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Abstract
The unprecedented population and anthropogenic activity rise have challenged the future look up for shifts in global tempera-
ture and climate patterns. Anthropogenic activities such as land fillings, building dams, wetlands converting to lands, com-
bustion of biomass, deforestation, mining, and the gas and coal industries have directly or indirectly increased catastrophic 
methane  (CH4) emissions at an alarming rate. Methane is 25 times more potent trapping heat when compared to carbon 
dioxide  (CO2) in the atmosphere. A rise in atmospheric methane, on a 20-year time scale, has an impact of 80 times greater 
than that of  CO2. With increased population growth, waste generation is rising and is predicted to reach 6 Mt by 2025.  CH4 
emitted from landfills is a significant source that accounts for 40% of overall global methane emissions. Various mitigation 
and emissions reduction strategies could significantly reduce the global  CH4 burden at a cost comparable to the parallel and 
necessary  CO2 reduction measures, reversing the  CH4 burden to pathways that achieve the goals of the Paris Agreement. 
 CH4 mitigation directly benefits climate change, has collateral impacts on the economy, human health, and agriculture, and 
considerably supports  CO2 mitigation. Utilizing the  CO2 from the environment, methanogens produce methane and lower 
their carbon footprint. NGOs and the general public should act on time to overcome atmospheric methane emissions by 
utilizing the raw source for producing carbon–neutral fuel. However, more research potential is required for green energy 
production and to consider investigating the untapped potential of methanogens for dependable energy generation.
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Introduction

Since 2000 BC, human civilization has progressed by using 
fossil fuels, where every organism sustaining is forced to 
depend on energy. Many generations have passed, yet the 
question remains “a subsequent source for energy produc-
tion” (Lee and Holder 2001). Anthropogenic indulgence is 
the prime cause of climate change, converting wetlands into 
the civil area, population rise, deforestation, burning of fossil 
fuel, transportation, greenhouse gas emissions (GHGE), and 
mining (Turner et al. 2019; Kühmaier et al. 2022). Among 
all other issues, burning fossil fuels also (Stewart et al. 2021) 

has a significant negative impact on the environment by 
emitting 25% of greenhouse gas (GHG) and climate change 
(Massar et al. 2021), which is paramount to all beings and 
makes plant earth unfit for survival (Ejiofor 2019).

Chief gases commanding to take quick action against 
drastic climate changes are  CO2,  CH4,  N2O, and fluori-
nated gases. The present study mainly focuses on the pri-
mary greenhouse gases,  CH4 emissions rates, and concen-
tration levels. When  CO2 is emitted into the atmosphere, 
40% remains for 100 years, and 20% remains for 1000 years 
than other gases like  CH4 and nitrous oxide (over a century) 
(Global Warming Potential 2022).  CH4 is the second most 
significant greenhouse gas in heat-trapping in the atmos-
phere. The primary sources of  CH4 emissions include agri-
culture, waste, fossil fuels, wetlands, freshwater systems, 
and geological sources. Wetlands comprise 30% of the total, 
while agriculture, waste disposal, livestock, oil, gas, and coal 
mining comprise 20%. Wildfires, biomass burning, and the 
ocean are other culprits (Jackson et al. 2020; Rosentreter 
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et al. 2021). Likewise, boreal lakes and ponds produce two-
thirds of all natural  CH4 emissions above latitude 50 North 
(Martin et al. 2021). By the end of the twentieth century, 
climatic types near the global mass of 31.3–46.3% will tran-
sition from 3.5 to 8.5 RCP (Representative Concentration 
Pathway) due to significant temperature rise, causing the 
disappearance of global climate heterogeneity (Zhang et al. 
2021). In August 2020, the international team of scientists 
from Berkeley Lab, including William Riley (senior sci-
entist) and Qing Zhu, estimated global  CH4 emissions had 
increased by nearly 5% from 2008 to 2017, which is 570 
million tonnes (Global Carbon Project 2020).

However, it has been noted that  CO2 and  CH4 emissions 
vary with biome and physio-hydric variables of soil, tem-
perature, vegetation, water level, and wetland salinity, which 
significantly impact the rates of  CO2 and  CH4 emissions 
(Olsson et al. 2015). Wetlands are a beneficiary source of 
organic carbon stores, where 15% is released into the atmos-
phere. About 100–231 Tg (25–40%) of  CH4 is released annu-
ally from wetland sources (Pugh et al. 2018; Li et al. 2016). 
Still, our role in the environment is to consider emerging 
global issues that could get converted into beneficial out-
comes without disturbing the regular regulative cycles of the 
domain (Neale et al. 2021). This review highlights critical 
themes on  CH4 emissions, climate change, and regulatory 
ecology in methanogenesis, emphasizing  CH4’s sustainable 
use in industrial and energy production for a better future.

