of steps, including sol preparation, hydrolysis, 
polymerization, gel formation, solvent removal, and heat 
treatment, which can be time-consuming and intricate. 
One of the key challenges is achieving precise control 
over particle size and distribution, as uniformity and 
prevention of agglomeration can be difficult (Navas et al. 
2021). Additionally, maintaining purity and minimizing 
contamination are crucial, as impurities from reagents 
or equipment can easily affect the quality of the final 
nanoparticles. The choice of precursor materials, cracking, 
shrinkage during drying, and the energy-intensive heating 
process further add to the complexities (Simon et al. 2009). 
Safety concerns and the need for specialized equipment 
and high-purity chemicals can also increase costs. 
Reproducibility can be a challenge due to the sensitivity 
of the process to various parameters (Modan and Schiopu 
2020; Verma et al. 2021).

Despite these drawbacks, the sol–gel technique is 
valuable for tailoring metal oxide nanoparticles with unique 
properties. Researchers are actively working to refine the 
process and address these challenges to make it more 

Fig. 1  Scientific results generated between 2000 and 2023 regarding “ZnONPs Green synthesis” used in photocatalysis processes according to 
Web of Science database
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efficient and reliable. Advancements in controlling particle 
size, minimizing impurities, and optimizing the process 
parameters are ongoing efforts to improve the utility of the 
sol–gel technique for nanoparticle synthesis.

Solvo‑/hydrothermal synthesis method

The solvo-/hydrothermal method takes place in a closed 
reaction vessel called an autoclave, where high pressures 
can be obtained at relatively low temperatures, with the 
possibility to use different solvents like water, ethanol, or 
polyols (Yang and Park 2019; Islam et al. 2022). Apart 
from ensuring elevated product purity and crystalline 
quality, hydrothermal techniques regulate the ultimate 
nanostructure dimensions, configuration, and crystal phase 
within a minimally polluted closed system setting (Cavalu 
et al. 2018).

Through this method, control of morphology and 
crystallinity can be obtained for the fine powders. The 
solvothermal method is the simplest way to produce ZnO 
NPs, at low pressure and a temperature equal to or higher 
than the boiling point of the solvent used in the reaction. 
Depending on the polarities of the solvent, different 
morphologies can be obtained from nanorods, sheets, 
and even nanocomposites in which ZnO of about 5 nm is 
deposited in sheets of graphene (Kunjara Na Ayudhya et al. 
2006; Lu et al. 2008; Wu et al. 2011).

The pH of the solution is important in the morphology 
of ZnO NP nanostructures, especially by the chemical 
precipitation method. Particle size decreases with 
increasing pH by dissociating OH ions at high pH 
(Magesh et al. 2018; Mahajan et al. 2019; Alias et al. 
2010). The crystallinity and uniformity of the particles 
are also obtained by chemical precipitation, in an aqueous 
or non-aqueous medium, in the presence of a reducing 
agent, followed by calcination (ChangChun Chen et al. 
2008; Ching-Fang Liu et al. 2018). As in the case of the 
hydro-/solvothermal method, the polarity of the solvent 
is important, and reproducible nanostructures can be 
obtained by adding a non-polar (hexane) or weakly polar 
(acetone) solvent which favors chemical precipitation of 
high surface area ZnO nanoparticles and reproducible 
morphological structures, but with a tendency to 
aggregate, which is why the stabilizing agent is also 
important (Halaciuga et  al. 2011; Dutta et  al. 2012). 
Low pH values lead to the dissociation of  Zn2+ ions, in 
hydrothermal synthesis, the pH being almost neutral to 
alkaline to favor the hydrolysis of the Zn precursor in 
the presence of hydroxyl ions (Ching-Fang Liu et  al. 
2018). In the case of hydrothermal synthesis, the pH 
variation from 7 to 13 has an effect on the crystal growth 
rate and surface energy, obtaining various morphologies 
such as nanorods with hexagonal ends, spheroidal disc 

and hexagonal, porous hexagonal nanorods, and porous 
hexagonal nanorods assembled into nanoflower structures 
(Kumaresan et al. 2017).

The hydrothermal method uses high pressure and 
temperature, in the presence of which heterogeneous 
reactions take place in the presence of solvents (Adeola 
et al. 2022; Medina-Ramírez et al. 2015).  TiO2 nanorods 
can be obtained (Muduli et  al. 2011; Gao et  al. 2015), 
CuO (Outokesh et  al. 2011; Prathap et  al. 2012), ZnO 
(Bin Liu and Zeng 2003; Gerbreders et al. 2020),  MnO2 
(Subramanian et al. 2005; Chu et al. 2017), etc. It is also 
possible to obtain hybrid composites used in degradation 
processes, such as  TiO2 doped with boron and nitrogen for 
the degradation of bisphenol A (BPA) and  TiO2-Bi2WO6 
composite was developed for Rhodamine blue degradation 
(Abdelraheem et al. 2019; Hou et al. 2014).

Innovative photocatalysts composed of PVDF/ZnO/
CuS were developed using electrospinning, hydrothermal 
treatment, and ion exchange techniques with the purpose 
to address the issue of particle aggregation in an aqueous 
environment (Zang et al. 2022). These photocatalysts dem-
onstrated excellent stability during recycling and reuse. ZnO 
nanorods were firmly attached to PVDF nanofibers, serving 
as a support structure. Additionally, CuS NPs were intro-
duced as photosensitizers to enhance the visible light pho-
tocatalytic efficiency and compensate for the relatively low 
quantum efficiency of ZnO. The results demonstrated supe-
rior photocatalytic performance in the degradation of MB 
under both UV and visible light, with kinetic constants of 
9.01 ×  10−3  min−1 for UV irradiation and 6.53 ×  10−3  min−1 
for visible light. Before the hydrothermal treatment, the mor-
phology of PVDF nanofibers appeared relatively smooth, 
with each nanofiber having a diameter of approximately 300 
nm (Fig. 2a). However, the diameter distribution was some-
what uneven. After the hydrothermal process, a multitude of 
neatly arranged ZnO nanowhiskers enveloped the nanofibers 
(Fig. 2b), significantly increasing their specific surface area. 
Subsequently, in situ reduction techniques uniformly dis-
tributed CuS nanoparticles on the ZnO nanorods (Fig. 2c). 
Transmission electron microscopy (TEM) images revealed 
crystal spacings of 0.282 nm and 0.305 nm, corresponding to 
the (100) crystal plane of ZnO (wurtzite-type) and the (102) 
crystal plane of CuS (Fig. 2d, e). The interface between ZnO 
and CuS, marked with a red line, confirmed the successful 
construction of the p-n heterojunctions (Fig. 2f).

As the process is considered environmentally advanta-
geous, it is incorporated into eco-friendly approaches for 
synthesizing ZnO NPs. Nevertheless, this approach comes 
with certain drawbacks. For instance, it necessitates the 
use of a highly costly autoclave and imposes restrictions 
on research due to the inability to keep the reactor open. 
Other disadvantages are represented by the toxicity of some 
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solvents that are used in this process; the reactions can take 
place in long periods of time (5–48 h) (Verma et al. 2021).

Co‑precipitation synthesis method

The co-precipitation method generates metallic NPs through 
concurrent nucleation, subsequent growth, and eventual 
agglomeration of very small nuclei. The solution’s pH is 
modified within a designated range, usually falling between 
7 and 11, to trigger the precipitation of zinc ions (Naser et al. 
2023). Subsequently, the resulting blend is either stirred or 
subjected to sonication for a specified duration to encourage 
the development of ZnO NPs. One of the merits associated 
with the co-precipitation technique is its straightforwardness 
and cost-effectiveness. This technique offers various 
advantages, such as simplicity of application, reduced 
reliance on high temperatures, and straightforward energy 
control (Rane et al. 2018). Additionally, this method can 
yield a substantial quantity of ZnO nanoparticles with high 

efficiency. However, it is important to note that this approach 
has a notable disadvantage: it results in nanoparticles 
with a significant presence of attached water molecules. 
Furthermore, it exhibits drawbacks such as batch-to-batch 
repeatability challenges, a broad spectrum of particle sizes, 
and pronounced agglomeration tendencies (Mostafavi et al. 
2015). The necessary materials are easily obtainable, and 
the synthesis procedure is comparatively uncomplicated 
(Marciello et al. 2016).

The precipitation reagent influences the nucleation speed, 
morphology, and crystallinity of the formed ZnO particles. 
Crystallinity decreases with increasing rate of precipitating 
agent volume (e.g., NaOH), and decreasing precipitating 
agent volume per minute leads to the change of morphology 
from ZnO NPs to nanorods (Bekkari et al. 2017). Different 
co-precipitation methods were employed to synthesize ZnO 
NPs with different particle sizes. One method utilized zinc 
acetate solution in methanol, resulting in spherical ZnO 
NPs ranging from 2 to 10 nm in size. Another approach 

Fig. 2  SEM images of a PVDF, b ZnO@PVDF, and c PVDF/ZnO/CuS nanocomposites. d–f TEM images and g EDX mapping of PVDF/ZnO/
CuS nanocomposites (Zang et al. 2022) (open access)
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involved zinc acetate dihydrate, hydrochloric acid, and 
ammonia as reactants, yielding pseudo-spherical ZnO NPs 
with an average size of 11 to 20 nm (Purwaningsih et al. 
2016). Additionally, a similar co-precipitation technique 
was employed by Adam et al. to produce ZnO NPs with an 
average diameter of 140 nm (Adam et al. 2018).

High degradation efficiencies under visible radiation 
were obtained for the ZnO:Au photocatalyst when it 
was used for the degradation of chloroquine phosphate 
(CLQ), paracetamol (PAR), diclofenac sodium (DCF), and 
ciprofloxacin (CIP) pharmaceuticals in water (F. Y. Zheng 
et  al. 2023) and W/Ag/ZnO nanocomposite created for 
degradation of Turquoise Blue Dye (TBD) (Noreen et al. 
2022).

Sonochemical synthesis method

The sonochemical method is based on a physical 
phenomenon of acoustic cavitation, through which 
nanometals, oxides, semiconductors, metal alloys, etc. are 
obtained (Medina-Ramírez et al. 2015; Hangxun Xu et al. 
2013). The method is advantageous economically and for 
the environment, and the shape and size of the materials can 
be controlled (Abbas et al. 2014; Ali Dheyab et al. 2021). A 
major drawback of this method is that it has low efficiencies 
(Modan and Schiopu 2020).

The literature indicates the obtaining of CdO nanorods 
which in the presence of Ag can lead to the formation 
of Cd(OH)2 with Ag nanodots deposited on the surface 
(Abbas et al. 2014). ZnO NPs were also obtained by the 
sonochemical method with zinc acetate precursor and a 
solvent that acts as the base and stabilizer and template for 
ZnO NPs (Bhatte et al. 2012; Nandi and Das 2020). The 
literature also indicates that ultrasonic waves play a crucial 
role in facilitating the conversion of Zn(OH)2 into single-
phase ZnO NPs.

Through sonochemical synthesis, the crystallinity and 
size of ZnO NPs depend on the ultrasonic wave intensity, 
sonication time, and solvent type (Hangxun Xu et al. 2013; 
Banerjee et al. 2012; Alammar and Mudring 2011; Zak 

et al. 2013). In this way, 0-D, 1-D, 2-D ZnO nanostructures, 
nanoflowers, and 3-D nanoflakes can be obtained (Ghosh 
et al. 2014; Verma et al. 2021). The pH variation with the 
sonochemical method led to spherical shapes at pH 9.5, and 
by increasing to about 11, the shapes became ellipsoidal 
and respectively rod or sheet at pH 12.5 (Xiao et al. 2008).

A successful synthesis was achieved through a sonication 
process, resulting in a heterostructure photocatalyst compris-
ing ZnO NPs decorated with boron nitride quantum dots 
(ZnO/BNQDx) (D. Liu et al. 2022). The ZnO/BNQDx (x = 1, 
2, 4, and 6 wt.%) nanocomposites showed an enhanced pho-
tocatalytic activity in the degradation of methylene blue 
(MB) and methyl orange (MO), attributed to the formation 
of a heterojunction, which facilitates effective hole extrac-
tion by  BNQDx while simultaneously preventing the recom-
bination of photoinduced charge carriers. The optical charac-
teristics of both ZnO and ZnO/BNQDx nanocomposites were 
explored using UV–visible diffuse reflectance spectroscopy 
and photoluminescence (PL) analysis, as displayed in Fig. 3a 
and b. ZnO exhibits distinct UV absorption extending up to 
around 360 nm, corresponding to a 3.25 eV band gap. The 
ZnO/BNQD samples exhibit a visible range absorption with 
increasing absorption intensity as the BNQD quantity rises. 
Consequently, the band gap decreased gradually to 3.25 eV 
(ZnO/BNQD-1), 3.24 eV (ZnO/BNQD-2), 3.23 eV (ZnO/
BNQD-4), and 3.21 eV (ZnO/BNQD-6), indicating that the 
interaction between ZnO and BNQDs enhanced visible light 
absorption, thus improving the photocatalyst’s activity in 
visible light (Fig. 3a). The PL analysis suggests improved 
separation of photoinduced electron–hole pairs due to the 
formation of a heterojunction between ZnO and  BNQDx 
(Fig. 3b).

Microemulsion synthesis method

In a microemulsion environment, water droplets collided, 
triggering a precipitation reaction that resulted in the 
formation of NPs stabilized by surfactants (Islam et al. 
2022). This approach is favored for its simplicity, 
thermodynamic stability, and low residue. However, 

Fig. 3  Absorbance (a) and PL 
(b) spectra for ZnO/BNQDx 
composites (D. Liu et al. 2022) 
(open access)
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microemulsion techniques have drawbacks such as 
sensitivity to temperature and pH, as well as the 
continuous need for high surfactant concentrations, which 
can be irritating (Rane et al. 2018). Wang et al. produced 
ZnO NPs in a microchannel reactor with an average 
diameter of 16 nm, followed by drying and calcination 
(Y. Wang et al. 2014). Similarly, Li et al. generated ZnO 
NPs through a straightforward microemulsion process, 
yielding NPs with various shapes, including columnar and 
spherical morphologies (X. C. Li et al. 2009).

