
Vol:.(1234567890)

Environmental Science and Pollution Research (2023) 30:116186–116201
https://doi.org/10.1007/s11356-023-30548-y

1 3

RESEARCH ARTICLE

Quantitative assessment, spatial and temporal characteristics, 
and dynamic evolution of carbon emissions from animal husbandry 
in China: 2001–2020

Jiale Yan1 · Yuanyuan Zhang2

Received: 23 January 2023 / Accepted: 13 October 2023 / Published online: 1 November 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Carbon emissions from animal agriculture are a major source of global greenhouse gases. This paper measures the spatial and 
temporal characteristics and evolution patterns of carbon emissions from livestock farming in China and 31 provinces from 
2001 to 2020 based on IPCC coefficients. The paper also uses Moran’s I index, kernel density estimation, and spatial Markov 
chains for the analysis. The results show that the total carbon emissions from China’s livestock sector show a fluctuating 
downward trend. And livestock carbon emissions are concentrated in areas with better resource endowments, with grassland 
and grain-producing areas dominating China’s livestock carbon emissions. The spatial analysis shows that the spatial cor-
relation of the national livestock carbon emissions is increasing, showing prominent local aggregation characteristics, mainly 
in the form of high-high and low-low aggregation. The transfer of carbon emissions from China’s livestock industry shows 
strong spatial and temporal dependence, and the transfer of regional carbon emissions is limited by the original type and 
stock of carbon emissions, showing growth inertia and path dependence. The findings of this paper can provide suggestions 
for planning and modifying policies to reduce carbon emissions in China’s livestock industry.

Keywords  Carbon emissions · Spatial and temporal characteristics · Dynamic evolution · Livestock

Introduction

Livestock is an essential component of agriculture. While 
meeting people’s demand for animal products, it has become 
a significant source of global greenhouse gas emissions 
(Oenema et al. 2005; Grossi et al. 2019). With the mas-
sive emissions of greenhouse gases such as CO2, CH4, and 
N2O, global climate change has become a serious threat to 
the survival and development of human society (Tollefson 
2021; Zheng et al. 2019). China is also under severe pres-
sure to reduce carbon emissions. However, there are many 
differences between provinces in terms of geographical 
location, economic base, and development methods. Only 

an in-depth study and analysis of the regional differences 
in carbon emissions from livestock farming in each prov-
ince can promote the reduction of carbon emissions. Since 
the reform and opening, China’s livestock industry has 
developed rapidly. However, some problems and hidden 
dangers have emerged with the continuous development of 
the livestock industry. The problems of excessive consump-
tion of livestock production capacity, serious pollution of 
livestock and poultry, and insufficient conversion of new 
and old dynamics are constraining the development of the 
livestock industry. Two thousand nineteen agricultural data 
released by FAO show that China’s agricultural greenhouse 
gas emissions are 667 million tons CO2 equivalent, of which 
carbon emissions from animal husbandry accounted for 35. 
4% (FAO 2019). Carbon emissions from animal husbandry 
threaten ecological security and hinder the achievement of 
sustainable development goals. Therefore, clarifying the cur-
rent situation of greenhouse gas emissions from the livestock 
industry in China and specifying the spatial distribution 
pattern and transfer pattern of carbon emissions from the 
livestock industry are conducive to solving the problems of 
efficiency and equity. The government needs to formulate 
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targeted emission reduction measures while stabilizing the 
development of the livestock industry.

Reducing carbon emissions is a must for green develop-
ment. In recent years, scholars have studied the drivers of 
carbon emissions (Wen 2020), predictive modelling (Liu 
et al. 2015), and carbon trading (Zhou et al. 2019). Regard-
ing carbon emission influencing factors, economic factors 
are an essential category of factors affecting carbon emis-
sions (Cai et al. 2015). Demographic factors among social 
factors are also important factors influencing CO2 emissions 
(Sun et al. 2015; Wang et al. 2010;  Siddiqi et al. 2007). 
For example, Akbostancı et al. (2009) used four types of 
energy consumption, solid fuels, oil, gas, and electricity, 
in three major industries, agriculture, industry, and ser-
vices, as indicators to measure carbon emissions in turkey 
from 1970 to 2006. He used LMDI decomposition model 
energy carbon emissions influencing factors and pointed out 
that the most influential factor of carbon emissions is eco-
nomic activity. Fernandez Gonzalez (2014) also used LMDI 
decomposition model to analyze the influencing factors of 
carbon emissions in EU countries. Du et al. (2023) examined 
the impact of emission reduction policies on agricultural 
carbon emissions. Scholars have also systematically exam-
ined the regional differences and dynamic evolution of car-
bon emission fluctuations. For example, Fang et al. (2019) 
applied a carbon factor decomposition model based on the 
environmental Kuznets curve model to empirically analyze 
the characteristics and dynamic evolution of carbon emis-
sions in China. Wang et al. (2010) applied the DEA model 
to measure the carbon emission performance of 28 Chi-
nese provinces and cities from 1996 to 2007. He analyzed 
the regional differences and influencing factors of China’s 
carbon emissions with the help of convergence theory and 
panel data regression model. Li et al. (2012) first divided 
30 Chinese provinces into three different regions with low, 
medium, and high emissions, and then examined the non-
proportional effects of population, economy, and technology 
on CO2 emissions using the spirpat model. He found that 
there were significant differences in CO2 emissions among 
the three regions. Li et al. (2020) evaluated 29 provincial-
level regions in China from 1998 to 2008 based on the 
Ruggiero three-stage model and found that China’s carbon 
emission efficiency gradually improved. Zhang et al. (2023) 
found that high speed rail can reduce carbon emissions. This 
effect has a negative spatial spillover effect. Liu et al. (2023) 
measures the carbon emissions of building materials based 
on data from 33 cities.

There has been a great deal of research focusing on carbon 
emissions from sectors such as industry, construction, and 
agriculture. The livestock industry serves as a pillar indus-
try to promote farmers and herdsmen’s income. It is a basic 
industry in rural areas. It is related to the economic and social 
development of the countryside and is also closely related 

to the ecological environment. However, few studies have 
focused on the carbon emissions of livestock farming. The 
main organizations and methods currently conducting carbon 
accounting for livestock emissions are the Organization for 
Economic Cooperation and Development (OECD), the Inter-
governmental Panel on Climate Change (IPCC), Life Cycle 
Assessment (LCA), and Input–Output (I-O) (Ruffing 2007; 
IPCC 2006; Daneshi et al. 2014), which the IPCC coefficient 
method and the whole-life cycle method are more commonly 
used. Some other scholars have further explored the influenc-
ing factors and spatial differences of carbon emissions of the 
livestock industry in China based on carbon emission meas-
urement. They found that there are significant regional differ-
ences in carbon emissions of the livestock industry in China. 
In addition, the analysis of carbon emissions in the livestock 
sector is mainly focused on the trend of changes in the time 
dimension, but the analysis of the spatial scale is not detailed 
and in-depth. A certain region is selected as the main object of 
study, but there is a lack of comparative studies for each region 
of the country. In terms of research methodology, the existing 
studies are mainly simple descriptive statistics. Although this 
can identify regional differences in China’s livestock industry 
to a certain extent, it is difficult to examine them in a detailed 
and systematic way.

Existing studies provide a mature methodological refer-
ence for the quantitative assessment of carbon emissions 
from livestock. Scholars have conducted livestock carbon 
emission measurements (Yang et al. 2015; Dominate et al. 
2014; Munoz-Rojas et al. 2015), specified mechanisms for the 
growth of livestock carbon emissions (Schandl et al. 2016; Qin 
et al. 2016; Panichelli and Gnansounou 2015), regional equity 
(Kim and Neff 2009; De Vries et al. 2000), and decision-
making mechanisms (Dace and Blumberg 2016) . However, 
it fails to reveal the causes and dynamic evolutionary trends 
of carbon emission distribution patterns in China’s livestock 
sector. It ignores the role of spatial factors on regional carbon 
emission shifts. Their findings cannot provide an adequate 
explanation of the dynamic changes in carbon emissions. In 
this paper, the global and local Moran’s I indices are used to 
examine and demonstrate the spatial correlation and agglom-
eration characteristics of China’s livestock carbon emissions 
from 2001 to 2020.Finally, the dynamic evolution of China’s 
livestock carbon emissions is revealed by kernel density esti-
mation and Markov chain analysis.