Prime sources of  CH4 emissions

CH4 emission from wetland

Wetlands are significant ecosystems that maintain the 
environment’s biodiversity and regulate hydrogeographic 
basins (Taillardat et al. 2020). Soil is the universal habitat 
for most organisms, and the bio-geo cycle changes based 
on vegetation and soil locality (France et al. 2022). These 
ecosystems support endemic species diversity and contribute 
to  CH4 emissions through topological conditions (Ribeiro 
et al. 2020; Singh et al. 2018a, b). Wetlands are significant 
 CH4 emitters due to fluctuations in greenhouse gas efflux 
and changes in genera and vegetation (Baker-Blocker et al. 
1977). The deep-down anoxic condition in wetlands leads 
to the accumulation of humic acid, creating an environment 
for carbon sequestration. The diverse biome from higher to 
lower range at each level concerning temperature variation 
is shown in Fig. 1. The sequestered carbon overweighs  CH4 
production in non-vegetated areas (Laanbroek, 2010).

Fluctuation in organic matter affects the vegetative 
structure of wetlands, leading to increased  CH4 emissions 
with rising temperatures (Kandel et al. 2019). The water 
table determines the anoxic/oxic and redox boundaries, the 

primary cause of greenhouse gas emissions. Shallow water 
levels increase  CH4 emissions compared to deeper ground-
water, emitting a high magnitude of  N2O (Prananto et al. 
2020). An increase in  CO2 emissions was observed during 
the growing seasons (spring–fall) at Tibetan plateau peat-
lands (Cao et al. 2017; Mwagona et al. 2021). Most wetland 
plant roots have aerenchyma tissue that helps uptake oxygen 
supply and act as  CH4 conduits (Korrensalo et al. 2022). 
Vascular plants in natural and restored vegetation contribute 
to  CH4 production and consumption (Zhang et al. 2022a, 
b; Wilson et al. 2016; Van der Nat and Middelburg 2000).

CH4 emissions from the dams

Dams are built to conserve water for irrigation and meet 
human needs, but their impacts are often debated. The 
uncontrolled rise in population has led to the construction of 
reservoirs, which can increase water consumption (Jarveoja 
et al. 2016). Dams also promote various activities, such as 
electricity generation, flood control, fish farming, fire pro-
tection, erosion prevention, and mine tail storage (Fig. 2a). 
There is a direct link between  CH4 eviction and accumu-
lated organic matter in dams. The deposited organic matter 
involves trapping  CH4 (Fearnside and Pueyo 2012; Varis 
et al. 2012). Deep under the water column in the dam, due to 
a lack of agitation and air supply, sediment gets deposited at 
the bottom (Maeck et al. 2013). Therefore, it serves as a hot 
spot for anaerobic decomposition biological mechanisms. 
Thereby,  CH4 is released directly into the atmosphere and 
does not decrease over the dam’s lifetime (Chen et al. 2011). 
Though it serves as green energy in its prime aspect, it later 
serves as a significant GHG-releasing factor that consider-
ably impacts the environment (Fearnside and Pueyo 2012; 
Rooney-Varga et al. 2018).

Converted peats for human subsidence

Peatlands, covering nearly 3% of the global landmass, have 
become a hotspot for  CO2 emissions due to anthropogenic 
disturbances in Northern and Southeast Asia. Southeast 
Asia, including Malaysia, East Sumatra, Indonesia, and New 
Guinea, was once considered the largest peatland carbon 
pool (Lupascu et al. 2020). However, expansion for eco-
nomic development has led to catastrophic fires, releasing 
additional carbon into the atmosphere (Xu et al. 2019). The 
 CH4 efflux in fire-affected peatland is higher than in intact 
peat (Dommain et al. 2018). In contrast, the other peatlands, 
covering Europe, America, and Russia, account for one-third 
of the global carbon soil pool. By 2015, 30% of peatland was 
converted for palm and acacia plantations, lowering water 
table levels (Jarveoja et al. 2016). Southeast Asian drained 
peatland generates around 380–420 Tg of  CO2 per year, 
while 44% of carbon emissions from industrial plantations 
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have been reported (Miettinen et al. 2017; McCalmont et al. 
2021) as depicted in Fig. 2b. The heating of peat accelerates 

 CH4 emissions during seasonal changes (Joabsson et al. 
1999; Wilson et al. 2016).