The synthesis of ZnO NPs by microemulsion offers a 
control of purity and crystallinity by using organic solvents 
immiscible with the aqueous solution of the metal solu-
tion, in the presence of anionic and cationic surfactants 
(Verma et al. 2021; Sarkar et al. 2011; Atul B Lavand 
and Malghe 2015a). Nanostructures such as spheres, nee-
dles, and rods can be obtained, as it can be observed in 
Fig. 4. The use of organic solvents possessing multiple 
hydroxyl groups was recently implemented through the 
polyol method, through which nanorods can be obtained 
under controllable conditions, using zinc acetate precur-
sor in diethylene glycol at temperature, in the presence of 
capping agents such as polyvinylpyrrolidone or p-toluene 
sulfonic acid (Alves et al. 2018; Anžlovar et al. 2012; 
Flores-Carrasco et al. 2019; Lee et al. 2008; Mei Wang 
et al. 2018).

Microwave‑assisted synthesis method

The microwave-assisted method is a popular choice for 
synthesizing nanomaterials due to its numerous advantages 
compared to other traditional methods and is commonly 
used for producing ZnO NPs (Wojnarowicz et al. 2020). In 
this technique, microwave radiation is employed to trigger 
the reaction between zinc acetate or zinc nitrate and a base 
like sodium hydroxide or ammonium hydroxide in a suitable 
solvent such as water or ethanol (Kolodziejczak-Radzimska 
and Jesionowski 2014; Prommalikit et al. 2019). The process 
is conducted under controlled microwave conditions, 
including temperature and power. This method stands out for 
its rapid and efficient production of ZnO nanoparticles, with 
the ability to complete the synthesis within minutes to hours. 
Moreover, it offers the advantage of tailoring nanoparticle 
size and morphology by adjusting reaction parameters.

The rapid synthesis of thin films of ZnO NPs, advanta-
geous to avoid the risk of uncontrolled release of NPs, can 
be achieved by pyrolysis by spraying the metal precursor in 
aerosol form on a hot solid substrate, using a carrier gas at 
high pressure (D Sumanth Kumar et al. 2018a). Homogene-
ous spheres of ZnO NPs of about 20–30 nm can be obtained 
(Turner et al. 2010; Tani et al. 2002). Microwave radiation 
ensures fast and uniform heating of the solution compared 
to classical heat treatment (Bilecka and Niederberger 2010). 

Fig. 4  Different morphologies of ZnO NPs
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The irradiation power of the furnace on the solution of metal 
precursors ensures different morphologies of ZnO NPs 
obtained from nanoflower shapes to 1D nanoneedles, and 
the higher the reaction speed, the faster the growth of ZnO 
nuclei occurs (Barreto et al. 2013).

The rapid microwave synthesis method proved effective 
in producing zinc oxide nanorods (ZnO NRs) capable of 
absorbing visible light photons (Cardoza-Contreras et al. 
2019). Introducing silver (Ag) and gallium (Ga) into the ZnO 
nanorods had distinct impacts on their optical properties. At 
low concentrations, Ga enhanced the defect band of ZnO 
NRs, whereas higher concentrations increased the intensity 
of the near band edge (NBE) emission. In the experiment 
conducted to degrade methylene blue (MB), it was 
observed that a 0.1% Ga doping significantly improved the 
photocatalytic performance of ZnO NRs. This improvement 
in photocatalytic efficiency suggests that the low-level Ga 
doping creates more surface defects, which effectively 
trap photogenerated electrons and holes, reducing their 
recombination. On the other hand, low-level silver doping 
increased the intensity of both the NBE emission and defect 
band, possibly indicating an increase in lattice defects. These 
defects can act as recombination centers, resulting in a slight 
reduction in photocatalytic activity.

ZnO nanostructures were integrated with reduced 
graphene oxide (ZnO-rGO) through a one-pot microwave-
assisted hydrothermal synthesis as a promising approach 
for polychlorinated biphenyl (PCB) degradation (Merlano 
et al. 2022). As a result, the composites displayed enhanced 
photocatalytic efficiency for PCB degradation in contrast 
to ZnO NPs. Achieving complete PCB mineralization is 
seldom documented, necessitating prolonged irradiation 
durations. High removal rates (> 90%) and under scalable 
experimental conditions were reported.

The SEM and TEM analyses (Fig. 5) were conducted 
to examine the morphologies of the synthesized materials. 
ZnO NPs were successfully generated, exhibiting an approxi-
mate spherical shape with an average particle size of 108 nm 
(Fig. 5a). In the case of the nanocomposites, distinct ZnO 
nanostructures in the form of rods and flowers were achieved, 
completely covering the rGO sheets (Fig. 5b, c). The rod-
shaped ZnO nanoparticles that adhered to the rGO flakes 
had an average length of 2.60 µm and an average diameter of 
511 nm. TEM micrographs clearly show the anchoring of a 
ZnO rod within the rGO sheets (Fig. 5d, e). Figure 5f provides 
evidence of an estimated d-spacing value of 0.20 nm between 
two adjacent lattice planes, corresponding to the (101) planes 
of hexagonal wurtzite ZnO which can be observed.

Fig. 5  SEM micrographs of a ZnO nanoparticles, b ZnO-rGO-rods, and c ZnO-rGO-flowers. d–f TEM micrographs of ZnO-rGO-rods (Merlano 
et al. 2022) (open access)
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High‑energy ball milling synthesis method

The high-energy ball milling (HEBM) synthesis method 
for ZnO nanoparticles offers advantages such as controlled 
size and enhanced properties but is accompanied by 
notable drawbacks (Hodaei et  al. 2015). It involves 
specialized, potentially costly equipment and high energy 
consumption, and the use of milling balls can introduce 
contamination (Piras et al. 2019). The process can be time-
consuming, result in a broad size distribution, generate 
heat, cause mechanical damage, and pose challenges for 
scale-up. However, researchers still value HEBM for 
its ability to tailor nanoparticle properties, especially 
when precise control is crucial for specific applications, 
weighing its advantages against these disadvantages based 
on project requirements.

Researchers have utilized this technique to synthe-
size ZnO NPs using commercially available ZnO powder 
with an initial mean particle size of 0.8 nm (Prommalikit 
et al. 2019). Varying milling durations resulted in ZnO 
NPs with final sizes ranging from 20 to 400 nm, with 
longer milling times leading to smaller particle sizes. 
For instance, spherical ZnO NPs with an approximate 
size of 30 nm were obtained after a specific milling 
duration.

Photocatalysis is a green process of advanced oxida-
tion that takes place on the basis of light that decomposes 
organic contaminants in the presence of nanostructured 
oxide materials and immobilizes microbial agents in water 
(Bora et al. 2017).

Laser ablation synthesis methods

A typical laser ablation method can be employed for the 
removal of metallic ions from metal surfaces by using a 
laser beam and a small volume of liquid (methanol, etha-
nol, or purified water) in which the surface is immersed 
(Mintcheva et al. 2018). This approach offers the advan-
tages of simplicity and environmental safety, making it 
an efficient and straightforward process. However, when 
organic substances are present, the pyrolysis byproducts 
resulting from laser ablation have not been fully eluci-
dated and require further investigation. Noteworthy find-
ings include those by Al-Dahash et al., who successfully 
employed laser ablation in a NaOH aqueous solution to 
produce spherical ZnO NPs ranging from 80.76 to 102.54 
nm (Al-Dahash et al. 2018). Laser ablation offers advan-
tages such as high precision, minimal heat-affected zones, 
and the ability to work with a wide range of materials. 
However, it also requires careful control of laser param-
eters to achieve desired results and avoid collateral dam-
age to surrounding materials.

Green syntheses

The green approach regarding the synthesis of ZnO NPs 
appeared as a result of the toxic substances used in the 
synthesis and the high energy consumption. Green synthesis 
or biosynthesis, as an alternative in obtaining NPs, involves 
the use of plant metabolites, microorganisms, and algae. 
Obtaining ZnO NPs, as an inorganic semiconductor, leads 
to the formation of amphoteric particles, insoluble in water 
(Hussein and Mohammed 2021).

There is numerous specialized literature that indicates 
various approaches regarding green processes, which can 
lead to the biosynthesis of nanoparticles through the use of 
plants and microorganisms (such as bacteria, fungi, algae) as 
an environmentally friendly, cost-effective, safe, byproduct-
free, ecological solution (Agarwal et al. 2017; Salam et al. 
2014). Those nanomaterials resulting from green synthesis 
using plants, microorganisms, algae, or other bioregenerable 
materials are considered “biogenic” (Jagpreet Singh et al. 
2018; Prasad et al. 2021).

Green methods represent solutions for replacing 
hydrocarbon capping agents functionalized with 
heteroatoms, polymers (polyvinyl pyrrolidone, polyvinyl 
alcohol, etc.), dendrimers, and block copolymers with 
extracts from plants, fungi, yeasts, bacteria, and algae 
(Prasad et  al. 2021; Duan et  al. 2015; Prakash et  al. 
2010; Dauthal and Mukhopadhyay 2016; Dahoumane 
et al. 2017; Jha and Prasad 2008; Mukherjee et al. 2001). 
Thus, the replacement agents are polysaccharides (starch, 
chitosan, glucose, etc.), enzymes, polyphenols, vitamins, 
and biomolecules. The starch used in obtaining ZnO NPs, 
with the role of stabilizer, binds the metal ions from the 
precursor solution through the hydroxyl groups. The long 
polysaccharide chains reduce the mobility of metal ions 
and lead to an ordering of the structure, dimensions, and 
morphology of the synthesized nanoparticles (Mukherjee 
et al. 2001).

Plant extract synthesis method

Natural reagents have the role of reducers for nanoparticle 
precursors (usually salts), but they can also be stabilizing 
or coating agents. From certain parts of plants, from 
roots and fruits to seeds, reducing extracts and stabilizer 
properties for ZnO-type nanoparticles can be obtained, 
such as: Trifolium pratense flowers, Aloe vera leaves, or 
Rosa canina fruits (Zong et al. 2014; Ramesh et al. 2015). 
Green synthesis using plant extracts such as leaves, stems, 
roots, fruits, or seeds involves a fast synthesis time and 
leads to the production of a pure, stable material that can 
have various shapes and sizes (Agarwal et al. 2017; Jiao 
Qu et al. 2011b). The reduction of metal ions or oxides, 
using plant extracts, leads to the obtaining of 0 valence 
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metal NPs, the reducing agent being polysaccharides, 
polyphenols, vitamins, amino acids, alkaloids, or 
terpenoids secreted by the plant (Jiao Qu et al. 2011b; 
Heinlaan et al. 2008).

The extract is prepared by boiling and stirring ground 
powder obtained from plant parts with demineralized water. 
After filtration, the resulting clarified solution serves as 
an extract that functions as a reducer for metal precursors 
(Heinlaan et al. 2008). In the case of ZnO NP preparation, 
hydrated zinc nitrate, zinc oxide, or zinc sulfate precursors 
can be mixed with the plant extract at the effective tempera-
ture and time (Ochieng et al. 2015; Jiao Qu et al. 2011a). The 
effectiveness of the extraction is greatly influenced by the 
temperature. In general, higher temperatures increase yields 
by increasing the rate of phytochemical diffusion and their 
solubility in the solvent. By lowering viscosity and surface 
tension, this also facilitates the penetration of the solvent 
into the plant matrix (Farahmandfar et al. 2019; Khan et al. 
2019). However, the ideal temperature varies with respect 
to the plant, solvent, and targeted phytocompounds, and 
exceeding it can lead to the degradation of thermolabile 
biomolecules and an increase in solvent evaporation, which 
decreases efficiency. For instance, the amount of polyphe-
nolic chemicals produced by Orthosiphon stamineus leaf 
extract peaked at 40 °C with 80% methanol and began to 

decline at 60 °C as a result of degradation (Akowuah and 
Zhari 2010). Similar to this, yields were decreased when 
anthocyanins were extracted from berries using ethanol or 
sulfured water above 45 °C (Cacace and Mazza 2003). In 
order to maximize the extraction of phytochemicals from 
various plant sources, proper temperature management is 
essential. The extraction yield can be affected by a number 
of factors, in addition to temperature, including stirring rate, 
extraction time, the solvent types and their ratio of mixing, 
particle size, and, of course, the method of extraction used. 
All of these factors must be considered during the extrac-
tion process (Sulaiman et al. 2017; Weldegebrieal 2020). 
Physical characteristics including particle size and shape 
(Stan et al. 2015), oxygen vacancy content (J. P. Wang et al. 
2012b), and surface defects (edges and corners) can all have 
an impact on how effective ZnO NPs are as photocatalysts, 
as can the type of plant extract utilized and the synthesis 
procedure in general.

An example of a source of polyphenols is grape extract 
(Vitis vinifera), a source rich in phytochemicals, which also 
contains flavonoids and catechins, all with a reducing role 
for metal salts, but also other compounds of the nitro or 
ketone type (Pati et al. 2014; Khosravi-Darani et al. 2019; 
Upadhyay et al. 2015; Georgiev et al. 2014). ZnO NPs can 
be obtained from different zinc precursors (zinc chloride 

Fig. 6  ZnO NP green synthesis and applications (AFM atomic force microscopy, FT-IR Fourier-transform infrared spectroscopy, SEM scanning 
electron microscopy, TEM transmission electron microscopy, UV–Vis ultraviolet–visible spectroscopy, XRD X-ray diffraction)
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dihydrate, zinc sulfate heptahydrate  ZnSO4 ·  7H2O, etc.) 
solution and grape extract in the presence of NaOH to main-
tain the pH of the mixture at a value of 8, the white color 
indicating the formation of ZnO NPs (Fig. 6) (Constandache 
et al. 2023; Hussein and Mohammed 2021).

ZnO NPs are formed based on the reduction of the metal 
from the initial compound (e.g., salt) to zero valence, after 
which Zn oxide is formed by calcination. In the case of poly-
phenols from plant extracts, they produce complexation with 
 Zn2+; by hydrolysis, Zn(OH)2 is formed, and by calcina-
tion, ZnO (Fig. 7). The formation mechanisms are not fully 
elucidated; they are still being studied (Basnet et al. 2018; 
Alamdari et al. 2020; Barzinjy et al. 2020).

One of the advantages of green synthesis is the integra-
tion of ZnO NP synthesis processes into the concept of sus-
tainability and waste minimization (Barzinjy et al. 2020). 
Physicochemical methods are still applied due to the short 
synthesis time, although the equipment is energy consuming, 
and the reagents include acids and bases, surfactants, and 
solvents with toxic, corrosive, and irritating potential. It also 
results in hazardous waste and toxic gases (Barzinjy et al. 
2020). The ecological methods of synthesis also involve the 
reuse of some vegetable waste, a potential source of phyto-
chemical substances in the processes of obtaining ZnO NPs.