Research methods and data sources

Methodology for measuring carbon emissions 
from the livestock industry

The CO2 emissions of dairy cattle, non-dairy cattle, horses, 
mules, donkeys, pigs, camels, goats, sheep, rabbits, and 
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poultry were measured based on the carbon emission factor 
method. The equation is:

In Eq. (1), Et is the total CO2 emission, ECH4
 represents 

the CO2 equivalent of CH4 conversion, EN2O
 represents the 

CO2 equivalent of N2O conversion, eCH4
 and eN2O

 are the 
global warming potential (GWP) values of 21 and 310, 
respectively, Ni is the average feeding rate of the I species 
of livestock, and �i and �i is the CH4 and N2O emission 
factors, respectively (Table 1). Due to the different feeding 
cycles of livestock and poultry, it is necessary to adjust the 
annual average feeding rate of livestock and poultry in the 
way shown in Eq. (2). The livestock and poultry species to 
be adjusted are pigs, rabbits and birds, whose feeding cycles 
are 200 days, 105 days, and 55 days, respectively. The data 
on stock and slaughter of various livestock and poultry were 
obtained from the China Livestock Statistics Yearbook and 
the China Rural Statistics Yearbook.

The app is the average annual stocking, Herdsend is the 
year-end stocking, Days is the stocking period, and N is the 
annual slaughter.

Dagum Gini coefficient and decomposition method

This paper uses Dagum’s Gini coefficient decomposition 
method to describe the regional disparity of carbon emissions 
in livestock industry. According to the Gini coefficient and its 
decomposition by subgroups proposed by Dagum (1997), the 
Gini coefficient is defined as shown in Eq. (3), where yji ( yhr ) 
is the carbon emission intensity of the livestock industry in 
any province (municipalities, autonomous regions, the same 
below) within j(h) region. y is the average of carbon emission 
intensity of livestock industry in all provinces; n is the number 
of provinces. k is the number of regional divisions. And nh is 
the number of provinces within j(h) region.

(1)
Et = ECH4

+ EN2O
= eCH4

×
∑

Ni × �i + eN2O
×
∑

Ni × �i

(2)App =

{
Herdsend,Days ≥ 365

Days × (N∕365),Days < 365

(3)G =

∑k

j=1

∑k

h=1

∑nj

i=1

∑nh
r=1

���
yji − yhr

���
2n2y

When decomposing the Gini coefficient, the regions are 
first ranked according to the mean value of the intra-regional 
carbon emission intensity of livestock, as shown in Eq. (4). 
According to Dagum’s (1997) Gini coefficient decomposition 
method, the Gini coefficient can be decomposed into three 
components: the contribution of intra-regional disparity Gw , 
the contribution of inter-regional net disparity Gnb , and the 
contribution of hyper-variance density Gj T, and the relation-
ship between them satisfies G = Gw + Gnb + Gt . Equations (5) 
and (6) represent the Gini coefficient Gjj and the contribution 
of intra-regional disparity Gw for region j, respectively. Equa-
tions (7) and (8) denote the inter-regional Gini coefficient Gjh 
and the contribution of the inter-regional net worth gap Gnb 
for regions j and h, respectively, while Eq. (9) denotes the 
contribution of the hypervariable density Gt . where PJ = nj/n, 
sj = nj Yj/nYj j = 1, 2 …, k, Djh is the relative impact of carbon 
emission intensity per unit of livestock between regions j and 
h, which is defined as shown in Eq. (10).

(4)Yh ≤ …Yj ≤ ⋯ ≤ Yk

(5)Gjj =

1

2Yj

∑nj

i=1

∑nj

r=1

���
yji − yhr

���

n2
j

(6)Gw =

k∑

j=1

Gjjpjsj

(7)Gjh =

∑nj

i=1

∑nh
r=1

���
yji − yhr

���

njnh

�
Yj + Yh

�

(8)Gnb =
∑k

j=2

j−1∑

h=1

Gjh

(
pjsh + phsj

)
Djh

(9)Gt =
∑k

j=2

j−1∑

h=1

Gjh

(
pjsh + phsj

)(
1 − Djh

)

(10)Djh =
djh − pjh

djh + pjh

Table 1   Greenhouse gas emission factors of livestock and poultry in China

Category Cow Non-cow Horse Donkey Pig Camel Goat Sheep Rabbit Poultry Source

CH4 emission factor Intestinal fermentation 68 51.4 18 10 1 46 5 5 0.25 — IPCC
Manure disposal 16 1.5 1.64 0.9 3.5 1.92 0.17 0.15 0.08 0.02 FAO

N2O emission factor Manure disposal 1 1.37 1.39 1.39 0.53 1.39 0.33 0.33 0.02 0.02 Hu.et.al
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The calculation of djh and pjh is shown in Eqs. (11) and 
(12).Fj ( Fh ) is the cumulative density distribution function 
of region j(h), respectively. We define djh as the difference 
in carbon emission intensity of livestock between regions, 
which can be interpreted as the mathematical expectation 
of the sum of all sample values of yji − yhr > 0 in j and 
h regions. pjh is defined as the hypervariable first-order 
moment, which can be interpreted as the mathematical 
expectation of the sum of all sample values of yhr − yji > 0 
in j and h regions. We measured and decomposed the Gini 
coefficients of the spatial distribution of carbon emission 
intensity of animal husbandry in 31 provinces of China 
from 2001 to 2020 according to the above method and 
performed the regional decomposition.

ESDA method

With the help of the GeoDa spatial autocorrelation tool 
to characterize the spatial agglomeration of carbon emis-
sions from the livestock industry and express the degree 
of global spatial autocorrelation by Moran’s I index, the 
model is shown in the following equation.

where n is the number of provinces in the study. wjh is the 
spatial weight. xj and xh are the carbon emissions of livestock 
in province j and province h, respectively, and x is the aver-
age value of carbon emissions of livestock in 30 provinces 
(cities and districts) in the study. j and h denote provinces, 
j and h = 1, 2, …, 30. This paper chooses the Queen-based 
spatial adjacency approach to establish the spatial weights. 
The global Moran’s I index is used to reflect the spatial cor-
relation of carbon emissions from the livestock industry, and 
the local Moran’s I index is further used to test whether 
similar or dissimilar sample values in local areas appear to 
cluster in space, and the model is as follows.

(11)djh = ∫
j

0

dFj(y)∫
y

0

(y − x)dFh(x)

(12)djh = ∫
j

0

dFj(y)∫
y

0

(y − x)dFh(y)

(13)I =
n
∑n

j=1

∑n

h=1
wjh

�
xj − x

��
xh − x

�

∑n

j=1

∑n

h=1
wjh

∑n

j=1

�
xj − x

�2

(14)Ij =
[
(xj−x)

/
s2

]
×

n∑

j≠h,j=1
wjh

(
xj − x

)

(15)s2 =

�∑n

j=1 (xi−x)
2
�
�
n

I > 0 indicates that the sample values are spatially posi-
tively correlated; I < 0 indicates that the spatial correlation is 
negative at this point. I = 0 means no correlation, I = [- 1, 1].

Kernel density estimation method

Kernel density estimation is a nonparametric estimation 
method that has become a common method for studying 
unbalanced distributions because of the robustness of its 
estimation results (Luo et al. 2014; Fahey 2009) . This 
method is mainly used to estimate the probability density 
of a random variable, and a continuous density profile 
describes the distribution pattern of the random vari-
able. Assuming that the density function of the random 
variable X is f(x), the probability density at the point x 
can be estimated by Eq. (16). where N is the number of 
observations, h is the bandwidth, and K(·) is the kernel 
function, which is a weighting function or a smoothing 
transformation function, Xi is the independent identically 
distributed observations, and x is the mean value. Thus, 
the kernel density estimation method was used to analyze 
the location, pattern, extension, and polarization trends 
of the national distribution of carbon emissions from 
livestock (Quah 1993).

According to the different expressions of the kernel 
density function, the kernel function can be classified 
into Gaussian kernel, triangular kernel, quadratic ker-
nel, and other types (Lopez-Novoa et al. 2015). In this 
paper, we choose the more commonly used Gaussian 
kernel function for estimation, and the expression of the 
Gaussian kernel function is as in Eq. (17). Since there is 
no definite function expression for nonparametric esti-
mation, we need to examine the change of distribution 
by graphical comparison. Generally, based on the ker-
nel density estimation results graphs, we can get three 
aspects of information about the location, shape, and 
extension of the variable distribution.