Fig. 1  Schematic representation of the interconnective and diverse biome from higher to lower range at each level concerning temperature varia-
tion (Rothschild and Mancinelli 2001)
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The rise in population around South Asian countries, 
including China and Korea, led to the conversion of para-
mount peat to paddy fields, the staple diet of the significant 
population (Seo et al. 2014). The metamorphosis of peatland 
inverses its role in the environment by taking a positive side 
(global warming) for climate change (Ribeiro et al. 2020; 
Lynch et al. 2021). At the same time, draining peatlands 
for human settlement, cultivation, and forestry accelerated 
 CO2 emissions following years in the atmosphere (Krause 
et al. 2021; Kandel et al. 2019). However, converted peat 
for paddy cultivation reports 30% of annual carbon stor-
age, referring to their tremendous impact on massive car-
bon sinks on the millennial scale (Ghazouani et al. 2021). 
Exploiting natural wetlands threatens the primary hydrologi-
cal and environmental conditions (Zou et al. 2018).

According to the Fifth IPCC report, agriculture prac-
tices alone contribute 38% to global  CH4 emissions, with 
sub-tropical regions like South East Asia, Central and 
Latin America, and Africa converting most peatlands for 
paddy cultivation (Rahman et al. 2021; Nie et al. 2019). 
Improper drainage and converted peatland may evict  CH4 
in a large proportion to non-paramount regions (Luta et al. 
2021). India and China are the primary rice cultivators, with 
2600 million people (60% Asians) relying on rice in their 
diet (Rahman and Yamamoto 2020). Paddy fields, cover-
ing 167.25 million hectares globally, account for about 530 
Mt of  CH4 emissions annually (Ito 2015). Human activi-
ties accelerate 60% of  CH4 emissions, with 78% of  CH4 
emitted globally from irrigation paddy fields (Mujiyo et al. 
2017).  CH4 reacts with the rhizosphere or oxidizes in the 

oxic region, causing some to get trapped in soil and evicted 
into the atmosphere. The average mixing ratio of  CH4 in 
the atmosphere has increased by 6.8 ppb in the last decade. 
Still, the cascade releases  CH4 into the environment, caus-
ing it to linger in the atmosphere for an extended period, as 
per World Data Centre for Green House Gases (WDCGG) 
survey (World Meteorological Organization 2019).

Trees’ role in  CH4 emissions

Trees play the frontier role in balancing the geo cycle in 
the atmosphere. Recently accelerated  CH4 emissions from 
trees into the atmosphere are at an alarming venue in global 
warming (Jeffrey et al. 2021). Intact and dead trees partici-
pate in  CH4 sequestration and eviction in the environment. 
An incredible amount of  CH4 gets loaded in upland trees, 
where more than 65% gets trapped in tree stems.  CH4 in the 
tree was first reported in 1970 by Bushong while cutting 
cottonwood trees (Flanagan et al. 2020). The heartwood of 
the stem accumulates 250,000 times more  CH4 than the bal-
anced atmosphere, but the high accumulation of  CH4 in the 
heartwood does not relate to the total  CH4 efflux rate (Barba 
et al. 2019). The flux dynamic depends on internal and phys-
ical factors like species, ages, tissue type, site characteristics, 
and environmental conditions and primarily on stem water 
content controlling gas diffusion rates (Covey and Megoni-
gal 2019), as depicted in Fig. 2c. Comparatively,  CH4 emis-
sions from upland trees are lesser than from wetland trees. In 
wetlands or uplands, living trees emit more  CH4 than dead 
ones, regardless of the physiochemical conditions (Pitz and 

Fig. 2  Prime sources of methane emission. a Dam—decomposi-
tion of the accumulated organic matter at the bottom of the reservoir 
(Lima et  al., 2008; Maeck et  al. 2013; Song et  al. 2018; Seo et  al. 
2014), b anaerobic condition provided by water flooded farming land 
(Poppe et al. 2021; Legg et al., 2015), c  CH4 emission from upland 

trees through the interaction between the tree and the soil microbi-
ome (García-Palacios et al., 2021; Korrensalo et al. 2022; Barba et al. 
2019), and d ruminant microbiome involving in the digestion of the 
carbohydrates intake (Mizrahi et al., 2018; Glasson et al. 2022)
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Megonigal 2017). It proves tree stems are the source or sink 
co-related to (methanogenesis) production and  CH4 con-
sumption (methanotrophs).  CH4 is produced deep inside the 
layer of soil and then released into the atmosphere through 
roots, stems, and leaves (Wang et al. 2017; Li et al. 2020).