The literature indicates the use of Carica papaya extracts 
and the one obtained from Vitex negundo leaves on the basis 
of which possible stages were developed in the mechanism 
of obtaining ZnO NPs: complexation, aggregation of NPs, 
and oxidation of phytocomponents (SC Sharma 2016; 
Ambika and Sundrarajan 2015).

Other types of plant extracts through which the presence 
of polyols, phenolic acids, flavonoids, sugars, tannins, and 
acids leads to the obtaining of stable and controlled ZnO 
NPs are those obtained from the leaf of Swertia chirayita, 
fruits of Rosa canina, bark of Boswellia stem, mimosifolia 
flower, Camellia sinensis tea leaves, Plectranthus amboini-
cus leaves, etc. (Prasad et al. 2021; Akhter et al. 2018; 
Jafarirad et al. 2016; Supraja et al. 2016; Vijayakumar et al. 
2015; Senthilkumar and Sivakumar 2014; Deepali Sharma 
et al. 2016).

The citrus extract, especially lemon, led to the obtain-
ing of ZnO NPs, using dry and crushed leaves dissolved 
in deionized water, the obtained filtrate being brought into 
contact with a precursor solution of Zn(NO3)2·6H2O, in 
the presence of a solution of NaOH. After maintaining the 
temperature for 3 h and drying the precipitate, ZnO NPs 
of approx. 15–25 nm were obtained (Karanpal Singh et al. 
2023).

Today, green synthesis is integrated into laboratory 
synthesis methods in which nanocomposites can be 
obtained from natural precursors. Thus, the extract from 
crushed leaves of Ageratum houstonianum was brought 
into contact with Zn(NO3)2·6H2O solution, the precipi-
tate formed being dried in an oven at 60 °C and calcined 
at 700 °C for obtaining crystalline ZnO NPs. In order to 
make the dye degradation process more efficient by irra-
diation with natural sunlight, NPs were anchored in mul-
tilayer graphene obtained from corn husk, thus obtaining 
nanocomposites with a crystallite size of about 40 nm 
(Sebuso et al. 2022).

Fig. 7  Mechanism of ZnO NP formation (permission) (Hussein and Mohammed 2021)
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Recently, significant interest in template-assisted environ-
mentally friendly synthetic methods has been shown, which 
are cost-effective and safe by avoiding the use of organic 
solvents, surfactants, and hazardous chemicals. Thus, ZnO 
nanostructures synthesized with the assistance of xanthan 
gum (XG) were created using three different green proto-
cols: sonochemical, mechanochemical, and hydrothermal 
methods (Kaur et al. 2023). These ZnO nanostructures were 
denoted as ZnO-TS, ZnO-TH, and ZnO-TM, respectively. 
Similarly, ZnO was synthesized without the use of XG as a 
template through sonochemical, hydrothermal, and mecha-
nochemical methods, and these resultant ZnO samples were 
labeled as ZnO-S, ZnO-H, and ZnO-M, respectively. The 
template-assisted ZnO nanostructures were assessed for their 
potential as photocatalysts in the degradation of emerging 
pollutants, specifically triclosan (TCS) and imidacloprid 
(IMD), under UV light exposure and revealed high photo-
catalytic performance. It was reported that the photocatalytic 
efficiency of the catalyst was significantly influenced by sev-
eral factors, including crystallite size, surface area, and the 
band gap energy of the catalyst. Due to its smaller crystallite 
size, larger surface area, and lower band gap energy, the 
ZnO-TS photocatalyst outperformed both the ZnO-TH and 
ZnO-TM catalysts in terms of catalytic efficiency, particu-
larly under UV light.

The analysis conducted through field emission scanning 
electron microscopy (FESEM) demonstrated that the synthe-
sis methods had a substantial influence on the morphology 
of ZnO, resulting in various nanostructures depending on 
the chosen method (Fig. 8). Specifically, the template-free 
sonochemical synthesis approach (ZnO-S sample) yielded 
rod-like ZnO structures, while the template-assisted sono-
chemical synthesis (ZnO-TS) produced elongated needle-
shaped particles. In the case of hydrothermal synthesis, both 
template-assisted (ZnO-TH) and template-free (ZnO-H) 
methods produced distinct morphologies: highly crystal-
line hexagonal and worm-like shapes, respectively (Kaur 
et al. 2023).

A different research paper documented the utilization of 
fresh olive (Olea europaea) fruit extract in the synthesis 
of zinc oxide NPs (ZnO@OFE NPs) (Ghaffar et al. 2023). 
These nanoparticles exhibited a spherical nanostructure 
with a diameter of 57 nm and were produced through an 
eco-friendly one-pot method. Waste from O. europaea fruit 
played a dual role as a reducing agent and capping agent 
in this process. The effectiveness of the newly synthesized 
catalysts was assessed by observing the degradation of 
methylene blue (MB) and methyl orange (MO) dyes when 
exposed to sunlight. To conduct a comprehensive analysis 
of their photocatalytic activity, a catalyst dose of 30 mg 
in 30 mL of solution was determined to provide optimal 
absorptions of 75% for MB and 87% for MO within 180 
min, with photodegradation rate constants of 0.008 and 

0.013  min−1, respectively. Additionally, the ZnO@OFE 
NPs displayed impressive antioxidant properties, combating 
DPPH, hydroxyl, peroxide, and superoxide radicals. In 
contrast, when sunlight was absent, the removal efficiency 
via adsorption onto the ZnO@OFE NPs’ surface was only 
12% for MB dye and 10% for MO dye after 180 min.

Bimetallic ZnO–CuO hetero-nanocomposite, ZnO, 
and CuO nanostructures were synthesized utilizing a 
hydrothermal synthetic procedure, employing leaf extract 
from Aegle marmelos, also known as bael (Basavegowda 
et  al. 2022). The ZnO–CuO hetero-nanocomposite and 
ZnO NPs were found to be spherical, with an average size 
of approximately 9.2 nm and 7.8 nm, respectively. The 
high stability of the ZnO–CuO hetero-nanocomposite, 
ZnO, and CuO NPs in an aqueous medium was confirmed 
by ζ-potential measurements, which were recorded 
as − 28.2, − 33.2, and − 29.6 mV, respectively. Benefiting 
from the formation of p-n heterostructures, the bimetallic 
ZnO–CuO hetero-nanocomposite exhibited excellent 
photocatalytic activity against 4-nitroaniline (4-NA) and 
MO compared to pure ZnO and CuO. The photocatalytic 
performance results showed a significant improvement for 
the bimetallic ZnO–CuO hetero-nanocomposite in degrading 
4-NA (90% removal in 20 min, with a rate constant, k, of 
3.9 × 10–2  min−1) and MO (96% removal in 10 min, with 
a k of 41.15 × 10–2  min−1). These outcomes were twofold 
compared to the performance of pure ZnO and CuO NPs.

Bacteria synthesis method

Green synthesis of ZnO NPs can also be achieved using 
bacteria, although this requires the screening for microbes 
and a careful monitoring of the culture broth, resulting 
in additional costs and extended processing times. Some 
bacterial strains have the capacity to reduce metal ions 
leading to the synthesis of oxide nanoparticles: Lactobacillus 
casei, prokaryotic bacteria, actinomycetes, Escherichia coli, 
etc. Yeasts can be successfully applied in green synthesis to 
obtain nanoparticles of silver, gold, zinc, and/or titanium 
(Iravani 2014; Thakkar et al. 2010). Intracellular enzymes 
present in microorganisms have the role of reducing metal 
ions until the formation of NPs. Green synthesis brings 
together two areas of interest for the progress of society, 
materials science and environmental protection, through 
which nanomaterials gain a sustainable path according to 
their life cycle.

Utilizing bacteria to create nanoparticles comes with 
various challenges, such as the considerable time and effort 
needed to identify suitable microorganisms, the requirement 
for continuous monitoring throughout the culture and syn-
thesis process, and concerns related to controlling the shape 
and size of the nanoparticles. Additionally, the expense 
associated with the growth media for bacteria can act as a 
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limiting factor. Nevertheless, an environmentally friendly 
approach was demonstrated by utilizing Bacillus licheni-
formis to produce ZnO nanoflowers. These nanoflowers 

showcased an improved level of photocatalytic activity and 
degradation capabilities when compared to existing photo-
catalytic materials. This enhancement is attributed to the 

Fig. 8  FESEM images, EDS, and particle size distribution curve of a ZnO-S, b ZnO-TS, c ZnO-H, d ZnO-TH, e ZnO-M, and f ZnO-TM nano-
structures (with permission from Kaur et al. 2023)
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higher concentration of oxygen vacancies within the syn-
thesized nanoparticles. These distinct photocatalytic char-
acteristics suggest that these nanoflowers hold potential for 
applications in bioremediation processes, as they generate 
active species through the absorption of light. The nanoflow-
ers produced using this method had dimensions of approxi-
mately 40 nm in width and 400 nm in length (Raliya and 
Tarafdar 2013).

A study by Tripathi et  al. leveraged the unique 
capabilities of Rhodococcus and Aeromonas hydrophila 
to synthesize ZnO NPs of different sizes and shapes 
(Tripathi et al. 2014). The study also highlighted the role 
of rhamnolipid in stabilizing these NPs, showcasing their 
potential for various applications in nanotechnology and 
materials science. Rhodococcus, known for its resilience in 
adverse conditions and its ability to metabolize hydrophobic 
substances, plays a crucial role in biodegradation (Reddy 
et  al. 2012). In this study, Rhodococcus pyridinivorans 
and zinc sulfate were utilized to produce spherical NPs 
with a size range of 100–130 nm, as confirmed by XRD 
and FESEM analysis. FTIR examination identified various 
chemical groups present in the NPs. Additionally, ZnO NPs 
were synthesized using Aeromonas hydrophila as a substrate, 
resulting in NPs with a size range of 42–64 nm, featuring 
diverse shapes such as oval and spherical (Mehta et al. 
2009). Rhamnolipid, due to its ability to prevent micelle 
aggregation on carboxymethyl cellulose, contributed to the 
stability of these ZnO NPs, acting as an effective capping 
agent (Kundu et al. 2014). Further characterization through 
TEM, XRD, and DLS revealed the synthesis of spherical 
NPs with a nanosize range of 27–81 nm.

Micro‑ and macroalgae synthesis method

Unicellular algae (like chlorella) and multicellular algae 
(such as chlorophyll) serve as examples of photosynthetic 
organisms, notably including brown algae. Unlike 
conventional plants, algae lack typical plant structures like 
leaves and roots. Marine algae are categorized based on their 
pigments, with Rhodophyta, Phaeophyta, and chlorophytes 
characterized by red, brown, and green pigments, 
respectively. Algae have been extensively utilized for 
producing gold (Au) and silver (Ag) nanoparticles, but their 
application in synthesizing zinc oxide (ZnO) nanoparticles 
has been limited and is documented in relatively few studies 
(Thema et al. 2015).

Significant attention has been directed towards the 
potential of microalgae to detoxify hazardous metals and 
convert them into less harmful forms. To synthesize ZnO 
NPs, researchers have employed both Sargassum muticum 
and Sargassum myriocystum, which are both part of the 
Sargassaceae plant family (Sanaeimehr et al. 2018; Azizi 
et al. 2014). The analysis using XRD and FESEM revealed 

the presence of sulfated polysaccharides in the investigated 
NPs, indicating similar nanoparticle sizes (42 nm, 30–57 
nm, respectively) and a hexagonal wurtzite structure. 
In the case of Sargassum myriocystum, DLS and AFM 
measurements showed varying size ranges (46.6 nm, 20–36 
nm, respectively), along with the identification of carbonyl 
and hydroxyl stretching in nanoparticles that exhibited 
substantial structural diversity. From some microalgae, ZnO 
NPs of about 36 nm can be obtained, whose stability has 
been demonstrated through structural investigations even 
after 6 months (Agarwal et al. 2017).

An eco-friendly, biologically mediated method for 
producing ZnO nanoflowers at low temperatures has been 
investigated in a recent study (Rao and Gautam 2016). 
This “green” strategy has a number of benefits, including 
the use of environmentally benign reactants and financial 
viability. These nanoflowers were developed by the 
researchers from the cell-free extract of the freshwater 
microalga Chlamydomonas reinhardtii and were composed 
of individual nanorods assembling into flower-like shapes. 
The 330-nm-long nanorods created porous nanosheets that 
were 55–80 nm thick. The size of larger porous nanoflowers 
was about 4 µm. The ZnO nanoflowers’ hexagonal wurtzite 
crystal structure was confirmed by XRD analysis, and algal 
biomolecules may have contributed to their formation and 
stabilization, according to FTIR spectroscopy. The effects 
of dye concentration and catalyst dose revealed that these 
nanoflowers demonstrated improved photocatalytic activity 
against methyl orange (MO) under natural sunshine. This 
technology offers a cutting-edge, environmentally benign 
way to make zinc oxide nanoflowers with potential uses in 
water purification and dye deterioration.

Fungus synthesis method

An affordable and cost-effective alternative is the use of 
fungi in the production of ZnO NPs, as they exhibit tolerance 
and bioaccumulation of metals compared to bacteria (Pati 
et al. 2014). Extracellular NPs from fungus are advantageous 
due to their high production, simple downstream processing, 
and commercial viability (Azizi et al. 2014).

ZnO NPs were made using Aspergillus fumigatus 
mycelia. The DLS study found that the area sizes of NPs 
ranged from 1.2 to 6.8, with a 3.8 average size. With a 
considerable particle size of more than 100 nm, AFM 
determined that the average height of NPs for a period of 
90 days was 8.56 nm. The generated NPs were stable for 90 
days because they eventually formed an agglomeration with 
an average particle size of 100 nm (Jaidev and Narasimha 
2010). The NPs made from Aspergillus terreus, a member of 
the Trichocomaceae family, were subjected to SEM analyses 
and the size range was between 54.8 and 82.6 nm. The 
Debye–Scherrer equation was used to calculate the average 
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size of the material found in the XRD analysis, which was 
29 nm. In the created NPs, FTIR measurements revealed the 
synthesis of primary alcohol, aromatic nitro compounds, and 
amine. Analysis using SEM, TEM, and XRD confirmed that 
NPs made with Candida albicans had a similar size range of 
15–25 nm (Shamsuzzaman et al. 2017). ZnO NPs produced 
by Aspergillus species were typically spherical.