Markov chain analysis method

The Markov chain is a stochastic process that, firstly, 
the carbon emission intensity of the livestock industry 
in each province and region is discrete into K types of 
Markov chain series according to the level of carbon 

(16)f (x) ==
1

Nh

N∑

i=1

K

(
Xi − x

h

)

(17)K(x) =
1

√
2�

exp

�

−
x2

2

�
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emission. The Markov chain is a stochastic process that 
firstly disaggregates the carbon emission intensity of 
each province and region into K types of Markov chain 
sequences {X1, X2, X3, · · ·}, The conditional probability 
distribution of the future state of carbon emissions from 
livestock in each province and region is independent of 
the “past state.” It is only related to the “present state.” 
Let the state probability vector of livestock carbon emis-
sions in year t in each province and region be Pt. If the 
Markov chain for each province has a transfer matrix 
P = (Pij), Pij = (nij/ni), then we have P = (n/n),where P 
represents the transfer probability of transferring a prov-
ince of type i to a province of type j, ni j denotes the sum 
of the number of provinces belonging to type i trans-
ferred to type j in the initial year of the study period, and 
denotes the sum of the number of provinces belonging to 
type i in all years.

Spatial Markov chains are derived by introducing the con-
cept of “spatial lag” to traditional Markov chains (Anselin 
et al. 2008). By comparing the Markov transfer matrices of 
different spatial lag types, we can determine whether the 
level of livestock carbon emissions of “neighbors” will have 
an impact on the transfer of regional livestock carbon emis-
sions. Specifically, we need first to determine the spatial 
weight matrix, which is the spatial adjacency matrix, then 
decompose the N × N type probability transfer matrix into 
theN × N × N type probability transfer matrix, and finally 
find out the spatial transfer probability Pij(N) of the states 
in two different periods after considering spatial factors, 
and then reveal the influence of spatial association on the 
dynamic evolution of livestock carbon emission level.

Results and analysis

Time‑series characteristics analysis of carbon 
emissions from the livestock industry 
at the national level

The trend of the total carbon emission of the national 
livestock industry from 2001 to 2020 is shown in Fig. 1. 
The total carbon emission of the national livestock indus-
try shows a decreasing trend, from 36,886.86 million tons 
in 2001 to 30,138.94 million tons in 2020, a decrease of 
6747.92 million tons, or 18.29%. The evolution of the total 
carbon emission of the national livestock industry is further 
divided into four stages according to the fluctuation magni-
tude and change trend.

Rapidly rising stage (2001–2005)  The national carbon emis-
sions from animal husbandry increased from 368,886,600 to 
41,948,500 tons, an increase of 50,979,800 tons or 13.82%. 
The increase mainly influenced the significant growth of 
carbon emissions in this stage in grain production and agri-
cultural policy orientation. A phased and structural surplus 
of grain appeared in the late 1990s. In response, on the one 
hand, the state promoted farmers’ income by adjusting the 
agricultural structure, vigorously developed the livestock 
industry, effectively transformed grain and other by-prod-
ucts, spurred the development of planting and related indus-
tries, stabilized the development of pigs and eggs, accel-
erated the development of beef, mutton and poultry meat 
production, highlighted the development of milk and wool 
production, and strived to promote large-scale, standardized 

Fig. 1   CO2 emissions and live-
stock CO2 emissions
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and industrialized livestock and poultry farming. On the 
other hand, the state further reduced the livestock tax, the 
Slaughter tax, and other related taxes. Such initiatives have 
fully mobilized farmers’ and herders’ enthusiasm for produc-
tion and promoted the development of animal husbandry, 
which in turn has improved the carbon emissions of animal 
husbandry.

Rapid decline stage (2005–2007)  The national carbon emis-
sions from animal husbandry decreased from 41,948,500 to 
33,382,400 tons, a decrease of 86,019,000 tons, or 20.49%, 
with much higher fluctuations than other stages. The main 
reason for this situation is that the grain production from 1999 
to 2003 was reduced, and the price remained low. Thus, the 
grain supply gap increased from 2004 onwards, and the grain 
price rebounded significantly. In addition, due to the serious 
ecological damage caused by overgrazing, the state imple-
mented the system of determining livestock by grass and the 
resting period, which led to a significant decrease in livestock 
breeding, such as cattle and sheep, and eventually led to an 
overall reduction in carbon emissions from livestock.

The phase of oscillation and rebound (2007–2015)  The 
national carbon emission from the livestock industry increased 
from 33,382.94 to 36,722.58 million tons, an increase of 
3339.64 million tons, or 10.00%. The reason for this is that 
the steady growth of grain in this period has led to the recov-
ery of the livestock industry, while the demand for livestock 
products is also steadily increasing due to the improvement 
of urbanization level and the adjustment of the diet structure 
of urban and rural residents. However, the growth rate of car-
bon emission in this period is relatively slow, with an average 
annual growth rate of only 0. 6%. This is mainly due to the 
improvement of urbanization level, reducing the dependence 
of farmers and herders on animal husbandry, coupled with the 
tightening of resources and environment and the introduction 
of relevant policies to limit the rapid growth of livestock and 
poultry feeding, but the growth rate is slowing down. The 
overall expansion is in an orderly manner.

The steady decline stage (2015–2020)  The national car-
bon emissions from livestock farming decreased from 
367,225,800 to 301,389,400 tons, a decrease of 65,836,400 
tons, or 17.93%. The changes in carbon emissions during 
this period were mainly influenced by factors such as farm-
ing efficiency, disease risk, new epidemic, and environmen-
tal regulations. For example, include the low efficiency of 
pig farming in 2015, the occurrence of the H7N9 epidemic 
in 2017, African swine fever in 2018, and the new crown 
epidemic in 2019. Furthermore, the Environmental Protec-
tion Tax Law implemented on January 2018 imposed an 
environmental protection tax on farmers with a stocking 
size greater than 50 cattle, 500 pigs, and 5,000 chickens and 

ducks, which has had a dampening effect on carbon emis-
sions from the livestock industry. In addition, some positive 
factors have played a positive role in curbing carbon emis-
sions from livestock farming, such as breed improvement 
and scientific feeding, which have reduced the carbon inten-
sity of livestock farming. Figure 2 shows the quartile chart of 
carbon emissions from China’s animal husbandry industry. 
From Fig. 2, the carbon emissions from animal husbandry 
in each province are gradually increasing.

As shown in Table 2, the top 5 provinces in terms of 
carbon emissions in 2020 are Inner Mongolia (26.186 mil-
lion tons), Sichuan (23.3958 million tons), Yunnan (2129.25 
million tons), Xinjiang (1962.72 million tons), and Henan 
(16.3673 million tons). All five provinces are central live-
stock provinces, with Inner Mongolia, Yunnan, and Xinjiang 
being grassland pasture areas, while Sichuan and Henan are 
major grain-producing and farming pasture areas. This result 
indicates that livestock farming is concentrated in areas 
with good resource endowments, and grassland and grain-
producing areas dominate the carbon emissions of China’s 
livestock industry. Zhejiang (170.00 million tons), Hainan 
(139.15 million tons), Tianjin (93.18 million tons), Shanghai 
(28.48 million tons), and Beijing (228.2 million tons) ranked 
in the last five places in order. These five provinces (cities) 
are the primary grain marketing areas with a high level of 
economic development, among which Tianjin, Shanghai, 
and Beijing have limited resources and environmental con-
ditions. Zhejiang and Hainan are southern water network 
areas. Thus, areas in addition to the high level of urbaniza-
tion, the development of livestock, and animal husbandry 
do not play a significant role in increasing farmers’ income. 
Farmers’ conditions and enthusiasm to engage in livestock 
breeding are not enough. Furthermore, the difference in car-
bon emission changes in different provinces (cities) can be 
divided into four types: (1) Continuous decline type. In other 
words, carbon emissions are decreasing compared with the 
previous year, represented by four provinces (cities), includ-
ing Beijing, Hebei, Guizhou, and Shaanxi. (2) Fluctuating 
decreasing type. In other words, carbon emissions as a whole 
are decreasing. However, in some years, they are increasing, 
represented by 19 provinces, including Shanghai, Zhejiang, 
Anhui, Henan, Hainan, Shandong, Jiangsu, Guangdong, 
Guangxi, Shanxi, Tianjin, Jilin, Fujian, Chongqing, Hunan, 
Sichuan, Jiangxi, Hubei, and Tibet. (3) Continuous growth 
type. Carbon emissions are rising compared with the previ-
ous year, represented by four provinces, including Qinghai, 
Gansu, Inner Mongolia, and Ningxia. (4) Fluctuating growth 
type. In other words, carbon emissions are generally increas-
ing, but there are ups and downs in some years, represented 
by four provinces (cities), including Heilongjiang, Xinjiang, 
Yunnan, and Liaoning. This shows that grassland pasture 
and grain-producing areas are becoming China’s core growth 
areas of carbon emissions from animal husbandry.
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Gini coefficient decomposition