Three trillion trees are present worldwide, considering 
the  CH4 kinetics from individual trees could upscale the 
overall global flux (Barba et al. 2019). The tree stem embel-
lishes 1–6% of accumulated  CH4 in the soil, changing the 
upland sink into a source of efflux. Thus, the flux between 
upland and tree stem makes it difficult to maintain the forest 
temperature uniform (Pitz and Megonigal 2017). In addi-
tion, diseases like fungal infection in plants generate a  CO2 
environment favouring the growth of anaerobic organisms 
(minor redox condition), selecting the methanogens survival. 
Epiphytes such as algae, lichen, bryophytes, and cyanobacte-
ria in the tree bark help maintain the tree stem’s  CH4 emis-
sions (Lenhart et al. 2015). The consequence of regulative 
factors involved in climate change and global warming must 
be concerned to understand the bio-geo cycle flux.

Ruminants’ role in  CH4 emissions

As other sources contribute to  CH4 emissions, anthropogenic 
is no less equal (Misiukiewicz et al. 2021; Sharma and Sinha 
2013). Due to the increasing population, the need for meat 
and meat products will rise to 70–78% by 2050 (Min et al. 
2020; Tseten et al. 2022). The rumen ecosystem plays a 90% 
function in digesting complex plant materials. The feed deg-
radation and release of  CH4 from ruminants are considered a 
vast complex biome interaction globally (Mizrahi and Jami 
2018). Among other products,  CH4 is produced at a com-
parable rate in ruminants (95%) and nonruminants (5%) by 
digestion (Zhao and Zhao 2021). The anaerobic digestion of 
carbohydrates in ruminants’ gastrointestinal tracts produces 
 CH4 as they are being digested (Lan and Yang 2019), as 
picturized in Fig. 2d. These anaerobic archaeal methanogens 
convert the single carbon source to  CH4 using a straightfor-
ward oxidation process.

Ruminants undertake three modes of the process such 
as (i)  CO2-H2 conversion, (ii) transformation of fatty acid 
chains like acetic acid, formic acid, and butyric acid, and 
(iii) synthesis of compounds like methanol and ethanol for 
degrading the feed (Lan and Yang 2019). Most methano-
gens undergo (a primary pathway) to reduce  CO2 to  CH4 in 
the rumen. Ruminant  CH4 release accounts for about 19% 
of global  CH4 emissions (Sun et al. 2021). The industry’s 
continued growth, the cost of mitigation, the difficulty of 
implementing mitigation measures for grazing ruminants, 
the inconsistent effects on animal performance, and the scar-
city of data on animal health, reproduction, product quality, 
cost–benefit, safety, and consumer acceptance are significant 

obstacles to reducing global enteric  CH4 emissions from 
ruminants (Beauchemin et al. 2020).

Anthropogenic factors adding to  CH4 
emissions

Anthropocene-humans’ inference in the environment leads 
to potential global warming (PGW), with unhealthy events 
like burning fossil fuels and deforestation accelerating 
greenhouse gas (GHG) emissions (Feng et al. 2022). GHGs 
disrupt the Earth’s carbon cycle, including water vapour, 
 CO2,  CH4,  N2O, and radiative fluxes. Since industrialization 
began in 1900, GHG emissions have increased over time 
(Ritchie et al. 2020a, b). NASA warns that clearing forest 
areas has significantly impacted climate change. Human-
caused sources of  CH4 emissions include agriculture, live-
stock, fossil fuel extraction, energy generation, coal mining, 
biogas and oil frameworks, waste treatment, and disposal 
(Zheng et al. 2021; Kulkarni et al. 2022). As the population 
grows, there is a growing demand for food, such as rice and 
ruminant livestock, which directly contribute to  CH4 emis-
sions (Jorgenson and Birkholz 2010). In 2020, up to 60% 
of  CH4 emissions from these sources were recorded in the 
atmosphere (Staniaszek et al. 2022).