Another study presented the synthesis of ZnO NPs 
by using a fungal extract from Xylaria acuta and the 
obtained nanopowder was characterized by means of UV 
spectroscopy, FT-IR, PXRD, SEM with EDX, and TEM 
to determine the structure, morphology, and chemical 
composition (Sumanth et  al. 2020). The SEM analyses 
showed that the structures of the NPs were cylindrical rods 
and hexagonal shapes with an average diameter of 40–55 
nm. To determine the elemental composition and existence 
of the ZnO NPs, an EDX scan was performed. Zinc and 
oxygen showed prominent signals in the EDX spectrum, 
which verified the existence of ZnO NPs produced by fungi 
and the fact that zinc exists as an oxide as opposed to its pure 
form (Shankar and Rhim 2019).

Aspergillus niger can effectively manufacture ZnO NPs 
on a wide scale, as shown by a study’s characterization using 
XRD, UV–Vis, FTIR, and SEM (Kalpana et al. 2018). The 
functional groups present in the NPs were investigated 
with FTIR analysis. The effective synthesis of ZnO NPs is 
demonstrated by distinct and powerful diffraction peaks in 
the XRD examination. SEM has verified that these NPs are 
spherical and range in size from 84 to 91 nm. The research 
also shows that cotton fabric treated with these nano-ZnO 
NPs has antibacterial qualities. Furthermore, a decrease in 
absorbance, indicating complete mineralization and color 
loss, showed that the synthesized NPs were successful in 
degrading Bismarck brown dye.

Recent contributions regarding emerging 
pollutant (EP) degradation 
towards photocatalysis

Impact of the EPs on the environment

EPs are a new class of substances that at low concentrations 
are identified as presenting ecological and human health 
risks (Guanqun Feng et al. 2021; Noguera-Oviedo and Aga 
2016). EPs comprise few subgroups of organics: pharmaceu-
tical and personal care products (PPCP), microplastics (MP), 
engineered nanomaterials (ENM), pharmaceutically active 
compounds (PhAC), endocrine-disrupting chemicals (EDC), 
artificial sweeteners (ASW), disinfection byproducts (DBP), 
antibiotic resistance genes (ARG), detergents, pesticides, 
and other organic compounds that are mainly generated by 

human activities (Noguera-Oviedo and Aga 2016; Qiaowen 
Tan et al. 2019a; Zhang et al. 2020; Pruden et al. 2006). A 
comprehensive illustration of the most common categories 
of emerging pollutants presented in water is shown in Fig. 9.

Konstantinou and Albanis observed that textile dyes and 
other industrial dye compounds form a substantial group of 
organic substances posing an increasing environmental risk 
(Konstantinou and Albanis 2004). The discharge of colored 
wastewater into the environment causes eutrophication 
and non-esthetic pollution, and it may produce harmful 
byproducts due to chemical reactions occurring within 
the effluent. These dyes can also be toxic, which heightens 
ecological concerns about their presence in the environment. 
They can also make it harder for light to penetrate 
contaminated waterways (Akpan and Hameed 2009). 
Traditional wastewater treatment methods have proven 
ineffective in treating synthetic textile dye wastewater due 
to the dyes’ chemical stability, with some dyes passing 
through untreated. Furthermore, textile dyes are resistant to 
conventional methods of degradation. To address this issue, 
recent research has focused on photocatalysis as a promising 
approach for completely breaking down these pollutants in 
wastewater (Saquib et al. 2008; Weldegebrieal 2020; Moradi 
et al. 2015).

Pharmaceuticals and personal care products constitute a 
unique category of substances, often categorized as emerg-
ing environmental pollutants due to their inherent ability to 
induce various physiological responses in humans. Many 
research inquiries have validated the presence of PPCPs 
in various environmental settings, raising concerns about 
potential significant consequences for both biodiversity and 
human well-being. Pharmaceuticals refer to medicinal sub-
stances, including over-the-counter and prescription drugs, 
used for treating and preventing illnesses in both humans and 
animals. On the other hand, personal care products are pri-
marily designed to enhance our daily lives’ quality (Osuoha 
et al. 2023).

PPCPs represent a substantial category of emerging pol-
lutants. Over the last 10 years, significant apprehension has 
arisen due to the inadvertent presence of PPCPs in various 
components of the marine environment, including biota, sedi-
ments, and water, at concentrations with the potential to trig-
ger adverse consequences for the immediate ecosystem. When 
administered in small amounts, most PPCPs exhibit a remark-
able ability to induce physiological abnormalities, classifying 
them as potent substances capable of disrupting biological 
processes in a variety of organisms. Although certain PPCPs 
may undergo degradation in the environment, their persistent 
consumption and inadvertent introduction into ecosystems 
classify them as “pseudo-persistent” compounds within the 
environment. The main sources and transportation modes of 
PPCPs in the environment are presented in Fig. 10.
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Many inquiries have been conducted concerning the 
prevalence, ecological harm, and methods of breaking down 
PPCPs in wastewater for their elimination. Although the 
research community has shown growing interest in PPCPs, 
there is still a significant gap when it comes to understand-
ing their ecological impact. This gap is primarily due to the 
limited number of substances being studied across various 
environmental matrices. Some researchers have examined 
the concentrations of certain PPCPs, which are classified as 
priority chemicals in aquatic ecosystems (N. Liu et al. 2020; 
Junaid et al. 2019; Paucar et al. 2019; Yi Chen et al. 2016).

In a research conducted by Madikizela et al. in 2020 
(Madikizela et al. 2020), it was documented that there was 
a presence of 19.2 μg  L−1 of ibuprofen detected in surface 
water. Conversely, Matongo et al. (Matongo et al. 2015) 
observed a concentration of the same pharmaceutical and 
personal care product (PPCP) at 1.38 μg  L−1 in wastewater. 
The dieldrin concentration was recorded at 1.51 μg  L−1 in 
surface water, according to Okoya et al. (Okoya et al. 2013). 
Additionally, the levels of acetaminophen and amoxicillin 
in surface water and seawater ranged from 0.0058 to 1.23 
μg  L−1, as reported by Folarin et al. in 2020 (Folarin et al. 
2019). Moreover, in a study conducted by Olatunde et al. 
in 2014, oxytetracycline was found to have concentrations 

ranging from 0.003 to 0.0048 μg  L−1 in surface water (James 
et al. 2014). Similarly, Amdany et al. (2014) reported that 
naproxen, ibuprofen, and triclosan exhibited concentrations 
in wastewater ranging from 10.7 to 127.7 μg  L−1. In waste-
water, naproxen, ibuprofen, and triclosan were found to have 
concentrations ranging from 10.7 to 127.7 μg  L−1 (Amdany 
et al. 2014). Nevertheless, the influence of sediment on the 
concentration and behavior of PPCPs in aquatic systems 
remains uncertain.

The concentrations of EPs are related to habits patterns, 
water consumption, sewer conditions, environmental fate, 
etc. (Parida et al. 2021). Even if the concentrations are 
between nanograms per liter and micrograms per liter, the 
risks regarding long-term exposure and environmental per-
sistence could affect life and ecosystem’s health and sus-
tainability, especially when inadequate treatment is applied 
(Taoufik et al. 2020; Parida et al. 2021; Lutterbeck et al. 
2020; Yi Chen et al. 2016). Today, some international regu-
lations stated the status of these EPs and developed lists 
with compounds classes, characteristics, and exposure infor-
mation (Recast 2010; Post 2021; Organization and WHO., 
2004).

Different treatment combinations are used today because 
the conventional treatment processes are ineffective for 

Fig. 9  Most common categories of emerging pollutants present in water
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effectively removing EPs. Examples include biological 
treatment methods combined with AOP (e.g., membrane 
bioreactor-ozonation, constructed wetlands-UV irradiation) 
and membrane separation processes combined with biologi-
cal treatments (e.g., membrane bioreactor-reverse osmosis, 
sequential biological reactor-nanofiltration) (Parida et al. 
2021). The main constraints are given by the high costs and 
sustainability of processes. Thus, research is focusing on the 
development of new materials with cost-effective environ-
mental efficiencies.

There are various benefits of using AOP for wastewater 
treatment. First off, because of the high oxidation poten-
tial of the ∙OH molecule (Kokkinos et al. 2021), AOPs are 
renowned for their quick reaction speeds. When compared 
to traditional treatment procedures, this speedy response 
results in shorter retention times, which improves the effec-
tiveness of wastewater treatment. Second, AOP systems have 
a compact footprint that requires little space on the ground 
to process the required flow rate.

The limited introduction of new dangerous compounds 
into the water is a key advantage as well. ∙OH molecules can 
unite to form water, lowering the possibility of dangerous 
consequences, as opposed to chlorine disinfection, which 
might result in toxic byproducts. AOPs can also mineral-
ize organic molecules, transforming them into stable inor-
ganic substances including salts, water, and carbon dioxide. 

These methods are adaptable and able to remove a variety 
of organic materials as well as get rid of some heavy met-
als (Saviano et al. 2023). AOPs can successfully eliminate 
pathogens as a disinfection step when used in conjunction 
with UV disinfection, in particular. AOPs also do not con-
centrate trash for subsequent treatment, unlike chemical or 
biological processes, and do not produce sludge, which low-
ers the concentration of pollutants in the effluent (Deng and 
Zhao 2015).

ZnO NPs exhibit strong antibacterial properties, making 
them a promising candidate for various antimicrobial 
applications. The effectiveness of ZnO NPs against bacterial 
strains like Bacillus subtilis and Escherichia coli is attributed 
to their nanoscale size, which enhances their interactions 
with bacteria (Karanpal Singh et al. 2023). When reduced to 
the nanometer range, ZnO NPs can efficiently target bacterial 
surfaces and even penetrate inside the bacterial cells, leading 
to distinct bactericidal mechanisms (Seil and Webster 2012). 
These interactions are generally toxic to bacteria, making 
ZnO NPs valuable in antimicrobial applications, such as 
in the food industry and wastewater treatment. Moreover, 
their biocompatibility and thermal stability further enhance 
their potential as antibacterial agents (Karanpal Singh et al. 
2023). Overall, the literature suggests that ZnO NPs possess 
a strong antimicrobial capability that can be harnessed for 
various biotechnological and environmental purposes.

Fig. 10  Sources and transportation of PPCPs in the environment (with permission from Osuoha et al. 2023)
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One of the processes that lead to the removal of EPs, 
especially for antibiotics, is adsorption, which can be 
physisorption or chemisorption, and based on kinetic models 
and spectroscopic analyses, the correct mechanisms can be 
identified. The chemistry of the solution (pH, pKa, and 
pHpzc) is essential in establishing the interactions between 
adsorbate and adsorbent at different pH values (Ajala et al. 
2022). The pH has an essential role in the photocatalytic 
degradation, its values influencing the surface charge of the 
catalyst, the method of binding the pollutants to the catalyst 
surface, and their dissociation (Adeola et al. 2022).

According to the literature, PPCP include any product 
used resulting from medical applications and care products, 
which appears in water and represents a health risk. The 
sources of release in the aquatic environment are multiple, 
and their appearance in water purification and treatment 
plants has started to represent a concern in the last 30 
years (Schumock et al. 2014; Leung et al. 2012; Jin-Lin 
Liu and Wong 2013; Kosma et al. 2010; Oliveira et al. 
2015; Ling Feng et al. 2013). The problem regarding their 
persistence is given by the concentrations and stability of 
the initial structures, in water they can be transformed and 
immobilized.

The stability of EPs to oxidation treatments and their 
toxicity make their biological degradation impossible and 
thus, their presence in the environment is a major risk. An 
example is acetaminophen (ACE), which ends up in water 
through urine, after consumption (Tobajas et al. 2017). 
High concentrations can lead to liver diseases, especially 
through decomposition products (Roberts and Thomas 2006; 
Buxton and Kolpin 2005; Ternes 1998). Another example 
is antipyrine (ANT) which can cause liver damage in case 
of uncontrolled occurrence in aquatic environments, this 
being detected in a proportion of 68.5% after treatment with 
activated sludge (Deblonde et al. 2011).

The photocatalysis process follows specific kinetic mod-
els as indicated in the literature, which serves as the basis 
for establishing the degradation mechanism. Adeola et al. 
indicate the first-order Langmuir–Hinshelwood model for 
the ZnO-CuxO photocatalyst (Adeola et al. 2022). The mech-
anism is due to superoxide as the main generator of reac-
tive species, and holes  (h+) lead to the formation of reactive 
oxygen species (ROS), such as hydroxyl radicals  (OH∙) and 
superoxide radicals  (O2

∙−). These ROS are highly reactive 
and can attack and degrade the pollutants, further enhancing 
the photocatalytic activity of ZnO. The degradation process 
that was based on this mechanism was successfully applied 
in the degradation of dyes and is presented in Fig. 11.

Photodegradation performances of ZnO 
nanostructures applied for EP degradation

An efficient photocatalyst must provide good charge 
separation and efficient light absorption, especially in the 
visible region. Thus, semiconductors alone require a high 
intensity of light, induce charge carriers, and thus lead to 
limitations of their applicability. Doping with elements or 
obtaining a composite photocatalyst can provide solutions 
to these challenges (Shoaib Ahmed et al. 2021; Taoufik 
et al. 2020; Parida et al. 2021). It is necessary to obtain 
materials with a narrow band gap, low charge recombination 
rate, visible light irradiation, reusability, and stability. A few 
examples of the photodegradation efficiency (PE %) of some 
recently used photocatalysts based on ZnO NPs for emerging 
pollutant degradation are presented in Table 1.