In order to further characterize the regional disparity in the 
distribution of agricultural carbon emissions in China, we 
measured the Gini coefficient of agricultural carbon emis-
sion intensity in China from 2001 to 2020 according to the 
Gini coefficient and its decomposition by subgroups (Fig. 3). 
We decomposed it according to the three major regions in 
the east, central, and west, and the results are shown in 
Table 3. In general, the regional gap in the spatial distribu-
tion of agricultural carbon emissions in the eastern region is 
the smallest. In comparison, the regional gap in agricultural 
carbon emissions in the central region is more significant 
than in the western region before 2010 and smaller than in 
the western region after 2010. Among them, the regional 
gap of agricultural carbon emissions in the eastern region 
has decreased slightly for three consecutive years since 2001 
and then increased significantly in 2004, reaching the maxi-
mum value of 0. 165 in the whole sample period, and then 
decreased in 2006 and then increased for two consecutive 
years to 0. 157 in 2008, and then showed an apparent down-
ward trend despite minor fluctuations. So the gap in the east-
ern region is generally narrowing. If we take 2001 and 2016 
as the base periods, the regional gap of agricultural carbon 
emissions in the eastern region decreases by 0. 696% and 4. 

737% annually, respectively. The regional gap of agricultural 
carbon emissions in the central region generally shows a 
decreasing trend during the sample period; if we take 2001 
and 2016 as the base periods, the regional gap of agricultural 
carbon emissions in the central region decreases by 0. 852% 
and 4. 704% per year, respectively. From its evolution, after 
two rounds of increase and decrease from 0.190 in 2001, 
it reached the minimum value of 0. 163 in 2006, and then 
showed an apparent upward trend and reached the maximum 
value of 0. 232 in 2009, after which it fluctuated but showed 
an apparent downward trend in general. Unlike the eastern 
and central regions, the regional gap of agricultural carbon 
emissions in the western region shows a widening trend dur-
ing the sample period, with an average annual increase of 
1. 086% in the base period of 2001 and an average annual 
decrease of 3. 081% in the base period of 2016, respectively. 
From the evolutionary trend, the regional gap of agricul-
tural carbon emissions in the western region also changes 
more obviously from 0. 171 in 2001 to 0. 195 in 2005, then 
decreases to 0. 181 in 2007, and then rises to the maximum 
value of 0. 233 in 2013 after a slight fluctuation, and finally 
shows a continuous decreasing trend.

The inter-regional gap of agricultural carbon emissions 
and its evolution trend is further described (Fig. 4). The 
inter-regional disparity of agricultural carbon emissions 

2001 Carbon Emissions 2007 Carbon Emissions

2013 Carbon Emissions 2020 Carbon Emissions

Fig. 2   Quartile chart of carbon emissions from animal husbandry production 31 provinces (cities) of China
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fluctuates during the sample period. However, the inter-
regional disparity between east and central and east and west 
shows a decreasing trend, except for the slightly increasing 
inter-regional disparity between central and west. Taking 
2001 as the base year, the inter-regional gap of agricultural 
carbon emissions in central and western China increased by 
0. 377% annually, while the inter-regional gaps in eastern 
and central China and eastern and western China decreased 
by 0. 959% and 0. 600%, respectively, and in 2010 as the 
base year, they decreased to 4.836%, 5.163%, and 4.597%, 
respectively. In terms of the evolution of the inter-regional 
gap in agricultural carbon emissions, the gap between 
the central and western regions has shown a significant 
increase since 2001 and reached 0.303 in 2005. Then, it 
has experienced repeated fluctuations but is in the range of 
0.250 ~ 0.300, with a significant decrease after reaching the 

maximum value of 0.314 in the sample period in 2014. The 
gap between the eastern and central regions has the same 
changes as the central and western regions at the begin-
ning; i.e., it starts to show a significant increase in 2003 and 
reaches the maximum value of 0.217 in 2005, then fluctu-
ates around 0.200 in the next 3 years and shows a significant 
decrease in 2010, while it experiences a slight increase from 
2012, reaches 0.184 in 2014, and then shows a decreasing 
trend, 0.184 after showing a decreasing trend. Compared 
with the eastern and central and the central and western 
regions, the inter-regional disparity between the eastern 
and western regions fluctuates more widely, starting at a 
similar stage and reaching a maximum value of 0.384 within 
the sample period, and then decreasing significantly, reach-
ing 0.263 in 2011 and then showing a rising and decreasing 
trend and reaching a minimum value of 0.243 in 2018.

Table 2   Carbon emissions from animal husbandry production and their ranking in 31 provinces of China

State 2001 2007 2013 2020

Carbon emissions Rank Carbon emissions Rank Carbon emissions Rank Carbon emissions Rank

Beijing 163.56 29 116.18 29 105.20 30 22.82 31
Tianjin 122.71 30 101.18 30 121.33 29 93.18 29
Hebei 2351.85 4 1722.99 6 1664.84 8 1363.71 8
Shanxi 716.70 22 459.23 23 502.69 25 543.61 22
Inner Mongolia 1630.98 9 2418.53 3 2474.02 3 2618.66 1
Liaoning 843.73 20 1150.45 13 1249.71 14 1036.55 14
Jilin 1068.89 15 1203.05 11 1096.36 16 786.37 17
Heilongjiang 1155.43 14 1276.49 10 1362.97 10 1313.93 10
Shanghai 110.02 31 52.55 31 61.75 31 28.48 30
Jiangsu 818.40 21 565.86 22 670.27 21 458.48 23
Zhejiang 372.23 26 318.64 26 347.71 26 170.00 27
Anhui 1356.26 10 727.31 19 863.21 20 691.33 19
Fujian 424.39 25 377.01 25 511.57 24 348.74 26
Jiangxi 887.67 19 726.73 20 969.29 19 809.68 15
Shandong 2931.39 2 2134.75 4 2234.10 4 1533.10 7
Henan 3448.26 1 2778.21 2 2804.32 2 1636.73 5
Hubei 1064.37 16 1032.69 17 1324.15 12 809.41 16
Hunan 1684.94 7 1455.25 8 1687.92 6 1554.72 6
Guangdong 1205.37 13 914.53 18 1052.35 18 664.09 20
Guangxi 1680.22 8 1142.22 14 1377.56 9 705.56 18
Hainan 296.19 27 198.78 28 245.60 28 139.15 28
Chongqing 556.41 24 443.77 24 558.80 23 442.52 25
Sichuan 2831.18 3 2947.97 1 3083.28 1 2339.58 2
Guizhou 1347.71 11 1136.82 15 1125.28 15 1102.82 13
Yunnan 1852.00 5 1808.38 5 1966.99 5 2129.25 3
Tibet 1260.17 12 1378.08 9 1333.11 11 1138.43 12
Shaanxi 694.80 23 583.28 21 579.85 22 578.32 21
Gansu 1030.63 18 1174.11 12 1271.52 13 1359.13 9
Qinghai 1034.35 17 1052.68 16 1060.60 17 1310.73 11
Ningxia 231.25 28 270.54 27 307.93 27 447.14 24
Xinjiang 1714.80 6 1714.66 7 1669.29 7 1962.72 4
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During the sample period, although the contribution 
rate of inter-regional disparity fluctuated more obviously, 
it was always higher than that of intra-regional dispar-
ity and super-variable density, which indicates that inter-
regional disparity is the main source of regional disparity 
in agricultural carbon emissions in China (Fig. 5). How-
ever, the contribution rate of inter-regional disparity to 

the overall regional disparity tends to decrease yearly. In 
contrast, the contribution rate of intra-regional disparity to 
the overall regional disparity is greater than that of hyper-
variable density before 2010 and less than that of hyper-
variable density after 2010. If we take 2001 and 2016 as 
the base periods, the contribution of intra-regional dispar-
ity to the overall regional disparity decreases by 1.584% 