CH4 emissions from oil and gas production and trans-
portation significantly contribute to climate change. Wells 
leaking  CH4 can increase the risk of explosions, pollute 
groundwater, alter air quality, and release harmful aromatic 
compounds like benzene and toluene, which harm human 
health (Lebel et al. 2020). In Canada and the USA,  CH4 
emissions from abandoned wells account for 150 times, and 
20% of world emissions were reported by Williams et al. 
(2021). In 2022, 43% of  CH4 emissions were due to anthro-
pogenic activity. China has risen to third place in energy 
consumption since 2013, consuming 8.3% more natural gas 
than in 2000 (Wang et al. 2022). If  CH4 leaks into the atmos-
phere, it has the same greenhouse gas effects as  CO2 mol-
ecules, a drawback of biogas production (Torres-Sebastián 
et al. 2021). Pieprzyk and Hilje (2018) predicted that global 
 CH4 emissions from the oil industry in 2015 would reach 
22 to 59 Mt, with crude oil  CH4 emissions rising from 18 
to 59% by 2040. They calculated those global emissions 
from venting (52%), incomplete combustion during flaring 
(1.4%), and fugitive emissions (42%) from diesel and petrol 
ranged from 8.78 to 14.80 g  CO2eq MJ-1 to 8.88 to 16.34 g 
 CO2eq MJ-1 in 2040. However, recent inventory estimates 
do not account for frequent escapes of substantial amounts 
of  CH4 during maintenance operations or equipment fail-
ures. Upstream production processes are the leading causes 
of oil and gas  CH4 emissions.

Landfills release more  CH4 into the atmosphere than pre-
viously thought, ranking third, followed by oil and biogas 
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systems and agriculture (Singh et al. 2018a, b; Nguyen and 
Lee 2021). These emissions were mainly generated through 
microorganisms’ anaerobic breakdown of organic matter 
(Dang et al. 2023). The two significant greenhouse gases 
landfills release are  CH4,  CO2,  N2O, carbon monoxide, and 
hydrochlorofluorocarbons (CFCs, HCFCs, and HFCs) are 
trace components that make up essential greenhouse gases. 
 CH4 burns to produce greenhouse gases like  CO2, water 
vapour, and ozone and filters outgoing radiation. Landfill-
ing gas emissions contribute 50–99% to global warming, 
ozone depletion, and smog impacts (Wang et al. 2021a, b). 
According to a recent analysis by the International Energy 
Agency, China, India, and Russia are the world’s largest  CH4 
polluters (Manheim et al. 2021).

Additionally, despite the transition to clean energy, coal 
plays a crucial role in the world economy (Warmuzinski 
2008). Coalification converts biomass into coal through 
biological and geological processes, releasing  CH4 gas 
and coal. When pressure within coalbeds is lowered due to 
faulting, natural erosion, or mining,  CH4 is released (Dutka 
and Godyń 2021; Li et al. 2022). Commercial extraction 
of coalbed  CH4 (CBM) has been ongoing for over 60 years 
(Wang et al. 2021a, b). Mine gas emissions from coal mines 
contribute 7% of global  CH4 production but can also come 
from thermogenic and biogenic sources (Beckmann et al. 
2011; Kholod et al. 2020). It also contributes to the deple-
tion of the ozone layer and has a positive ecological impact 
by enhancing warming.  CH4 from coal extraction can be 
used for electricity or commercial purposes (Ianc et al. 2020; 
Yang et al. 2021). However,  CH4 concentrations increased 
2.5 times from 731 ppb in 1750 to 1890 ppb in 2020 (Nisbet 
et al. 2019).

Development towards destruction

Over the years, Earth’s climate has been estimated based 
on physical, chemical, and biological complex ocean, land, 
and atmosphere processes. The radiative property of the 
atmosphere, a significant climate-changing factor, is strongly 
affected by the Earth’s surface biophysical state and trace 
constituents, which act as an amphipathic radiative energy 
response (Specht et al. 2016). In addition, it is supported by 
atmospheric changes through anthropogenic emissions of 
GHGs like  CO2,  CH4, and  N2O and aerosols and volcanic 
eruptions (Menon et al. 2007; Xie et al. 2016). However, 
the mean annual increase of  CO2 is 2.40 ppm and  CH4 is 
8.0 ppm per year. As per the 2021 IEA record, among other 
countries, India releases about 16%  CH4 from the energy 
sector and 8.9% (31842 kt) of total emissions (International 
Energy Outlook, Global Methane Tracker 2022).

CH4 has a potential for global warming that is 80 times 
greater than  CO2 over 20 years and 34 times greater over 

100 years (Wang et al. 2022). Naturally occurring global 
bio-geo cycle are incrementally and constantly affected 
by human activities. According to the WDCGG survey in 
2020, the net global mean abundance of  CH4 is 1889 ± 2, 
an 11 ppb increase between 2019 and 2020. According 
to the methane emissions tracker 2022,  CH4 emissions 
from energy sources are about 70% more than anthro-
pogenic sources estimate (International Energy Agency, 
Global Methane Tracker, 2022). The development and 
developing process clearly shows the effect of its destruc-
tion, which is not far. So, the  CH4 and  CO2 emissions 
efflux must be examined under comparative study in all 
wetlands to better estimate the threat source (Rousk and 
Bengtson 2014).