The studies presented in Table 1 show the recent interest 
in using ZnO-based nanomaterials to degrade some of the 
most common emerging pollutants found in wastewater, like 
tetracycline (Patehkhor et al. 2021) (Xiao Chen et al. 2020b), 
BPA (Peng Xu et al. 2021) (Bilgin Simsek et al. 2018), MB 

Fig. 11  Charge transfer mecha-
nism in ZnO-CuxO heterostruc-
ture. CV conduction band, VB 
valence band (with permission 
from Adeola et al. 2022)
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Table 1  Photocatalysts used for degradation of emerging pollutants in water and wastewater

Photocatalyst Organic pollutants Optimum conditions PE (%) Ref

rGO/TIO2/ZnO BPA
Ibuprofen (IBP)
Flurbiprofen

pH 5, initial conc. 10 mg/L, 
catalyst dose 0.025 g, 
reaction time 3 h

94.9
79.6
82.2

(Bilgin Simsek et al. 2018)

PGCN/AgI/ZnO/CQDs 2–4-Dinitrophenol pH 4, initial conc. 10 mg/L, 
catalyst dose 50 mg, reac-
tion time 140 min

 > 90 (Hasija et al. 2019)

C/ZnO/CdS 4-Chlorophenol Initial conc. 10 mg/L, 
catalyst dose 0.05 g, 
reaction time 120 min

98 (Atul B. Lavand and Malghe 
2015b)

Au/-Pd-TiO2-ZnO Malathion Initial conc. 10 mg/L, 
catalyst dose 0.05 g, 
reaction time 120 min

98.2 (Vaya and Surolia 2020)

ZnO/SnO2 MB Initial conc. 20 mg/L, 
catalyst dose 0.2 g/L, 
reaction time 60 min

97 (Lin et al. 2018)

Fe3O4@rGO@ZnO@Ag 
NPs

Metformin pH 5.4, Initial conc. 20 
mg/L, catalyst dose 1 
g/L, reaction time 60 min

100 (Khavar et al. 2019)

N-doped ZnO Tetracycline 30 ppm, Xe lamp with 
glass filter (300 W); dose 
300 mg/L; time 2 h

97 (Xiao Chen et al. 2020b)

Ag2O/ZnO/rGO BPA 10 ppm, Xe lamp as a 
simulated sun light 
source (500 W); dose 800 
mg/L; time 3.5 h

80 (Peng Xu et al. 2021)

Zn-doped  Cu2O CIP 20 ppm, metallic halide 
lamp (400–1100 nm; 
500 W); dose 600 mg/L; 
time 4 h

94.6 (Yu et al. 2019)

Ag-ZnO Atenolol 5 mg/L, Tungsten halogen 
lamp (300 W), pH 8.5, 
1 g/L catalyst dose, time 
2 h

70.2 (Ramasamy et al. 2021)

ZnO/SnS2 CIP 10 mg/L, halogen lamp 
(> 400 nm; 200 W), pH 
6.1, and catalyst dosage 
0.5 g/L

- (Makama et al. 2020)

ZnO/γ-Fe2O3 Tetracycline 30 mg/L, halogen lamp, 
pH 6.7, catalyst dose 15 
mg/L, 150 min

88.52 (Semeraro et al. 2020)

gC3N4/NiO/ZnO/Fe3O4 
nano-heterostructures

Esomeprazole Visible light irradiation 
within 70 min

95.05 ± 1.72% (Raha and Ahmaruzzaman 
2020)

ZnO NPs Tetracycline and ibuprofen  < 5 ppm, catalyst doses 10 
and 0.5 mg/L, pH value 
from 7 to 9

Approx. 90% (Choina et al. 2015)

ZnO NPs MB
MO

180-min sunlight 
irradiation

75%
87%

(Ghaffar et al. 2023)

ZnO NPs Triclosan (TCS) and 
imidacloprid (IMD)

30 min under UV light 99.60%
96.09%

(Kaur et al. 2023)

W/Ag/ZnO nanocomposite Turquoise Blue Dye (TBD) 170–200 mg/L, adsorbent 
dose of 0.1–0.01 g, pH 
range 2–3, contact time 
60 min, 35 °C, under 
visible light exposure

Maximum absorption (Noreen et al. 2022)

ZnO NPs, ZnO-rGO-
flowers, and ZnO-rGO-
rods

Polychlorinated biphenyls 
(PCBs)

10 µg/mL, UV lamp (365 
nm, 100 W), catalyst 
dose 0.16 g/L, 8 h

74.1%, 92.4%, and 95.6% (Merlano et al. 2022)
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(Lin et al. 2018), and metformin (Khavar et al. 2019). The 
studies present different methods used to enhance the ZnO 
NP photocatalytic performances by developing composites 
with other metal oxides and determining the optimal degra-
dation conditions for the emergent pollutants studied.

Due to their large band gap energy (Eg > 3 eV), 
rapid recombination, and low charge-transfer rates of 
photoinduced electron–hole pairs,  TiO2 and ZnO catalysts 
are partially limited (Jiang et al. 2014). It has been possible 
to create a wide range of hybrid catalysts to improve ZnO’s 
photoactivity and antiphotocorrosion. Studies showed that 
by using matched band energies, heterojunction between 
semiconductors can effectively separate photoinduced 
charge carriers and increase solar light absorption in 
the visible region (Ningning Wang et al. 2016). A study 
reported that rGO-based  TiO2-ZnO nanostructures (rGO/
TiO2/ZnO) were synthesized using a hydrothermal method 
and characterized through SEM, XRD, and XPS analyses 
that confirmed the formation of wurtzite ZnO and anatase 
 TiO2 in the tandem nanostructure (Bilgin Simsek et al. 
2018). The UV–Vis spectrum indicated that this hybrid 
catalyst possesses the lowest band gap energy (Eg = 2.5 
eV). Photocatalytic degradation of bisphenol A, ibuprofen, 
and flurbiprofen was examined under UV and visible 
light irradiation. ZnO,  TiO2,  TiO2/ZnO, and rGO/TiO2 
composites were prepared for comparison, with the rGO/
TiO2/ZnO catalyst demonstrating superior photocatalytic 
performance under visible light irradiation. The enhanced 
degradation efficiency of the  TiO2/ZnO structure by rGO 
is attributed to graphene’s electron properties, its role as a 
supportive substrate providing a two-dimensional structure, 
and the reduction of the band gap energy.

The successful chemical precipitation process was 
employed to synthesize spherical ZnO NPs of varying 
sizes using different solvents, namely, water (referred to 
as ZnOw) and ethanol (referred to as ZnOe) (Choina et al. 
2015). In ethanol, the nanoparticles exhibited sizes rang-
ing from 10 to 30 nm, while in the aqueous solution, they 
measured approximately 100 nm. During the photocatalytic 
decomposition experiments of two model drugs, tetracycline 

(TC) and ibuprofen (IBP), at two different photocatalyst 
concentrations (10 mg/L and 0.5 mg/L), distinct adsorption 
behavior was observed due to variations in specific surface 
areas and substrate concentrations. Notably, the adsorption 
of TC and IBP onto ZnOe and under low irradiation power 
was found to be greater than that onto ZnOw, particularly at 
lower photocatalyst-to-substrate mass ratios, which became 
apparent even below 10 ppm. Increasing the pH level from 
7 to 9 resulted in a boost in the photocatalytic degradation 
of TC, from approximately 65 to 90% when using ZnOe and 
from around 50 to 85% when using ZnOw.

CdO-ZnO nanocomposites were synthesized using a sim-
ple solution method for degradation of RhB dye (Umar et al. 
2022). The characterization of morphological, structural, 
phase, vibrational, optical, and compositional properties of 
CdO-ZnO nanocomposites denoted the aggregates ranging 
from 250 to 500 nm in size formed after annealing at 500 °C 
and hexagonal wurtzite and cubic phases in ZnO and CdO, 
respectively, with a crystal size of 28.06 nm (Fig. 12a). The 
stretching vibration of the Zn–O and Cd–O bonds was evi-
dent from the prominent wide peak at 511  cm−1 (Fig. 12b). 
At room temperature, the primary absorption peak for the 
nanocomposites was observed at approximately 403 nm 
(Fig. 12c). The nanocomposites had a band gap energy of 
2.55 eV (Fig. 12d), which was considerably smaller com-
pared to pure ZnO nanostructures but higher than that of 
CdO nanomaterials (2.2–2.5 eV).

Novel nano-heterostructures consisting of  gC3N4, NiO, 
ZnO, and  Fe3O4 were synthesized using a hydrothermal 
method at 110 °C for 18 h (Raha and Ahmaruzzaman 
2020). These structures demonstrated remarkable photo-
catalytic activity, achieving the degradation of esomepra-
zole, an emerging organic water pollutant and model drug, 
to a level of 95.05% ± 1.72% under visible light irradia-
tion within 70 min. The investigated reaction mechanism 
also indicated a pseudo-first-order kinetics due to the cou-
pling of ∙O2 and ∙OH between NiO and ZnO which has 
a broad band and  gC3N4 which has a narrow band gap. 
To characterize the morphology, size, and crystallogra-
phy of the  gC3N4/NiO/ZnO/Fe3O4 nano-heterostructures, 

Table 1  (continued)

Photocatalyst Organic pollutants Optimum conditions PE (%) Ref

CdO-ZnO nanocomposites Rhodamine B (RhB) dye 20 ppm, 120 min of UV 
light exposure (125 W 
mercury lamp), catalyst 
dose 0.5 g/L

87% (Umar et al. 2022)

ZnO/NiFe2O4 nanocom-
posites

Rhodamine B
MB

3 h under natural sunlight 98%
97%

(Stiadi et al. 2023)

ZnO/boron nitride quantum 
dots (BNQDs)

BNQDx (x = 1, 2, 4, and 6 
wt.%)

MB MO UV light irradiation 90.6–97.9% (D. Liu et al. 2022)
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transmission electron microscopy (TEM), high-resolution 
transmission electron microscopy (HRTEM), and selected 
area electron diffraction (SAED) were performed. The 
TEM images (Fig. 13a and b) revealed dispersed nano-
particles of ZnO, NiO, and  Fe3O4 distributed across the 
 gC3N4 sheet. The HRTEM image (Fig. 13c) allowed for 
the measurement of interplanar spacings and differentia-
tion of lattice fringes, facilitating the identification of 
ZnO, NiO, and  Fe3O4 NPs. The average particle size was 
determined to be 17.06 nm. The SAED pattern (Fig. 13d) 
displayed concentric rings, indicating the polycrystalline 
nature of the nanohybrid structure. Within the SAED pat-
tern, distinct planes of ZnO ((0 0 2), (1 1 0)), NiO ((2 0 0), 
(2 2 2)),  Fe3O4 ((0 2 3), (1 2 2)), and  gC3N4 ((0 0 2)) were 
identified and marked.

Many studies have reported the use of precious metals like 
silver (Ag), gold (Au), and palladium (Pd) (Vaya and Surolia 
2020) to improve band gap energy in ZnO nanocomposites 
for the degradation of various pharmaceutical products. 
Ag has become more significant among these metals due 

to its great solar light absorption and ability to suppress 
electron–hole recombination through surface Plasmon 
resonance (Kaur et al. 2018). The hydrothermal method 
can be used to obtain  Ag2O/ZnO/rGO heterojunction 
photocatalysts used for the photocatalytic degradation of 
some BPA pollutants under simulated sunlight. Doping with 
Ag led to the lowering of the band gap of ZnO, which led to 
about 80% removal efficiency of BPA using 5% Ag and 3% 
GO by weight. The reuse of  Ag2O/ZnO/rGO is possible, the 
material showing good photostability and pH adaptability 
(Peng Xu et al. 2021). It was reported that despite having 
a small band gap energy (2.73 eV), the silver iodide (AgI) 
photosensitive semiconductor significantly increases 
photodegradation activity in composite PGCN/AgI/ZnO/
CQDs due to strong contacts that promote photon transport 
and prevent rapid electron–hole pair recombination (Hasija 
et al. 2019).

ZnO/NiFe2O4 nanocomposites were synthesized through 
the hydrothermal method, with varying mole ratios of  Zn2+ 
to  NiFe2O4 (1:0.05 and 1:0.1), denoted as CNi0.05 and 

Fig. 12  a XRD spectrum, b FTIR spectrum, c UV–Vis spectrum, and 
d Tauc’s plot for the evaluation the optical band gaps of the CdO-
ZnO nanocomposites. The red line signifies the analysis of the lin-

ear region to determine the band gap at the x-axis intercept, while the 
black line depicts the changes in (αhν).2 versus hν (Umar et al. 2022) 
(open access)
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CNi0.1 (Stiadi et al. 2023). These nanocomposites were 
tested for their ability to degrade Rhodamine B and meth-
ylene blue (MB) under natural sunlight. In both nanocom-
posites, the primary diffraction peaks were observed at 2θ 
values of 31.7°, 34.4°, and 36.2°, corresponding to the miller 
indices of (100), (002), and (101), which are indicative of 
the presence of ZnO NPs within the composites (Fig. 14). 
Additionally, both ZnO/NiFe2O4 nanocomposites exhibited 
specific  NiFe2O4 peaks at 2θ = 35.7° with a 311 miller index, 
denoted by an asterisk (*), confirming the presence of this 
phase in the composite materials. The absence of any other 
XRD peaks, aside from those of ZnO and  NiFe2O4, dem-
onstrated the successful formation of single-phase ZnO/
NiFe2O4 nanocomposites using this synthesis method.

In the absence of a catalyst, the degradation of Rhodamine 
B only reached 10%, while the degradation of MB reached 
30% after 3 h. Notably, the CNi0.05 nanocomposite showed 
the highest degradation percentages for both dyes, when the 
degradation percentage reached 98% for Rhodamine B and 
97% for MB at using the CNi0.05 composite as the catalyst. 
Without exposure to light, the degradation percentage of the 
CNi0.05 composite remained low at 6–8% after 3 h. These 
findings provide clear evidence that the degradation of dyes 
by CNi0.05 occurred through photocatalysis, as the irradiation 
process substantially enhanced the degradation percentages.

In another study Khavar et  al. (2019), a novel nano-
structured catalyst  Fe3O4@rGO@ZnO/Ag NPs (FGZAg) 
is synthesized by using graphene oxide and ZnO-coated 

Fig. 13  TEM (a, b) micrographs, HRTEM (c) micrograph, and SAED patterns (d) of  gC3N4/NiO/ZnO/Fe3O4 (reused with permission from 
Raha and Ahmaruzzaman 2020)
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 Fe3O4 microspheres doped with Ag NPs, and its efficiency 
in metabolizing metformin (MTF) is examined both in the 
ultraviolet and visible spectra of light. The resulting sam-
ples were analyzed using a variety of analytical techniques, 
which revealed onion-shaped spheres with a hexagonal 
wurtzite crystal structure and a mesoporous texture, as well 
as Ag NPs that were securely stuck to the catalyst’s surface. 
When degrading MTF under visible light, FGZAg showed 
significantly improved photocatalytic activity when com-
pared to pure ZnO, completing total degradation and 60% 
mineralization of 20 mg/L MTF in just 60 min.