Fig. 3   Gini coefficient

Table 3   Gini coefficient 
decomposition

Year Total Intra-regional gap Inter-regional gap Contribution rate

East Middle West E-M E-W M-W Intra Inter Den

2001 0.379 0.129 0.190 0.171 0.176 0.269 0.242 25.975 54.902 19.123
2002 0.377 0.127 0.204 0.175 0.182 0.268 0.251 26.019 53.821 20.159
2003 0.376 0.127 0.218 0.176 0.190 0.281 0.272 25.508 52.981 21.511
2004 0.384 0.164 0.187 0.184 0.212 0.384 0.295 23.316 64.588 12.096
2005 0.387 0.165 0.220 0.195 0.217 0.363 0.303 24.732 59.425 15.843
2006 0.396 0.134 0.163 0.195 0.193 0.346 0.260 23.064 64.261 12.674
2007 0.391 0.146 0.207 0.181 0.200 0.343 0.286 24.182 59.562 16.256
2008 0.385 0.157 0.232 0.220 0.210 0.307 0.283 27.152 50.011 22.837
2009 0.380 0.135 0.232 0.202 0.199 0.300 0.290 25.918 51.644 22.438
2010 0.378 0.131 0.201 0.218 0.174 0.276 0.279 26.809 47.706 26.144
2011 0.377 0.136 0.188 0.216 0.169 0.263 0.260 27.615 44.297 28.088
2012 0.374 0.140 0.191 0.218 0.172 0.282 0.287 26.675 45.457 27.868
2013 0.372 0.142 0.191 0.223 0.178 0.273 0.285 27.049 40.827 32.124
2014 0.376 0.139 0.199 0.233 0.184 0.293 0.314 26.068 43.369 30.563
2015 0.379 0.129 0.194 0.224 0.174 0.284 0.285 26.313 41.214 32.473
2016 0.378 0.125 0.175 0.227 0.158 0.285 0.286 25.962 41.854 32.183
2017 0.385 0.125 0.187 0.213 0.166 0.272 0.278 26.354 41.132 32.514
2018 0.385 0.115 0.164 0.206 0.149 0.243 0.258 26.655 41.849 31.496
2019 0.389 0.124 0.177 0.214 0.152 0.256 0.276 26.466 41.257 32.458
2020 0.383 0.114 0.182 0.211 0.158 0.263 0.281 26.535 41.895 31.985
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and 0.888% annually. The contribution of intra-regional 
disparity to the overall regional disparity, although rela-
tively stable, tends to increase over the sample period, with 
the contribution of intra-regional disparity to the overall 
regional disparity increasing by 0.153% per annum in 2010 
relative to 2001, and reaching 0.559% relative to 2010. 
The contribution of hypervariable density to the overall 
regional gap shows a clear upward trend over the sample 
period, with the contribution of hypervariable density to 
the overall regional gap increasing by 2.979% per annum 
in 2020 relative to 2001, compared to 0.754% in 2010.

Spatial correlation and agglomeration patterns 
of carbon emissions from the livestock sector 
in China

Global correlation analysis  The global Moran’s I index 
showed that the Moran’s I index of China’s livestock emis-
sions was more significant than 0. Moran’s I index of China’s 
livestock emissions was more significant than 0 during the 
study period (Table 4). Moran’s I index of China’s livestock 

carbon emissions during the study period was more signifi-
cant than 0. Except for the Moran’s I indexes of 2005, 2006, 
and 2008–2014, which did not pass the significance test, the 
Moran’s I indexes of the remaining years rejected the origi-
nal hypothesis, which indicates that there is some spatial cor-
relation in livestock carbon emissions in most years. Moran’s 
I index for livestock carbon emissions from 2001 to 2019 
shows an overall fluctuating growth trend. This indicates that 
the carbon emissions of a region are not only influenced by 
the resource endowment, economic development level, and 
livestock development strategy of the region but also by the 
influence of the surrounding “neighbors”; i.e., the spatial 
correlation of China’s livestock carbon emissions is increas-
ing. The root causes of this are (1) the openness and con-
nectivity of regions and the solid spatial coupling between 
economic development levels and carbon emissions, which 
determines that any economically interconnected region can-
not be isolated in terms of carbon emissions. (2) The increas-
ing infrastructure improvement and the close interaction of 
economic activities, knowledge, technology, and experience 
related to livestock and poultry farming are more likely to 
flow between regions. It creates a demonstration effect on 
neighboring regions. (3) According to the “pollution para-
dise hypothesis,” pollution-intensive industries are likely to 
move from provinces with solid environmental regulations 
to provinces with less intense environmental regulations, 
which determines the spatial dependence of carbon emis-
sions from livestock farming. (4) The accelerated regional 
integration process and the regional agglomeration effect 

Fig. 4   Inter-regional Gap

Fig. 5   Contribution rate

Table 4   Moran’s I of carbon 
emissions from animal 
husbandry in China

Year Moran’s I p-value

2001 0.160 0.046
2002 0.162 0.044
2003 0.155 0.050
2004 0.138 0.068
2005 0.130 0.078
2006 0.124 0.085
2007 0.151 0.056
2008 0.128 0.081
2009 0.134 0.073
2010 0.131 0.077
2011 0.130 0.079
2012 0.126 0.085
2013 0.130 0.080
2014 0.132 0.077
2015 0.140 0.068
2016 0.155 0.052
2017 0.169 0.041
2018 0.178 0.035
2019 0.216 0.016
2020 0.248 0.008
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will promote cross-regional cooperation, the movement of 
resource endowments (feed, labor, etc.), and the spillover 
of farming technology. It makes carbon emissions from the 
livestock industry spatially dependent.

Local correlation analysis  To further characterize the spatial 
clustering of carbon emissions from the livestock sector in 
China, the local Moran’s I was used to reflect the clustering 
characteristics of neighboring regions. Table 5 shows the 
spatial clustering of carbon emissions in some years. From 
this, it can be seen that (1) the clustering patterns are mainly 
high-high and low-low, and the distribution patterns are con-
verging in two clubs, mainly in the “high carbon club” and 
the “low carbon club.” (2) The areas with high-high carbon 
emissions from livestock farming are mainly located in the 
southwest and the southwest of China. The remaining prov-
inces are mainly grain-producing areas, where grain and its 
processing by-products are used as support, forming the car-
bon emission belt for livestock farming. (3) Low-low carbon 
emission agglomerations are mainly located in the southeast-
ern coastal areas, which have obvious advantages in terms 
of location, industrial structure, and economic development 
patterns, and therefore have similar and low carbon emis-
sion levels and a relatively stable agglomeration trend. (4) 
High-low and low–high agglomerations are shrinking, with 
the number of provinces in the former stabilizing, while 
the latter leapfrogging under the influence of high-carbon 
areas, such as Heilongjiang, Gansu, and Qinghai, resulting 
in a decrease in the number of such areas. This has led to a 
decrease in the number of such areas.

Dynamic evolution of the distribution of carbon 
emissions from livestock

As mentioned earlier, carbon emissions from the livestock 
sector in China are spatially dependent and agglomerative. 
To further explore the dynamic evolution of the distribution 
of carbon emissions from the livestock sector in China, this 
paper uses the Kernel density estimation method to analyze 
the convergence of regional carbon emission growth. From 
this, the following conclusions are drawn. (1) In terms of 

the movement of the peaks, the position of the central peak 
of the distribution curve of carbon emissions from China’s 
livestock industry shows a trend of “shift left-shift right-shift 
left,” indicating that the overall level of carbon emissions 
from China’s livestock industry is on a downward trend; the 
average values of carbon emissions from China’s livestock 
industry in 2001, 2007, 2013, and 2019 are 118.990 million 
tons, 10.768 million tons, 11.510 million tons, and 993.9646 
million tons, respectively. The centre of the central peak 
is to the left of 10 million tons, indicating that the carbon 
emissions of most provinces are lower than the national aver-
age. (2) The shape of the central peak has changed from 
“flat and flat” to “sharp and narrow,” indicating that with 
the free flow of production factors, the spillover of farming 
technology, and the acceleration of the regional integration 
process. There is a clear trend of convergence within the 
medium level carbon emission regions. (3) Although there 
was a small side peak in 2001, it disappeared afterwards, 
indicating that the polarization of carbon emissions from 
China’s livestock industry was not apparent during the study 
period. The number of areas with high carbon emissions has 
increased and shows a specific gradient effect. (iv) The four 
curves in Fig. 6a do not show any significant variation in 
their location patterns, indicating that the distribution pat-
tern of carbon emissions from China’s livestock industry is 
stable across a wide range of low a high-carbon emitting 
regions.