India and China account for 36% of the world population, 
with India covering 67% of the Asian population. The accel-
erating population in both countries converts natural land 
into reclaimed land for irrigation and conservation, becom-
ing a leading carbon source. Irrigation lands account for 
about 6–7 tonnes (2.4–4.2%) of  CO2 annually in the Nether-
lands (Poppe et al. 2021). According to the COP26 and Paris 
Agreement reports, developed nations are primarily respon-
sible for the accelerated mission; since the 1850s, the USA 
has been the top GHG emitter. As per the IPCC-2021 study, 
the total emissions of  CH4 from various sectors show a sig-
nificant shift in the top-hit countries, as depicted in Fig. 3. 
China takes the top spot, followed by India, Indonesia, Rus-
sia, North America, Iran, and more. As a result, small groups 
of progressive steps will be adopted to reduce  CH4 emissions 
to 30% by 2030 (Global Climate Agreements: Successes and 
Failures 2021). According to Our World In Data (OWID) 
reports, in 2020,  CO2 emissions were significant in Asia 
and China after the twentieth century. Asia is marked as the 
largest emitter of  CO2, accounts about 53%, which is more 
than one-quarter of global emissions (Ritchie et al. 2020a, 
b). Compared with top  CH4-emitting countries like India, 
Indonesia, Russia, North America, Europe, and the USA, 
China recorded the highest emissions (> 50,000 MtC, 2021), 
as represented in (Fig. 3a; Supplementary Tables S1 and 
S2). At the same time, China (> 5000 MtC, 2021) and North 
America (> 3000 MtC, 2021) have taken the first two posi-
tions for  CO2 emissions from territorial and consumption 
as shown in Fig. 3b and Supplementary Table S3 (Global 
Carbon Project 2021; Friedlingstein et al. 2022; Drinkwater 
et al. 2023). From the last 5 years, data from various sectors 
taken for fossil fuel, coal, and oil are at the top-hit prime 
sources reported by Friedlingstein et al. (2020) and Zhang 
et al. (2022a, b), as represented in Fig. 4 and Supplementary 
Tables S4 and S5. The present global and historical carbon 
budget has shifted out of balance (− 0.788, 2020) due to fos-
sil fuel emissions, atmospheric expansion, the ocean, land, 
and cement sinks (Fig. 5; Supplementary Table S6) (Global 
Carbon Project 2021; Friedlingstein et al. 2022).
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Sustainable resource

Methane is a clean, efficient biochemical and biofuel 
resource, but backup sources are not scientifically proven, 
and fossil fuels run out faster (Fan et al. 2021; Liu et al. 
2021).  CH4 is an excellent fuel for combustion, and  CH4 
releases less  CO2 per mole than any other fossil fuel (Lee 
and Holder 2001), as depicted in Fig. 6.  CH4 is a potent 
GHG and a more prominent energy source than other 

resources. Methanogenic bacteria also provide a plat-
form for energy conversion, which can become a future 
 CH4-based bio-manufacture industry (Nguyen and Lee 
2021).  CH4 produces ammonia, syngas, hydrogen, and 
methanol without exploiting nature (Richard et al. 2021). 
Gaseous biofuels reduce GHG emissions and have a high 
energy consumption value.  CH4 can become the principal 
feedstock for future single-cell protein production, revi-
talizing rural communities with much access to it (Pieja 

Fig. 3  Representation of the top most countries emitting methane (a) and carbon dioxide (b) measured in metric tons

Fig. 4  The last 5 years of car-
bon emission in various sectors 
were measured in MtC/year 
(Friedlingstein et al. 2020)
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et al. 2017; Kulkarni and Ghanegaonkar 2019). We are on 
the brink of a radical technological revolution necessary 
to protect the environment and its inhabitants (Jones et al. 
2022).