A nanomaterial made of ZnO and maghemite was used 
in a study by Semeraro et al. to speed up the photodegrada-
tion of tetracycline in aqueous solutions when subjected to 
sunlight. Iron oxide nanoparticles significantly altered the 
morphology of ZnO while keeping both iron oxide (γ-Fe2O3) 
and ZnO (wurtzite form) in their crystalline phases (Sem-
eraro et al. 2020). The efficient removal of the photocatalyst 
from water using a weak external magnetic field was made 
possible by the paramagnetic properties of γ-Fe2O3 nanopar-
ticles. This resulted in a significant reduction in separation 
time and suggested the use of the ZnO/γ-Fe2O3 nanocom-
posite for large-scale, continuous water treatment processes. 
Additionally, compared to bare ZnO, γ-Fe2O3 improved the 
nanostructures’ porosity and adsorption qualities, which is 
essential because adsorption is the first stage of photodegra-
dation. The presence of γ-Fe2O3 enhanced catalytic activity 
by around 20% while having no negative effects on ZnO-
mediated photodegradation. In conclusion, the ZnO/γ-Fe2O3 
nanocomposite showed outstanding recyclability thanks to 

the paramagnetic qualities of γ-Fe2O3 and the ability to 
breakdown over 88% of water-dissolved tetracycline.

In order to successfully remove the difficult antibiotic 
ciprofloxacin (CIP) from wastewater, a microwave-prepared 
porous ZnO/SnS2 photocatalyst was used in visible light 
photocatalytic degradation (Makama et  al. 2020). The 
research looked into the effects of radical scavengers on the 
degradation process as well as a number of process factors, 
including pH, catalyst dose, and initial CIP concentration. 
The findings showed that a pH of 6.1 and a catalyst dose of 
500 mg/L were the ideal conditions for CIP degradation, 
while an excessive catalyst dosage hindered the reaction rate 
due to light scattering and decreased light penetration. In a 
different investigation, solvothermal preparation of Zn-doped 
 Cu2O particles produced improved specific surface areas, 
increased visible light absorption, and a larger band gap 
than pure  Cu2O (Yu et al. 2019).  R2-Cu2O demonstrated the 
best photocatalytic performance and reusability, achieving 
a remarkable 94.6% degradation of ciprofloxacin. Even after 
five cycles, the degradation percentage remained above 91%.

To enhance even more the stability and photodegradation 
properties of ZnO NPs, studies have reported the preparation 
of novel matrices with eco-friendly supports like clays and 
carbon-based materials that are further discussed in detail 
in the next chapter.

New reliable photocatalytic matrix based 
on ZnO nanostructures

The efficiency of a photocatalyst is given by its stability 
and the possibility of rapid recovery. Thus, the integration 
of ZnO NPs, which offer increased reactivity and catalytic 
potential due to their reduced dimensions, can also lead to 
significant losses in the analyzed systems. To address this 
issue, the creation of appropriate matrices has been studied 
in recent times. Below, we present the most efficient variants 
of using certain supports for ZnO NPs in the degradation 
process of EPs. In order to improve the growth surface of 
ZnO nanostructures on the support materials, carbon-based 
substrates can be used: activated carbon (AC), graphene 
oxide (GO), carbon nitride  (C3N4), and graphene (Le et al. 
2022). Another type of support is clay, which was used for 
the in situ assembly of ZnO nanoparticles to obtain nano-
architectures. Obtaining them consisted in the incorporation 
of the metal precursor of Zn acetylacetonate in suspensions 
different from clays, the product obtained being calcined 
(Akkari et al. 2016). Table 2 describes the performances of 
such ZnO catalyst with different supports.

Fig. 14  The XRD pattern for CNi0.05 and CNi0.1 nanocomposites 
(Stiadi et al. 2023) (open access)
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Table 2  Photocatalytic degradation efficiencies of ZnO-based composites for EPs present in water and wastewater

Support Catalyst Preparation method and material 
morphology

Pollutants, degradation 
conditions

Ref

AC ZnO Hydrothermal, nanorods MB, 5 ppm, 120 min, UVA, 
77% PE

(M. Malakootian et al. 2020)

Sonochemical, nanoparticles Reactive red, 200 ppm, 720 min, 
UVC, 87% PE

(Aber et al. 2019)

Precipitation, nanoparticles Congo red, 30 ppm, 120 min, 
solar light, 100% PE

(Raizada et al. 2014)

Hydrothermal, nanoflower Amoxicillin, 10 ppm, 65 min, 
UVA, 95% PE

(Guihua Chen et al. 2014)

ZnO/TiO2 Sonochemical, nanoparticles Black treacle, 5 ppm, 60 min, 
UVC, 96% PE

(Benton et al. 2016)

ZnO/ZnS Impregnation, nanoparticles Reactive blue, 20 ppm, 90 min, 
visible, 33% PE

(Ma et al. 2011)

GO ZnO Hydrothermal, nanorods MB, 10 ppm, 120 min, solar, 
94% PE

(Ranjith et al. 2017)

Hydrothermal, nanorods MB, 5 ppm, 130 min, UVA, 
88% PE

(Xun Zhou et al. 2012)

Precipitation, dumbbell MB, 10 ppm, 180 min, UV–Vis, 
95% PE

(Prabhu et al. 2019)

Hydrothermal, nanoparticles MO, 5ppm, 30 min, UVA, 95% 
PE

(Tayyebi et al. 2016)

Hydrothermal, nanoflower Ofloxacin, 20 ppm, 300 min, 
UV, 99% PE

(Pushkal Sharma et al. 2020)

ZnO/Ni Sonochemical, nanoparticles Brilliant green, 20 ppm, 90 min, 
visible, 100% PE

(Peter et al. 2019)

ZnO/Ag2O Hydrothermal, nanoflower BPA, 10 ppm, 180 min, solar, 
80% PE

(Peng Xu et al. 2021)

Eu3+/ZnO/Bi2O3 Precipitation, nanorods Dimethyl phenol, 10 ppm, 120 
min, UVB, 99% PE

(Shandilya et al. 2020)

C3N4 ZnO Precipitation, nanoparticles MB, 10 ppm, 120 min, visible, 
60% PE

(Xu Tan et al. 2019b)

AgI/ZnO Precipitation, nanoparticles Dinitrophenol, 10 ppm, 120, 
visible, 98% PE

(Hasija et al. 2019)

Graphene ZnO Hydrothermal, nanoparticles Deoxynivalenol, 15 ppm, 30 
min, UVC, 99% PE

(Xiaojuan Bai et al. 2017)

ZnFe2O4/ZnO Sonochemical, nanoparticles MB, 10 ppm, 120 min, solar, 
98% PE

(Sun et al. 2013)

C-dots ZnO Spin-coating process, nanorods MB, 10 mM, 70 min, UV lamp 
(20V), 74.98% PE

(Roza et al. 2020)

Solvothermal, nanospheres MB, 3.1 ×  10−5 M, 30 min, UV 
halogen lamp (500 W), 96% 
PE, solar light 97% PE

(Velumani et al. 2020)

CDs/gC3N4 ZnO Impregnation-thermal, nanorods Tetracycline, 2.3 ×  10−5 M, 30 
min, visible xenon lamp, 100 
PE%

(Guo et al. 2017)

CQDs ZnO@HNTs Precipitation, nanospheres Tetracycline, 4.5 ×  10−5 M, 90 
min, xenon lamp (500 W), 
92.48 PE%

(Jinze Li et al. 2019)

GQD ZnO Hydrothermal, nanorods MB, 1 ×  10−5 M, 70 min, natural 
sunlight, 95% PE

Carbendazim, 1 ×  10−5 M, 70 
min, natural sunlight, 94% PE

(Suneel Kumar et al. 2018b)

N-CQDs Ni-ZnO Hydrothermal, nanospheres MB, 1 ×  10−5 M, 120 min, 
visible light (400 W), 87% PE

(Behnood and Sodeifian 2020)
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Table 2  (continued)

Support Catalyst Preparation method and material 
morphology

Pollutants, degradation 
conditions

Ref

NPCQD ZnO Hydrothermal, nanospheres MB, 3.1 ×  10−5 M, 30 min, 
daylight xenon lamp (300 W), 
90% PE

(Song et al. 2019)

N-GQDs ZnO Hydrothermal, nanospheres and 
nanoplates

MB, 9.4 ×  10−5 M, 120 min, 
mercury lamp (250 W), 100% 
PE

(Sodeifian and Behnood 2020)

CQD/N ZnO Precipitation and mixing, 
nanospheres

Malachite green, 1 ×  10−4 M, 30 
min, natural daylight, 100% 
PE

MB, 1 ×  10−4 M, 45 min, natural 
daylight, 100% PE

Fluorescein, 1 ×  10−4 M, 15 min, 
natural daylight, 95% PE

(Muthulingam et al. 2015)

Clay ZnO Mixing precipitation, 
nanoparticles

IBP, 10 ppm, 600 min, UVB, 
73% PE

(Akkari et al. 2018a)

Impregnation, nanoparticles MB, 3 ppm, 120 min, UVB, 
98% PE

(Akkari et al. 2016)

Hydrothermal, nanoparticles Levofloxacin, 30 ppm, 75 min, 
visible, 100% PE

(Abukhadra et al. 2020)

ZnO/TiO2 Sol–gel, nanoparticles Methylene green, 75 ppm, 30 
min, UVA, 100% PE

(Bel Hadjltaief et al. 2016)

Expanded clay ZnO Precipitation, nanoparticles Reactive yellow, 50 ppm, 45 
min, UVC, 99% PE

(Moradi et al. 2015)

Tunisian clay ZnO Sol–gel, nanoparticles Congo red, 50 ppm, 120 min, 
UVA, 100% PE

(Hadjltaief et al. 2018)

Clinoptilolite ZnO Sonoprecipitation, nanorods Furosemide, 15 ppm, 90 min, 
UVA, 80% PE

(Heidari et al. 2020)

Halloysite ZnO Precipitation, nanoparticles MB, 10 ppm, 90 min, UVA, 
99% PE

(Peng et al. 2017)

Precipitation, nanoparticles Rhodamine B, 5 ppm, 20 min, 
UVB, 88% PE

(Massaro et al. 2020)

N/ZnO Impregnation, nanoparticles MO, 20 ppm, 480 min, Solar, 
95% PE

(Cheng and Sun 2015)

Montmorillonite ZnO Thermal attachment, 
nanoparticles

Metronidazole, 25 ppm, 30 min, 
UVA, 100% PE

(Khataee et al. 2017)

Precipitation, nanoparticles Disperse red, 100 ppm, 5 min, 
UVC, 82% PE

(Kıranşan et al. 2015)

Impregnation, nanoparticles MB, 10 ppm, 60 min, UVB, 
92% PE

(Fatimah et al. 2011)

Zeolite ZnO/Fe2O3/MnO2 Hydrothermal, nanoparticles MB, 10 ppm, 120 min, Visible, 
93% PE

(Tedla et al. 2015)

ZnO/Cu Precipitation, nanoparticles MO, 9 ppm, 120 min, UVC, 
90% PE

(Karimi Shamsabadi and Behpour 
2021)

Polyaniline (PANI) ZnO In situ chemical polymerization 
process, nanoparticles

MB, 50 ppm, 120 min, 90% PE (Qin et al. 2018)

ZnO Arc-discharge method 
submerged in de-ionized 
water for ZnO preparation, 
and chemical polymerization 
process for the composite, a 
core–shell structure

MB, MG, catalyst concentration: 
0.4 mg/mL; initial 
concentration of dyes, 1 ×  10−5 
M, 5 h, 99% PE for both

(Eskizeybek et al. 2012)

ZnO Precipitation for ZnO NPs, 
chemical polymerization 
process for the composite

MO, MB, 98.3% for MO and 
99.2% for MB

(Saravanan et al. 2016)

ZnO In situ chemical polymerization Metronidazole (MNZ), 10 ppm, 
catalyst dose = 1.0 g  L−1; pH 7

(Asgari et al. 2019)
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ZnO NPs—carbon‑based supports

This section discusses the utilization of ZnO composites 
with carbon-based supports for the removal of different 
emerging pollutants from wastewater. In order to demon-
strate the efficiency of photocatalytic degradation, laboratory 
tests are performed by varying some working parameters, 
starting from the time interval, the pH value, catalyst quan-
tities, pollutant concentrations, etc. (Pushkal Sharma et al. 
2020). For example, Sharma et al. indicated in the case of 
the reduced graphene oxide (rGO)-ZnO composite different 
contents of graphene, time, variable pH between 5 and 9, 
and different intensities of the UV lamp, in order to study 
the photocatalytic effect on the degradation of 20 mg/dm3 
of ofloxacin (Pushkal Sharma et al. 2020). The efficiency 
was demonstrated by the degradation of about 99% of this 
pollutant, after about 6 h using 0.5% rGO-ZnO composite. 
Regarding the reuse process of the nanophotocatalyst, it was 
recovered by centrifugation, keeping the degradation effi-
ciency after the first cycle from 99 to 96.4% and reaching 
an efficiency of about 83.3% after 6 cycles.

Photocatalytic composites with ZnO have the advantage 
of increasing the degradation efficiency of emerging 
pollutants. For example, in the case of BPA, photocatalytic 
tests using 5%-Ag2O/ZnO lead to about 87% degradation, 
after 180 min. The addition of 3% by weight of rGO led 
to the increase of the specific surface area and leads to 
an efficiency of about 80% in terms of BPA degradation, 
and the recombination rate is lower for the photoinduced 
electron–hole pairs of 5%-Ag2O/ZnO/rGO-3% (Peng Xu 
et al. 2021).

Mesoporous zinc oxide can be deposited on a 
reduced graphene support (rGO@ZnO), with efficiency 
in the photocatalytic mineralization of ofloxacin from 
aqueous solution. The literature indicates the obtaining 
of nanophotocatalysts in situ with different contents of 
GO (0.2%, 0.5%, 1%, and 2%) using zinc nitrate, with pH 
control of about 9, in the presence of ammonia liquid at 
110 °C for 7 h (Pushkal Sharma et al. 2020).