Since regional carbon emissions are correlated, in order 
to reflect the influence of the proximity effect on regional 
livestock carbon emissions, this paper further plots the Ker-
nel density curve of the spatial lag of livestock carbon emis-
sions in each province (Fig. 6b), the meaning of which is the 
distribution of the ratio of livestock carbon emissions to the 
spatial lag term in a particular province. From Fig. 6b, the 
kernel density curve of the spatial lag of carbon emissions 
from livestock in China is centered around 0.6, indicating 
that the carbon emissions from livestock in most regions 
are closed. It is challenging to compare livestock produc-
tion with industrial production, and livestock production 
is closely related to the land area, climatic conditions, and 
resource endowment of each province, which determines the 

Table 5   Lisa concentration pattern of carbon emissions from animal husbandry in China

Cluster Type 2001 2007 2013 2020

(H–H) XZ YN GZ GX HN HE SD HA AH HL JL LN HE SD HA XJ XZ 
YN GZ GX GS

HL LN HE SD HA HB XJ XZ YN 
GX GS

HL HE SD XJ XZ 
YN GX GS QH 
SC GZ

(H–L) IM XJ SC IM SC HN IM SC HN IM HA HN
(L-L) JL NX SH ZJ JX FJ GD HI BJ TJ SZ SH ZJ JX FJ GD HI BJ TJ SZ SH ZJ JX FJ GD HI BJ TL JS SH ZJ

JX FJ GD HI HB AH
(L–H) HL LN BJ TJ JS SX SN HB CQ 

GS QH
SX AH CQ SN QH NX HB JL AH SX CQ SN QH NX GZ JL LN SX SN SC NX
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ratio of livestock carbon emissions to the spatial lag term in 
each province is hardly close to 1. However, this does not 
deny the near-neighbor effect of China’s livestock carbon 
emissions. From the calculation results of the spatial lag 
ratio, for the neighboring from the results of spatially lagged 
ratio calculation, for neighboring provinces with more sim-
ilar regional backgrounds, such as the eastern provinces, 
Hunan and Hubei, and Qinghai and Gansu, the proximity 
effect still has a more substantial explanatory power for 
regional livestock carbon emissions.

Dynamic evolution of the distribution of carbon 
emissions

The kernel density estimation method can directly exam-
ine the dynamic evolution of the distribution of carbon 

emissions in China’s livestock industry from the time 
dimension and reveal its non-equilibrium characteristics. 
However, it cannot reflect the specific transfer pattern and 
long-term evolution of the distribution of carbon emissions 
in the livestock industry. Therefore, based on the existence 
of spatial correlation and agglomeration of carbon emis-
sions, the traditional Markov chain and spatial Markov chain 
analysis methods are used to calculate the transfer probabil-
ity matrix to reveal the role of own carbon emissions and 
“neighboring” carbon emissions on the transfer of carbon 
emission types in the livestock industry. Firstly, the carbon 
emission levels of the livestock industry in each province 
were classified into four types: high level, medium–high 
level, medium–low level, and low level. This paper meas-
ures the state shift probability of China’s livestock carbon 
emissions during the study period based on the traditional 
Markov chain without considering the influence of spatial 
factors. The results are shown in Table 6. The values on 
the diagonal line when T is taken at different durations in 
Table 6 indicate the probability of a smooth shift in regional 
carbon emissions after T years. In contrast, the values on 
the non-diagonal line indicate the probability of a shift in 
regional carbon emissions between different types. We can 
obtain the following results: (1) the values on the diagonal 
line (T is taken at different durations) are all greater than 
those on the non-diagonal line, the maximum value on the 
diagonal line is 97%, and the minimum value is 74%, which 
means that the probability that the type of carbon emissions 
from livestock in each region remains unchanged at different 
durations is at least 74%, much greater than the probability 
that the type of carbon emissions shifts. It indicates that 
the original type of carbon emissions limits the change in 
regional carbon emissions, and this indicates that the change 
in regional carbon emissions is limited by the original car-
bon emission types and stocks, showing growth inertia and 
path dependence. (2) The values on the non-diagonal line (T 
at different times) are not all zero, and most of the non-zero 
values are located in the “neighboring areas of the diagonal 
line,” indicating that regional carbon emissions have the pos-
sibility of shifting upwards or downwards at different times, 
but do not jump. This may be the effect of the development 
of animal husbandry. (3) The reason for this may be that the 
development of the livestock industry is continuous. In the 

Fig. 6   Kernel density curves of absolute value (a) and the spatial lag 
(b) of China’s animal husbandry carbon emissions

Table 6   Traditional Markov transition probability of carbon emissions from animal husbandry in China

Time T = 1 T = 3 T = 5

Category L M-L M-H H Category L M-L M-H H Category L M-L M-H H

L 0.90 0.10 0.00 0.00 L 0.88 0.12 0.00 0.00 L 0.89 0.11 0.00 0.00
M-L 0.03 0.84 0.13 0.00 M-L 0.08 0.79 0.13 0.00 M-L 0.09 0.75 0.16 0.00
M-H 0.00 0.06 0.88 0.06 M-H 0.00 0.15 0.77 0.08 M-H 0.00 0.16 0.76 0.08
H 0.00 0.00 0.03 0.97 H 0.00 0.00 0.12 0.88 H 0.00 0.00 0.16 0.84
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absence of major national strategies and opportunities for 
industrial development, it is unlikely that there will be a leap 
in the type of carbon emissions from the livestock indus-
try across levels. The probability of maintaining a smooth 
shift between low and high-level areas is 90%, 88%, 89% 
and 97%, 88%, and 84% after 1, 3, and 5 years. It indicates 
that both low and high-level areas have an internal conver-
gence. The trend is toward internal convergence in both low 
and high-level regions. The probability of carbon emission 
types shifting between low and medium-level areas is rela-
tively higher. Most of the carbon emission types in low and 
medium-level areas will shift upwards. In contrast, most of 
the carbon emission types in medium and high-level areas 
will shift downwards, which indicates that under the state of 
“spatial locking” between low and high-level areas, low and 
medium level areas and high-level areas will have a greater 
impact on the carbon emissions of the livestock industry. 
This indicates that in areas where low and high carbon emis-
sions are “spatially locked,” medium–low and medium–high 
carbon emissions have a “reconciling” effect on the total 
carbon emissions of the livestock industry. And in the future, 
the focus should be on optimizing the carbon emissions of 
these two types of areas in order to reduce carbon emissions.

Spatial Markov chain analysis  This paper uses spatial 
Markov chains to analyze the spatial transfer pattern of 
livestock carbon emissions and to identify the influence of 
spatial factors on the dynamic evolution of regional livestock 
carbon emissions, i.e., to determine whether the level of live-
stock carbon emissions in the surrounding areas affects the 
level of livestock carbon emissions in the region. Table 7 
gives the significance test results for the spatial Markov shift 
probabilities of different time durations. The Q statistic is 
significant at the 1% level for time durations of 1, 2, 3, 4, and 
5 years. The significance of this spatial influence (Q value) 
increases with time, which indicates that the influence of 
spatial factors on the level of livestock carbon emissions in 
each region cannot be ignored. There is a spatial effect in the 
dynamic evolution of livestock carbon emissions in China.