Biology of methanogens

Methanogens produce  CH4 to conserve high energy for 
adenosine triphosphate synthesis (ATPs), thereby marked 
as a sustainable resource for future energy development 

(Steinlechner and Junge 2018; Chellapandi and Prathivi-
raj 2020; Prathiviraj and Chellapandi 2020a; Gao and Lu 
2021). It has faked the customary belief that the organism 
consumes energy for growth and has inspired the study area 
with its exotic metabolic pathways (Holmes and Smith 2016; 
Holmes et al. 2019). It plays a significant role in intercon-
nective biome pathways in converting  CH4 by decomposing 
organic carbon dumps (anoxic/reduced condition) (Gao and 
Lu 2021; Dang et al. 2023). In 1776, Alessandro Volta first 
discovered the bio-production of  CH4 through his experi-
ment on flammable gas from swamps and hypothesized that 
it is derived from decaying organic matter. Methanogens 
configure a significant fraction of the Earth’s diversity that 
controls the global climate conditions (Enzmann et al. 2018). 
It can be isolated from extreme thermochemical gradients 
from acidic to alkaline (03.0–12.0 pH) conditions, psychro-
philic (1 to 124 °C) to hyperthermophilic (80–98 °C) con-
ditions, and estuaries to hypersaline. The primary spots of 
methanogens range from deep thermal vents to the digestive 
tract of animals (Chellapandi et al. 2018). Other harbour 
methanogen conditions include freshwater estuaries, peat 
bogs, swamps, and wetlands (Wolfe 1993).

Methanogens are phylogenetically and biochemically 
distinct organisms that preserve energy through the Wolfe 
cycle, producing  CH4 as a byproduct of their fundamen-
tal demand (Buan 2018). The methanogens are classified 
into the phyla Euarachaeota and are considered the “ther-
modynamic edge of life.” Methanogens grow autotrophi-
cally in sealed glass vials without light, using an inor-
ganic substrate as the sole carbon source. Intermediatory 

Fig. 5  Estimation of global and 
historical carbon budgets from 
the various source were meas-
ured in GtC (Global Carbon 
Project 2021; Friedlingstein 
et al. 2022)

Fig. 6  Production of carbon–neutral fuel—CH4—by  CO2-reducing 
methanogens
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derivatives from methanogens support and create a 
favourable interconnective biome community (Wang and 
Lee 2021). Methanogens were distinguished from bacte-
ria and archaea branches with non-methanogenic halo-
philes, thermoacidophiles, and hyperthermophilic archaea 
(Prathiviraj and Chellapandi 2020b). The enzyme system, 
an ancestral feature of archaea and bacteria, has been lost 
in all but a few lineages of prokaryotes (Juottonen et al. 
2006).

The catabolic mechanism divided methanogens into 
 CO2-reducing, methylotrophic, and acetoclastic (Galagan 
et al. 2002; Juottonen et al. 2005; Prathaban et al. 2017). 
They need  H2 as the sole source of converting  CO2 to 
 CH4, where  H2 is a commonly released byproduct from 
other bacteria. As an essential extracellular intermedi-
ate,  H2 never accumulates as it gets rapidly utilized by 
other metabolic functions (Ferry 1993). Recently, the 
phyla affiliating seven orders have been recognized where 
Methanobacteriale, Methanococcales, Methanomicrobi-
ales, Methanosarcinales, Methanopyrales, Methaenocella-
les, and Methanomasiliicoccales (obligate methyl-respir-
ing methanogens) in Thermoplasmata (Xu et al. 2021). In 
terms of their physiology, hydrogenotrophic methanogens 
evolved 3.5 billion years ago. In contrast, acetoclastic and 
methylotrophic originated recently, before 200–450 mil-
lion years but could have lost their  CH4-producing ability 
(Miller et al. 1988; Rohlin and Gunsalus 2010; Adam 
et al. 2017).

Extraordinary biome interaction

With rapid evolution and extensive adaptative physiology, 
methanogens seize multiple metabolic pathways. Methano-
gens are critical in maintaining the geothermal and global 
energy cycle via methanogenesis. Methanogens produce 
 CH4 using simple substrates such as  CO2 and  H2 via an 
anaerobic path (Lyu and Whitman 2019; Chellapandi and 
Prathiviraj 2020; Prathaban et al. 2017). Methanogens carry 
out methanogenesis in both forward (hydrogenotrophic) and 
reversed (methylotrophic) manners as they contain all the 
genes and enzymes within (Timmers et al. 2017; Prathaban 
et al. 2017). They maintain the direct interactive electron 
transfer (DIET) connection with exoelectrogenic organisms 
concerning their habitat (Mand and Metcalf 2019; Prathi-
viraj et al. 2019; Prathiviraj and Chellapandi 2019, 2020b). 
Therefore, indigenous multi-community biome and external 
environmental conditions determine  CH4 fluxes (Costa and 
Leigh 2010). The  CH4 cycle is strongly affected by climate 
change, both by direct means (abiotic—temperature, humid 
condition of the soil) and indirectly through the change in 
vegetation (biotic—microbiome) because they are intercon-
nected in regulating the cycle according to the requirement 
(Korrensalo et al. 2022) as depicted in Fig. 7. Anaerobic 
digestion of organic matter occurs via hydrolysis, acidifi-
cation, acetogenesis, and methanogenesis (Seemann and 
Thunman 2019; Xu et al. 2021). Each process occurs bal-
anced, thereby preventing the accumulation of metabolite 