Graphene oxide (GO)/ZnO composite was used to 
degrade atenolol, a beta-blocker used to regulate blood 
pressure, by artificial irradiation, achieving a degradation 
efficiency of 85% at a catalyst dosage of 1.2 g/L, pH 4 
after 60 min (Bhatia et al. 2021). They also observed that 
GO-ZnO outperformed GO-TiO2 due to a faster reaction 
rate, highlighting its superior photocatalytic performance.

ZnO/CdO/rGO was obtained by the hydrothermal 
method in order to test for the photocatalytic degradation 
of BPA, ThB, and CIP under UV light illumination (Sonu 
Kumar et  al. 2022). The ZnO-CdO incorporated with 
reduced graphene oxide (ZCG)-5 nanocomposite can 
lead to the degradation and mineralization of BPA by 
98.5%, thymol blue (ThB) by 98.38%, and CIP by 99.28% 
after UV light irradiation. ZCG-5, through its good 
photocatalytic activity, leads to the generation of more 
ROS species, especially as a result of the incorporation of 
rGO nanosheets with ZnO-CdO in the photocatalyst (Sonu 
Kumar et al. 2022).

The graphite powder was pre-oxidized using  P2O5 and 
concentrated sulfuric acid, and the product obtained, after 
drying, was further oxidized in the presence of  NaNO3, 
 H2SO4, and  KMnO4. After the complete reaction, hydrogen 
peroxide was added to finalize the process in order to obtain 
graphene oxide (GO). The synthesis of the ZnO/CdO/rGO 
and ZnO/CdO composites took place in an autoclave by 
using specific metal precursors of the type Zn(N03)2·6H20 
and respectively Cd(N03)2·4H20, in the presence of GO, in 
a basic environment (Shouli Bai et al. 2020).

Hu et al. obtained ZnO NPs by the assisted wet chemical 
method, using zinc acetate in NaOH medium, which were 
further loaded into biochar by sonication (Hu et al. 2019). 
A carbon/ZnO heterojunction is formed that leads to high 
degradation efficiency for dyes, the advantages being the sta-
bility of these materials, the large pore volume, and the high 
adsorption capacity (Srikanth et al. 2017). These materials 
can be obtained by hydrothermal, sonochemical, precipita-
tion, electrochemical, and immersion coating methods (Le 
et al. 2022).

Table 2  (continued)

Support Catalyst Preparation method and material 
morphology

Pollutants, degradation 
conditions

Ref

Polypyrrole (PPy) ZnO In situ chemical polymerization DCF, 10 ppm, catalyst dose 
1 g/L, xenon lamp, 60 min, 
81% PE

(Silvestri et al. 2019)

Chitosan TiO2–ZnO Ultrasound assisted sol–gel 
method, nanoparticles

Tetracycline, 20 ppm, catalyst 
dose 0.5 g/L, pH 4, room 
temperature, 3 h 97.2%

(Patehkhor et al. 2021)

ZnO NPs Sol–gel synthesis MB (6 ×  10−5 M), catalyst dose 
30 mg, 60 min, 60%PE

(Ben Amor et al. 2022)
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ZnO can be doped with N doped with carbon sheets (N 
carbon@N-ZnO) obtained from bacterial cellulose biomass 
(BC) for the removal of persistent pharmaceutical substances 
such as tetracycline and di-chlorophenol. The degradation 
efficiency of tetracycline was about 97%, with visible light.

The literature also indicates photocatalysts obtained by 
green synthesis in the form of a quaternary nanocomposite 
of the P-doped graphitic carbon nitride (PGCN)/AgI/ZnO/
CQD type, from bamboo leaves, used for photocatalysis 
assisted adsorption at pH 4 of 2,4-dinitrophenol, with an 
efficiency of about 98% in 2 h (Hasija et al. 2019). The 
efficiency of approx. 89% after 10 reuse cycles was also 
worth noting. According to the known reaction mechanisms, 
CQD completes the degradation rate, the carbon source 
leading to an increase in the adsorption rate and a reduction 
in the recombination rate (Hasija et al. 2019).

ZnO NPs show photocatalytic performance under UV 
light in the treatment of pharmaceutical pollutants such as 
cloxacillin and ciprofloxacin (CIP), and triangular silver 
nanoplates (T-Ag)/ZnO and ZnO/N,S-doped carbon quantum 
dots (N,S-CQDs) nanoflowers showed high efficiency for 
the degradation of norfloxacin in light visible, due to the 
synergistic and surface plasmon resonance effect of T-Ag on 
ZnO nanoflowers as well as the transfer of photogenerated 
electrons from the ZnO conduction band to the N,S-CQD 
surface (Verma et al. 2021; Elmolla and Chaudhuri 2010; 
Shi-Lin Zhou et al. 2016; Yanning Qu et al. 2020).

The photocatalytic activity of ZnO/N,S-CQD nanoflowers 
under simulated sunlight is about 92.9% and 85.8% of CIP 
respectively was degraded at 20 min and 50 min respectively. 
The degradation efficiency of cephalexin (CEL) was 86.7% 
after 50 min (Yanning Qu et al. 2020).

Qu et al. carried out tests on the photodegradation of 
organic pollutants in real water, using ZnO/N,S-CQD 
nanoflowers under simulated sunlight irradiation for CIP, 
CEL, and MB. The waters were fortified with pollutants 
where there was only one. When the fortification was 
made with CIP and MB, the degradation was about 73.6% 
and 95.1%, respectively. In the case of CIP and CEL, the 
degradation was approximately 71.7% and 70%, respectively. 
In the case of the CIP-CEL-MB triple system, the efficiency 
for antibiotics was about 60% and 94.9% for MB (Yanning 
Qu et  al. 2020). The ZnO/N, S-CQD hybrid composite 
obtained by a hydrothermal method tested for CIP varied 
from 92.9% under simulated light at 20 min to about 85.8% 
for 50 min under natural light (Mei et al. 2022; Yanning Qu 
et al. 2020).

Although camphor leaf biochar was created as an adsor-
bent for CIP removal, its effectiveness was constrained by its 
low specific surface area and adsorption capacity. A novel 
technique for producing magnetic biochar enhanced with 
ZnO nanoparticles was created to address this. A dose of 
0.2 g/L of the resultant ZnO/biochar nanoadsorbent was 

tested for the removal of CIP at pH 4 and 40 °C, obtaining 
a maximum adsorption capacity of 449.40 mg/L after 24-h 
contact time. The adsorption mechanism involved π-π inter-
action, H-bond, electrostatic interaction, and hydrophobic 
interaction.

ZnO/N,S-CQD nanoflowers were obtained by the 
separate synthesis of N,S-CQD by hydrothermal treatment 
of carbonized L-cysteine with nitric acid in the presence 
of ethylene glycol as a passivating agent. ZnO NPs were 
obtained from precursor Zn(NO3)2·6H2O, the obtained 
solutions being mixed in different proportions with N,S-
CQD, then placed in an autoclave at 100 °C for 12 h 
(Yanning Qu et al. 2020).

Compared to other metal oxide semiconductor 
photocatalytic materials, ZnO exhibits better photosensitivity 
and photochemical stability (M Arunpandian et al. 2020). 
There are numerous studies on the photodegradation of 
organic compounds, mainly dyes such as MB, Rhodamine, 
benzoic acid, and Congo red (Al Ja’farawy et al. 2022). The 
advantage of using ZnO is that the degradation of pollutants 
can take place by using sunlight, through the active sites and 
hydroxyl radicals on the surface of the photocatalyst (Bhuyan 
et al. 2015). However, in order to ensure a good dispersion, 
stability, and biocompatibility with the environments in 
which these NPs are used, quantum dot (CQD) particles in 
combination with ZnO offer high electronic conductivity and 
tunable photoluminescence, and the functional groups on the 
CQD surface stimulate adsorption of dyes.

Carbon nanostructures show electron storage capacity 
and can be combined with ZnO NPs (Ru Wang et  al. 
2017a). CQDs can act as an electron sink by preventing 
the recombination of electron–hole pairs. It is believed that 
CQDs can act as mediator electrons to increase the efficiency 
of visible light separation, increasing the concentration of 
free radicals such as  O2∙ and ∙OH (Al Ja’farawy et al. 2022; 
Ru Wang et  al. 2017a). The photocatalytic degradation 
mechanism is based on photoexcited electron transfer 
from CB of ZnO to CQD. The presence of CQDs delays 
the recombination of charge carriers due to the carbon 
nanostructure that offers a high electron storage capacity 
(Al Ja’farawy et al. 2022).

The advantages of synthesized composite in comparison 
with simple ZnO are the narrowing band gap, decreasing 
recombination rate, surface roughness, and greater ability to 
absorb dye molecules. The synthesis of different ZnO-rGO 
and ZnO-GO nanocomposites has received a lot of attention. 
The development of ZnO-rGO and ZnO-GO heterostructures 
has been found to increase light absorption, enhance charge 
separation and transportation, and lengthen the functional 
lifetime of photocatalysts, according to studies that have 
been conducted to date.

Various methods for synthesizing ZnO-rGO and ZnO-GO 
nanocomposites involve incorporating ZnO NPs onto the 
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surfaces of GO or rGO materials (Yaqoob et al. 2020b). 
ZnO NPs and nanorods offer advantages such as large 
surface areas, providing numerous active sites for pollutant 
adsorption and photodegradation, high ROS generation 
under UV light, chemical stability, and scalable synthesis. 
However, challenges like high photocorrosion activity 
and low photosensitivity under visible light hinder their 
potential use. In contrast, GO and rGO have been proposed 
as excellent ZnO substrates due to their high surface areas 
and active adsorption sites. The formation of ZnO-rGO and 
ZnO-GO nanocomposites shows promise for wastewater 
decontamination, but other morphologies and reactor 
integration have been underexplored.

Reduced recombination losses in ZnO-rGO or ZnO-GO 
heterostructures are the cause of the increased photocatalytic 
activity in ZnO-rGO and ZnO-GO nanocomposites. Further 
research on visible light photodegradation processes 
is necessary because of their problematic performance 
under visible light. Furthermore, there has not been much 
discussion in the literature about the recyclable and reusable 
nature of these nanocomposites. To fully realize the potential 
of photocatalysis for wastewater treatment, a comprehensive 
strategy that combines reactor design and photocatalyst 
production is required. The fundamental technical and 
scientific obstacles preventing their employment in 
technologically and industrially relevant applications must 
be overcome, although there are still substantial problems 
to be solved.

ZnO NPs—clay‑based supports

The immobilization of ZnO NPs for the controlled use of 
ZnO in photocatalytic processes can also take place on clay 
minerals such as montmorillonite, bentonite, halloysite, 
sepiolite, and zeolite (Le et al. 2022). The use of these 
minerals has the advantage of availability and low cost. 
Immobilization methods can be by precipitation, sol–gel, 
impregnation, and hydrothermal (Akkari et al. 2018b, 2016; 
Khataee et al. 2017; Fatimah et al. 2011; Hadjltaief et al. 
2018).

ZnO NP/clay-type photocatalyst with dimensions between 
9 and 13 nm shows high degradation and adsorption efficien-
cies for methylene green of about 90% and for Congo red 
of about 88%. Adsorption is dependent on the pH and func-
tional groups of the dye. Based on UV, the dyes adsorbed on 
the ZnO/clay surface are mineralized by OH∙- and  O2∙−-type 
reactive species. The immobilization of ZnO on clay led to 
the increase of active sites on the ZnO surface necessary for 
the formation of reactive oxygen species (Le et al. 2022).

The major disadvantage also appears in the separation 
process, which remains quite difficult, so that recovery is 
also challenging (Siahpoosh and Soleimani 2017; Massaro 

et  al. 2020; Peng et  al. 2017). The literature indicates 
obtaining a ZnO-Fe3O4 composite immobilized on sepio-
lite (Akkari et al. 2016). The advantage of such a composite 
is represented by the magnetic properties of  Fe3O4, which 
can help to efficiently separate the material from water, after 
being used as a photocatalyst for the degradation of IBP 
under sunlight. The degradation was about 88%, the recov-
ery and reuse of ZnO/Fe3O4-sepiolite being possible after 
several operating cycles.

Furosemide represents one of the major emerging 
pollutants and photocatalytic degradation is a viable option 
demonstrated at different concentrations with different 
power lamps (1000 W Xe, 125 W Hg, and 8 W UVA) 
(Heidari et al. 2020). Another photocatalyst based on ZnO 
deposited on clay with an intermediate carbon layer used in 
the degradation of estrogens (E1, E2, E3, EE2), included 
in the EPs class, led to the degradation of about 90% with 
normal illumination (Bayode et al. 2021b).

The reuse of the ZnO/ion exchange clinoptilolite 
nanophotocatalyst (ICLT) was possible for 5 consecutive 
cycles, showing excellent chemical stability. In this 
sense, it can be observed that after the 5th cycle, the 
nanophotocatalyst still shows 93.7% of its initial activity, 
due to the strong bonds created between the ZnO NPs and 
the ICLT support.

The nanophotocatalyst ZnO/ICLT prepared by 
sonoprecipitation demonstrated high photocatalytic activity 
for the degradation of furosemide. The zinc acetate precursor 
in the presence of NaOH was introduced into a homogeneous 
suspension dispersed by zeolite, which after about 2 h led 
to the formation of a precipitate. This by calcination led to 
homogeneous nanoarchitectures (Heidari et al. 2020).

An example of the efficiency of these supports is the 
degradation of CIP at pH 7, 30 min, up to about 96%, 
according to pseudo-prime and Langmuir–Hinshelwood 
kinetics. The nanophotocatalyst was obtained by 
synthesizing ZnO NPs using the thermal method and 
immobilizing them on the surface of granular porous 
stones. Zinc acetate was used to obtain thin films of ZnO 
that were deposited on the stones by the immersion coating 
method, followed by oven drying (Mahdizadeh et al. 2015; 
Mohammad Malakootian et al. 2019b).

IBP shows stability through UV irradiation, an efficient 
solution, due to the anionic form present in the solution 
being the direct adsorption on the clays. Nanoarchitectures 
of the ZnO/sepiolite type led to degradations of about 75% 
after 10 h, due to the presence of ZnO NPs (Akkari et al. 
2018a).

ZnO NPs deposited on a stone support represent a 
photocatalyst with performance in the decontamination 
of waters contaminated with pharmaceutical pollutants 
and those originating from the textile industry. The 
elimination of phenazopyridine from wastewater can take 
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place in a proportion of about 70% at a pH of 6.0, using 
this photocatalyst. Chemical oxygen demand (COD) 
values indicate a removal of more than 50% at natural pH 
(Mahdizadeh et al. 2015).