In order to further analyze the specific impact of this spatial 
effect, a geographical weight matrix was introduced to measure 
the spatial shift probability matrix of China’s livestock carbon 
emissions under different time lengths. The shift in the type of 
regional livestock carbon emissions does not exist in isolation 
in space but shows a more significant correlation with the carbon 
emission levels of the surrounding “neighbors.” The probability 
of transferring carbon emissions from the livestock sector varies 
among provinces in different regional contexts. For example, 
suppose the “neighbors” of a low-level region are also low-level. 
In that case, the probability of upward shift is only 6% after 
1 year ( pT=1

12∕1
= 6% ), while when the regional background is 

high-level, this probability will be higher than that of the “neigh-
bors” of a low-level region. When the regional context is high, 
this probability increases to 45%. Conversely, the probability of 
a downward shift in livestock emissions is smaller for areas with 
a high regional background than for areas with low regional 
background. However, this effect is less pronounced at one year 
and more pronounced at five years, e.g., at 5 years, the probabil-
ity of a shift from a high to a medium to low regional back-
ground is 9%, while at a low regional background, this probabil-
ity increases to 5%. When the regional context is low, this 
probability increases to 44%. This indicates that regional back-
ground plays a vital role in the dynamics of regional livestock 
carbon emissions. It is necessary to explore the evolution of 
China’s livestock carbon emission pattern from the perspective 
of spatial correlation. Different regional contexts play different 
roles in the process of carbon emission increase and decrease in 
livestock. A high-level regional context has a facilitating effect 
on regional livestock carbon emissions, and when a region is 
surrounded by a high-level region, the probability of an upward 
shift of carbon emissions in that region is higher than that of 
being surrounded by a low-level region. For example, 
pT=5
32∕1

= 44% > pT=5
32∕4

= 9%,pT=5
43∕1

= 50% > pT=5
43∕4

= 6% indi-
cates that low-level areas have a suppressing effect on carbon 
emissions in surrounding areas; the resource endowment, indus-
trial structure, and economic development patterns of neighbor-
ing areas are more similar. The acceleration of the economic 
integration process promotes the common carbon suppression 
effect. The high carbon spillover effect is stronger than the low 
carbon lock-in effect. For example, pT=5

12∕4
= 71%

>pT=5
43∕1

= 50% > pT=5
32∕1

= 44% , indicating that areas with high 
carbon emissions are more likely to pull up the carbon emissions 
of Livestock in the surrounding areas, while areas with low car-
bon emissions are more likely to pull down the carbon emissions 
of livestock in the surrounding areas. This shows that it is easy 
to increase carbon but challenging to reduce it in the process of 
livestock development, and it is difficult to break the “path 
dependence” of livestock carbon emissions in a short period. 
The more significant the gap between the level of carbon emis-
sions of the livestock industry and that of its neighbors, the 
stronger the spatial interaction between the livestock industry’s 

Table 7   Results of the spatial Markov transfer probability signifi-
cance test for carbon emissions from animal husbandry

Time (Year) Q Degree of 
freedom

Chi-square value

1 57.79 6 16.81 0.00
2 72.52 8 20.09 0.00
3 79.06 9 21.67 0.00
4 100.07 8 20.09 0.00
5 108.41 7 18.48 0.00
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carbon emissions. For regions that shift up or down, the proba-
bility of shifting increases as the gap with “neighbors” increases, 
e.g., pT=5

12∕3
= 13% < pT=5

12∕4
= 71%,pT=5

43∕2
= 13% < p

T=5

43∕1
= 50% 

which indicates that the greater the difference in regional carbon 
emission levels, the stronger the power of low carbon regions to 
catch up with high carbon regions or low carbon regions to limit 
high carbon regions (Table 8).

Discussion

(1)	 There is an apparent correlation between regional 
carbon emissions from animal husbandry. Therefore, 
governments at all levels should face the fundamental 
differences in regional carbon emissions from livestock 
farming, make full use of the interdependence between 
regions, place the low-carbon development of livestock 
farming within a unified and coordinated framework, 
and build a collaborative emission reduction mecha-
nism.

(2)	 As the core growth areas for carbon emissions from 
livestock farming, grassland pastoral areas and grain-
producing regions are responsible for supplying impor-
tant livestock products. Therefore, to stabilize the live-
stock industry’s development, these regions should 
moderately control the growth rate of carbon emissions 
through management and technical means.

(3)	 The spatial dependence of China’s carbon emission 
shift is strong, and the regional analysis shows that the 
regional context clearly influences the shift of regional 
carbon emission types, and the “high carbon spillover 

effect” and “low carbon lock-in effect” are both signifi-
cant. The “high carbon spillover effect” and the “low 
carbon lock-in effect” coexist.

Conclusion

This paper presents a comprehensive analysis of the spatial 
characteristics and dynamic evolution of carbon emissions 
from animal husbandry using data from 31 provinces in 
China from 2001 to 2020. We draw the following four con-
clusions. (1) Total national carbon emissions from livestock 
farming have fallen amid fluctuations, from 368,886,600 
tons in 2001 to 308,129,900 tons in 2019, a decrease of 
60,739,600 tones, or 16.47%. In terms of distribution pat-
terns, China’s livestock farming is being enriched to areas 
with superior resource endowments, with grassland pastoral 
areas and major grain-producing regions dominating China’s 
livestock carbon emissions. (2) The overall spatial distribu-
tion pattern of carbon emissions in the livestock industry is 
“high in the west and low in the east,” with more low-carbon 
areas and fewer high-carbon areas, with obvious regional 
differences and the possibility of further expansion. The spa-
tial correlation of carbon emissions in the national livestock 
industry is increasing, showing obvious local clustering 
characteristics, mainly manifesting as high-high and low-
low clustering trends. (3) The evolution of national livestock 
carbon emission pattern shows obvious path dependency, 
regional carbon emission is limited by the original carbon 
emission type and stock, showing strong growth inertia and 
path dependency, but there is still the possibility of upward 
or downward shift. (4) The “high carbon spillover effect” 

Table 8   Spatial transfer 
probabilities of carbon 
emissions from animal 
husbandry in China (T = 1, 
T = 5)

Background T = 1 T = 5

Category L M-L M-H H Category L M-L M-H H

L L 0.94 0.06 0.00 0.00 L L 0.92 0.08 0.00 0.00
M-L 0.02 0.98 0.00 0.00 M-L 0.03 0.97 0.00 0.00
M-H 0.00 0.00 0.78 0.22 M-H 0.00 0.44 0.11 0.44
H 0.00 0.00 0.00 1.00 H 0.00 0.00 0.50 0.50

M-L L 1.00 0.00 0.00 0.00 M-L L 1.00 0.00 0.00 0.00
M-L 0.00 0.81 0.19 0.00 M-L 0.00 0.65 0.35 0.00
M-H 0.00 0.08 0.75 0.17 M-H 0.00 0.06 0.67 0.28
H 0.00 0.00 0.03 0.97 H 0.00 0.00 0.13 0.87

M-H L 0.75 0.25 0.00 0.00 M-H L 0.88 0.13 0.00 0.00
M-L 0.02 0.86 0.12 0.00 M-L 0.09 0.84 0.06 0.00
M-H 0.00 0.06 0.94 0.00 M-H 0.00 0.23 0.78 0.00
H 0.00 0.00 0.03 0.97 H 0.00 0.00 0.17 0.83

H L 0.55 0.45 0.00 0.00 H L 0.29 0.71 0.00 0.00
M-L 0.08 0.67 0.25 0.00 M-L 0.21 0.45 0.34 0.00
M-H 0.00 0.07 0.90 0.03 M-H 0.00 0.09 0.91 0.00
H 0.00 0.00 0.06 0.94 H 0.00 0.00 0.06 0.94



116200	 Environmental Science and Pollution Research (2023) 30:116186–116201

1 3

and the “low carbon lock-in effect” coexist. These two 
effects have reinforced the trend of convergence in China’s 
livestock emission clubs, with grassland pasture areas and 
major grain producing areas in southwest, northwest, and 
northeast China becoming high carbon emission areas in the 
livestock sector based on their resource advantages.

Based on these conclusions we present the following 
constructive suggestions for the development of China’s 
livestock industry. Firstly, the government should pay atten-
tion to the differences in carbon emissions between regions. 
Improve the technological level and industrial upgrading of 
the livestock industry to reduce carbon emissions in some 
regions. At the same time, the government should coordi-
nate the differences between high-emission areas and low-
emission areas to promote the common development of the 
livestock industry. Secondly, enterprises and individuals in 
grassland and grain-producing areas should strengthen their 
management techniques to control the increase in carbon 
emissions. The government should introduce relevant tax 
and fee compensation policies to incentivize enterprises 
to engage in technological innovation. At the same time, 
the government should increase subsidies to individuals to 
promote the stable development of the livestock industry. 
Although the paper considers the provinces, the availabil-
ity of information and the complexity of the issues do not 
allow for a comprehensive consideration of all factors. For 
example, most of the cattle feed is made from grass, but the 
carbon emissions from growing it are not accounted for. In 
addition, the factors that influence carbon emissions from 
livestock should be further analyzed. Factors such as produc-
tion factors, population growth factors, and farming behavior 
are areas for further research.