Fig. 7  Diverse microbiome interaction among the oxic and anoxic communities to maintain the biogeochemical cycle (Gao and Lu 2021; Wang 
and Lee 2021; Korrensalo et al. 2022)
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intermediating in the system. Temperature and pH may 
affect the methanogenesis and the pathway of abundance in 
the biome community (Dhaked et al. 2010). Methanogenesis 
is an interconnected pathway with carbon–nitrogen cycles 
concerning their habitat biome (Park et al. 2018).

Conclusion and future perspectives

The increasing population and development in develop-
ing countries have significantly impacted the environment, 
accumulating greenhouse gas (GHG) and causing global 
climate imbalance. The global bio-geo sector produces 1.2 
Gt of  CO2 annually, and the UN’s climate report, “Now or 
Never,” aims to limit global warming to 1.5 ℃ (Richard et al. 
2021). The atmospheric  CH4 load is rising, contradicting 
the 2015 Paris Agreement targets of the UN Framework 
Convention on Climate Change (Nisbet et al. 2020). It is 
also described in the latest report from IPCC as “a litany of 
broken climate promises,” revealing a “yawning gap between 
climate pledges and reality” (UN News report, Global per-
spective Human stories 2022) and also added that investing 
in climate-chocking industries. The G7 Leaders Declaration 
from May 2016 to “recognize the importance of mitigating 
emissions of short-lived climate pollutants” also supports a 
variety of existing strategies (Saunois et al. 2016).

According to IEA greenhouse gas emissions from energy, 
the industry was the largest sector for about 40% of global 
emissions in 2019 (International Energy Agency, Green-
house Gas Emissions from Energy: Overview, 2021). For 
the past five decades, there has been a clear need in vari-
ous sectors for a sustainable transition source of energy 
production. The world is at an alarming stage, fighting for 
future sustainability (Cain et al. 2021). As discussed above, 
many renewable, carbon–neutral sources are available, and 
in the past two decades, it has been proven and optimized. 
Enhanced technological development is needed in the sus-
tainable bioenergy sector for future wellness. At the IEA 
March 2022 ministerial meeting press release, global energy 
leaders vow to accelerate and strengthen the clean energy 
transition. One of the main focuses of US and international 
climate policy is reducing  CH4 emissions from oil and gas 
installations. Leak detection and repair programs (LDAR) 
that rely on surveys based on optical gas imaging (OGI) are 
regularly used to reduce fugitive emissions or leaks (Fox 
et al. 2019; Kemp and Ravikumar 2021). However, swift 
action to cut  CH4 emissions from fossil fuel operations is 
the most effective strategy to minimize near-term climate 
change. The Paris Agreement (Birol 2023), which all 197 
UNFCCC members signed or endorsed in 2018, intends to 
restrict global warming to 2 ℃ (Meinshausen et al. 2022; 
Birol 2023).

Microorganisms are abundant natural products that can 
be used for fuels and fine chemicals (Colin et al. 2011; 
Chubukov et al. 2016; Sindhu et al. 2019). A diverse sub-
strate utilization potential in microbial strains could provide 
a competitive advantage in biofuel production. Anaerobic 
digestion can produce nearly half of the biogas’s  CH4, which 
can be upgraded to over 90%  CH4, which has the same uses 
as natural gas (Mitchell et al. 2015). However, the acces-
sibility of technical resources to reduce  CH4 emissions is 
unconscionable. The benefits of mitigating climate change 
extend beyond preventing global warming and fulfilling 
responsibilities and are crucial for a sustainable future.

Along with helping the environment, lowering  CH4 emis-
sions might increase agricultural yields and human health by 
concurrently reducing ozone generation and opening up new 
business and job prospects (Methane Possible 2023). Thus, 
governmental organizations must participate in implement-
ing schemes under shifting to bioenergy sources and waste-
to-energy conversion (Mboowa et al. 2017; Liang et al. 
2022; Bajar et al. 2021), for a better future (International 
Energy Agency: Ministerial Meeting 2022).
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