Pharmaceutical products detected in waters as EPs present 
increased risks for the safety of people and the environment. 
Photocatalytic techniques present a solution for ACE and 
ANT products, when the photocatalyst is a  TiO2-ZnO/clay 
nanoarchitecture. The photocatalysts were obtained by the 
modified sol–gel method, Ti and Zn precursors were added 
to the clay dispersion, and the resulting gel, after drying, 
was calcined at 500 °C (Tobajas et al. 2017).  TiO2-ZnO 
nanoparticles incorporated on the surface of a clay indicated 
the possibility of total degradation of ACE and ANT, after 
10 h, under sunlight, due to the heterojunction that reduces 
electron–hole recombination. The photocatalyst showed 
stability after 4 operating cycles (Tobajas et al. 2017).

Low surface area, quick aggregation, and small 
particle size are some of ZnO NPs’ drawbacks, which 
make it difficult to recover them from aqueous solutions. 
Furthermore, releasing ZnO NPs into the environment 
can be hazardous to human health and the ecosystem. 
Immobilizing ZnO NPs onto a suitable matrix provides a 
remedy for these problems. In comparison to unsupported 
metal oxide nanoparticles, supported nanoparticles often 
have greater adsorption capacity, mechanical characteristics, 
thermal stability, and a higher specific surface area. Due 
to its low cost and wide availability, clay stands out as the 
best material to use for this. Clay’s natural structure also 
offers significant physical and chemical qualities such 
specific surface area, water retention capacity, ion exchange 
capability, and reactivity (Bel Hadjltaief et al. 2016).

The combination of ZnO nanoparticles with Tunisian clay 
(referred to as ZnO clay) effectively adsorbed and removed 
malachite green and Congo red dyes (Hadjltaief et al. 2018). 
When subjected to simulated solar light, the ZnO-clay 
composite exhibited superior photocatalytic performance in 
comparison to UV irradiation. The composite’s zero point 
charge (pHpzc) was found to be 6.58 in the neutral pH range, 
rendering it a highly efficient adsorbent and photocatalyst for 
both positively charged (cationic) and negatively charged 
(anionic) dyes. Consequently, the ZnO-clay composite could 
efficiently adsorb and photodegrade cationic dyes in alkaline 
conditions (pH > 8) and anionic dyes in acidic conditions 
(pH < 4) (Gusain et al. 2019).

ZnO NPs—other supports

The literature also indicates different supports that can 
incorporate ZnO NPs from stainless steel wire (Abd Aziz 
et al. 2014; Linhua Xu et al. 2020) and mesh (Vu et al. 
2013; Jung and Yong 2011; Xiaofei Wang et al. 2017b), 
ceramic plate (Aditya et  al. 2019; Shavisi et  al. 2016), 

stone (Mohammad Malakootian et al. 2019b; Mahdizadeh 
et al. 2015; Mohammad Malakootian et al. 2019a), shells 
(Shirzad-Siboni et al. 2014), aluminum  (Al2O3) (Huihu 
Wang et  al. 2012a; Stojadinović et  al. 2020), Zn plate 
(Ramirez-Canon et al. 2018), Ni foam (Zhu et al. 2020), 
woven cotton (Baruah et al. 2019) and bamboo (Jin et al. 
2014), and pineapple leaf fibers (Le et al. 2022; Deebansok 
et al. 2021).

A ternary Au-SnO2-CdS photocatalyst was used for the 
degradation of about 95% imidacloprid, at pH 4, according 
to a pseudo-first-order reaction, with a stability of about 15% 
after 6 cycles. The analyzed insecticide was also tested with 
other photocatalysts for which the removal rates were lower: 
tungstophosphoric acid HPW/TiO2 83% and Ag-ZnO 52% 
(Mohanta and Ahmaruzzaman 2021).

ZnO with nanostar (NSt) morphology was also used 
in the composition of Ag@ZnONSt and Pd@ZnONSt 
photocatalysts for the degradation of methyl parathion 
(MPT), pendimethalin (PDM), and trifluralin (TFL). Pd@
ZnONSt had 99.8% degradation efficiency and stability over 
six degradation cycles (Veerakumar et al. 2021).

A number of studies on nanostructured ZnO are related 
to their practical and secure integration into different 
macromolecular composites, such as polyesters (Yuan 
et al. 2016), polysaccharides, polyethylene glycol (Melinte 
et al. 2019), poly (N-isopropylacrylamide) (Podasca et al. 
2016), and hybrid polymers (Nicolay et al. 2015). Based 
on the numerous reports referring to the enhancement 
of the photocatalytic efficiency of ZnO nanomaterials, 
polyaniline (PANI) has received significant interest as it 
has been considered one of the most promising materials 
for enhancing the electrochemical and photocatalytic 
performance of ZnO. The fact that methylene blue (MB) 
is usually often chosen as a model pollutant to assess the 
photocatalytic activities under UV/visible light irradiation at 
ambient temperature is another intriguing feature. According 
to Qin et al., PANI-ZnO NPs presented a high photocatalytic 
activity (reaction rate constant k = 1.944 ×  102  min−1) when 
removing a high concentration of MB (Qin et al. 2018).

By using an in situ chemical polymerization approach to 
create PANI-ZnO nanocomposites, one of the prerequisites 
for an effective photocatalyst has been met. Additionally, 
the glassy carbon electrode (GCE) was combined with 
PANI-ZnO hybrids created in this study, and the combined 
PANI-ZnO/GCE system was evaluated for its potential as a 
microbial fuel cell anode. Through the chemical oxidative 
polymerization of aniline, Eskizeybek et  al. developed 
PANI/ZnO nanocomposites and looked into how MB 
and malachite green (MG) dyes in aqueous medium were 
degraded under both natural and UV light irradiation 
(Eskizeybek et al. 2012). The results showed that after 5 h 
of exposure to natural light, a dose of 0.4 g/L of PANI/ZnO 
nanocomposite photocatalyst degraded both dyes with 99% 
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efficiency. PANI/ZnO nanocomposites with higher activity 
as a result of the intermolecular interactions and increased 
crystallinity between the conducting polymer and ZnO NPs 
were synthesized by Saravanan et al. They investigated 
the faster degradation of MB (k = 2.575 ×  102  min−1) in 
comparison with MO dye (k = 2.325 ×  102  min−1), which 
was likely due to the latter’s simpler structure (Saravanan 
et al. 2016).

The removal of metronidazole (MNZ), a synthetic 
antibacterial agent, from wastewater before it is released 
into the environment has drawn significant attention due to 
its non-biodegradability and high solubility in water. Asgari 
et al. recently looked into the ZnO/PANI nanocomposites’ 
photocatalytic capacity for degrading MNZ when exposed 
to UV and visible light. They found that the ZnO/PANI 
nanocomposite presented a rate of MNZ degradation 
(k = 2.53 ×  102  min−1) almost 63 times faster than that 
of the pure ZnO photocatalyst’s (k = 0.04 ×  102  min−1) 
(Asgari et al. 2019). In MNZ degradation, the importance 
of hydroxyl radicals (∙OH) and superoxide anion radicals 
(∙O2) was emphasized. Improved visible light absorption and 
a decrease in charge carrier recombination were related to 
the photocatalytic activity under UV and visible irradiation. 
After 6 cycles, the photocatalytic effectiveness under UV 
and visible irradiations only decreased by 9% and 8%, 
respectively. As a result, the findings demonstrated that the 
ZnO/PANI nanocomposite had excellent stability and could 
be utilized repeatedly.

The synthesis of composite photocatalysts using ZnO 
nanoparticles and polypyrrole (PPy) is also discussed in the 
literature. These composites were made using PPy to ZnO 
ratios of 5:1 and 25:1, respectively (Silvestri et al. 2019). 
By observing the breakdown of diclofenac (DCF) under 
artificial solar light, the photocatalytic activity of these PPy-
ZnO composites was evaluated. The outcomes demonstrated 
that the PPy-ZnO 25:1 composite was approximately twice 
as efficient as pure ZnO and had a higher photocatalytic rate 
constant (k = 0.986  min−1) than the PPy-ZnO 5:1 composite. 
The sensitizing impact of PPy was said to be responsible for 
this improvement. However, it was demonstrated that a high 
PPy to ZnO ratio could result in flaws on the PPy surface 
that act as recombination centers for electron–hole pairs and 
lead to lower photocatalytic activity. The study also showed 
that after three consecutive cycles of degradation, the PPy-
ZnO 25:1 composite maintained its photocatalytic activity, 
showing its potential for reuse.

Polysaccharides and biopolymers are commonly used as 
modifiers (capping agents) in the synthesis of biogenic ZnO 
NPs (Yaqoob et al. 2020a). Chitosan is a naturally occurring 
polysaccharide found in crustaceans and insects and has 
garnered considerable attention for its role in synthesizing 
metal and metal oxide NPs, including ZnO NPs. Chitosan 
possesses essential functional groups, including amino and 

hydroxyl groups, which play a crucial role in the removal 
of different pollutants from water. As a result, it is widely 
recognized as an environmentally friendly capping agent 
(size control agent) in the synthesis of various metal and 
metal oxide NPs (ZnO, MgO,  TiO2) (Ben Amor et al. 2023). 
Previous research has demonstrated that chitosan offers 
several advantages when used for surface functionalization 
of metallic NPs, like the improvement of optical properties, 
enhancement of antimicrobial activity, and facilitation of 
drug loading and release (Ben Amor et al. 2022).

By using sol–gel and ultrasound-assisted techniques, 
several nanocomposites based on metal oxides and chitosan 
 (TiO2-ZnO,  TiO2-ZnO/CS, and  TiO2-ZnO/CS-Gr) were 
developed (Patehkhor et al. 2021). These materials were then 
used under UV light to assess the photocatalytic degradation 
of tetracycline. The following BET, FESEM, EDX, FT-IR, 
and XRD techniques were used to characterize the produced 
materials. At the optimal operational conditions (tetracycline 
concentration of 20 mg/L, pH = 4, catalyst dosage of 0.5 
g/L, and 3 h of irradiation time), the  TiO2-ZnO with the 1:1 
molar ratio supported with 1:2 weight ratio CS-Gr  (T1Z1/
CS1Gr2 sample) proved to be the most efficient composite 
achieving 97.2% photodegradation of tetracycline. As 
anticipated, chitosan and graphene significantly improved 
the results of the degrading process. Taking into account 
the used operational settings, this innovative photocatalyst 
is capable of treating pharmaceutical wastewater.

Future trends and conclusions

It has been proven that ZnO NPs are an extremely versatile 
material with photodegradation activity, comparable or 
even better than chemically produced ones. Currently, 
the ZnO NP market includes the cosmetic industry, food 
products, coatings, sun care, paints, construction, buildings, 
antibacterial, and applications from materials science, 
optics, biomedicine, or electronics. This market is estimated 
to grow by 7.5% from 2022, so it will reach US$ 525.32 
million by 2029.

The present research highlights the latest ecological 
strategies regarding the development of ZnO nanoparti-
cles through simple, low-cost, and large-scale methods. 
The review provides a fundamental overview of green 
syntheses for ZnO NPs as a single material or embedded 
into a matrix compared to classical syntheses. The stability 
and minimization of losses of ZnO NPs in the environment 
after their use inspire recent research towards the identi-
fication of a stabilization matrix for these NPs. The main 
performances of ZnO NPs integrated into a stable, environ-
mentally friendly matrix useful for EP degradation were 
presented, emphasizing the ZnO NP preparation method 
and material morphology linked with each EP degradation 
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condition. ZnO NPs embedded into a carbon matrix sup-
port represent a viable alternative to current techniques and 
could also be obtained from waste materials.

This literature research was based on an extensive data 
collection from 2000 to present and selection method of the 
main articles cited in this review is described in the paper. The 
motivation of this study also lies in the current market situa-
tion regarding the performance of nanotechnologies in water 
decontamination. Considering the potential of ZnO NPs, the 
market of nanomaterials in water and wastewater treatment 
will include these types of NPs due their potential to EPs.

This research, as academic writing, offers an extensive 
overview of the current knowledge in ZnO photocatalyst 
alternative routes of preparation and its performance in the 
degradation of emerging pollutants. Green synthesis offers 
ecological alternatives, especially for vegetable waste that 
can become precursors for the synthesis of ZnO nanostruc-
tures. The article addresses a specific topic, namely, ZnO as 
a versatile and cost-effective photocatalyst when compared 
to  TiO2. This research also provides young researchers and 
students with a holistic conceptualization and synthesis of 
the literature regarding the importance of green synthesis in 
ZnO photocatalysts as sustainable materials for degrading 
emerging pollutants.

The market research carried out by maximize market 
research indicates a growth of 9.1% through 2022 to 2027, 
reaching nearly US$ 2.7 billion, regarding Global Nanotech-
nology in Water Treatment (including industrial and potable 
water treatment) (Maximize Market Research). The most 
effective methods involve nanomembrane systems, essential 
in pollutant removal and softening, especially for pharmaceu-
tical contaminants. In addition, nanoadsorbents are included 
in this report as efficient materials for a wide range of organic 
and inorganic pollutants. An ideal nanomaterial is the one 
with the smallest possible dimensions to exhibit catalytic 
potential and reactivity through a large specific surface area; 
systems that include metal oxides such as ZnO will represent 
the next generation of sustainable materials.

Because the risk of reaching the environment, after 
being used as a photocatalyst, is quite high, due to the small 
size, the creation of some supports that incorporate these 
NPs represents a viable alternative to current techniques. 
The most used support materials are the carbon ones, with 
proven properties and which in turn can be obtained from 
waste. Currently, the photocatalytic activity of these NPs is 
recognized, and these applications will represent a potential 
nexus on the research market.

The conventional preparation methods of ZnO NPs are 
associated with toxicity, which has been a restraining factor 
for the global ZnO NP market. However, the new trend in 
green synthesis is bringing attention to new perspectives 
regarding the acquisition and integration of these NPs. The 
investments in the ZnO NP sector are in expansion and linked 

with research and development in industry. Environmental 
concerns regarding EPs bring into question new industrial 
solutions and participants in the global market. Future 
researches should be developed on the cost–benefit analysis 
regarding the preparation methods, treatment processes, and 
value-added product regeneration efficiency.
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