Author contribution  All authors contributed to the study conception 
and design. Material preparation, data collection, and analysis were 
performed by Jiale Yan and Yuanyuan Zhang. The first draft of the 
manuscript was written by Jiale Yan, and all authors commented on 
previous versions of the manuscript. All authors read and approved 
the final manuscript.

Funding  This work was supported by the National Social Science 
Foundation youth project “Research on ecological compensation sys-
tem construction and supporting policies for cleaner production of 
animal husbandry” (No. 20cgl029).

Data availability  All authors ensure that all data and materials as well 
as software application or custom code support the published claims 
and comply with field standards.

Declarations 

Ethics approval  The submitted manuscript is original and have not 
been published elsewhere in any form or language.

Consent to participate  Done.

Consent for publication  All authors agreed with the content and that 
all gave explicit consent to submit.

Competing interests  The authors declare no competing interests.

References

Akbostancı E, Türüt-Aşık S, Tunç Gİ (2009) The relationship between 
income and environment in Turkey: is there an environmental 
Kuznets curve? Energy Policy 37(3):861–867

Anselin L, Le Gallo J, Jayet H (2008) Spatial panel econometrics. The 
econometrics of panel data fundamentals and recent developments 
in theory and practice. Matayas L and Sevestre P 46:625–660

Cai Q, Zhang D, Zheng W et al (2015) A new fuzzy time series fore-
casting model combined with ant colony optimization and auto-
regression. Knowl-Based Syst 74:61–68

Dace E, Blumberg D (2016) How do 28 European Union Member 
States perform in agricultural greenhouse gas emissions? It 
depends on what we look at: Application of the multi-criteria 
analysis. Ecol Ind 71:352–358

Dagum C (1997) Decomposition and interpretation of Gini and the 
generalized entropy inequality measures. Statistica 57(3):295–308

Daneshi A, Esmaili-Sari A, Daneshi M et al (2014) Greenhouse gas 
emissions of packaged fluid milk production in Tehran. J Clean 
Prod 80:150–158

De Vries B, Bollen J, Bouwman L, den Elzen M, Janssen M, Kreileman 
E (2000) Greenhouse gas emissions in an equity-, environment- 
and service-oriented world: an image-based scenario for the 21st 
century. Technol Forecast Soc Chang 63(2–3):137–174

Dominate E, Mackay A, Green S, Patterson M (2014) A soil change-
based methodology for the quantification and valuation of eco-
system services from agro-ecosystems: a case study of pastoral 
agriculture in New Zealand. Ecol Econ 100:119–129

Du Y, Liu H, Huang H et al (2023) The carbon emission reduction 
effect of agricultural policy—evidence from China. J Clean Prod 
406:137005

Fahey TZ (2009) On the use of kernel-based nonparametric probability 
density functions in electrochemical process analysis. Electrochim 
Acta 54(14):3759–3765

Fang D, Hao P, Wang Z et al (2019) Analysis of the influence mecha-
nism of CO2 emissions and verification of the environmental 
Kuznets curve in China. International Journal of Environmental 
Research and Public Health 16(6):944

FAO,from http://www.fao.org,2019
Fernandez Gonzalez P (2014) The driving forces behind changes in 

CO2 emission levels in EU-27. Differences between member 
states. Environ Sci Policy 38:11–16

Grossi G, Goglio P, Vitali A et al (2019) Livestock and climate change: 
impact of Livestock on climate and mitigation strategies. Anim 
Front 9(1):69–76

IPCC (2006) IPCC Guidelines for National Greenhouse Gas Invento-
ries Volume 4: Agriculture, Forestry and other Land Use. Geneva, 
Switzerland: IPCC

Ipek G, Tun G, Serap R, Tiritas LK (2009) A decomposition analysis 
of CO emissions from energy use: Turkish case. Energy Policy 
37(11):4689–4699

Kim B, Neff R (2009) Measurement and communication of greenhouse 
gas emissions from U.S. food consumption via carbon calculators. 
Ecol Econ 69(1):186–196

Li H, Mu H, Zhang M et al (2012) Analysis of regional difference on 
impact factors of China’s energy–Related CO2 emissions. Energy 
39(1):319–326



116201Environmental Science and Pollution Research (2023) 30:116186–116201	

1 3

Li J, Ma J, Wei W (2020) Analysis and evaluation of the regional 
characteristics of carbon emission efficiency for China. Sustain-
ability 12(8):3138

Liu LW, Chen CX, Zhao YF et al (2015) China’s carbon-emissions 
trading: overview, challenges and future. Renew Sustain Energy 
Rev 49:254–266

Liu T, Zhao R, Xie Z et al (2023) Carbon emissions from accumulated 
stock of building materials in China. Build Environ 240:110451

Lopez-Novoa U, Sáenz J, Mendiburu A, Miguel-Alonso J, Errasti I, 
Esnaola G, Ezcurra A, Ibarra-Berastegi G (2015) Multi-objective 
environmental model evaluation by means of multidimensional 
kernel density estimators: efficient and multi-core implementa-
tions. Environ Model Softw 63:123–136

Luo XP, Lu Z, Xu X (2014) Non-parametric kernel estimation for the 
ANOVA decomposition and sensitivity analysis. Reliab Eng Syst 
Saf 130:140–148

Munoz-Rojas M, Doro L, Ledda L, Francaviglia E (2015) Application 
of Carbo SOIL model to predict the effects of climate change on 
soil organic carbon stocks in agro-silvo-pastoral Mediterranean 
management systems. Agr Ecosyst Environ 202:8–16

Oenema O, Wrage N, Veldhof GL et al (2005) Trends in global nitrous 
oxide emissions from animal production systems. Nutr Cycl Agro-
ecosyst 72(1):51–65

Panichelli L, Gnansounou E (2015) Impact of agricultural-based 
biofuel production on greenhouse gas emissions from land-use 
change: key modelling choices. Renew Sustain Energy Rev 
42:344–360

Qin XB, Li YE, Wang H, Liu C, Li JL, Wan YF, Gao QZ, Fan FL, 
Liao YL (2016) Long-term effect of biochar application on yield-
scaled greenhouse gas emissions in a rice paddy cropping sys-
tem: a four-year case study in south China. Sci Total Environ 
569–570:1390–1401

Quah D (1993) Galton’s fallacy and tests of the convergence hypoth-
esis. The Scand J Econ 95:427–443

Ruffing K (2007) Indicators to measure decoupling of environmen-
tal pressure from economic growth. Sustain Indic: A Sci Assess 
67:211

Schandl H, Hatfield-Dodds S, Wiedmann T, Geschke A, Cai Y, West J, 
Newth D, Baynes T, Lenzen M, Owen A (2016) Decoupling global 
environmental pressure and economic growth: scenarios for energy 
use, materials use and carbon emissions. J Clean Prod 132:45–56

Siddiqi SM, Gordon GJ, Moore AW (2007) Fast state discovery for 
HMM model selection and learning. Assistants 2:492–499

Sun B, Guo H, Karimi HR et al (2015) Prediction of stock index futures 
prices based on fuzzy sets and multivariate fuzzy time series. 
Neurocomputing 151:1528–1536

Tao L, Qiang F (2011) Study on China’s carbon dioxide emissions 
efficiency. Stat Res 28(7):62–71

Tapio P (2005) Towards a theory of decoupling: degrees of decoupling 
in the EU and the case of road traffic in Finland between 1970 and 
2001. Transp Policy 12(2):137–151

Tollefson J (2021) IPCC climate report: Earth is warmer than it’s been 
in 125,000 years. Nature 596(7871):171–172

Wang S, Zhao Y (2001) Online Bayesian tree-structured transformation 
of HMMs with optimal model selection for speaker adaptation. 
IEEE Trans Speech and Audio Processing 9(6):663–677

Wang QW, Zhou P, Zhou DQ (2010) Research on dynamic carbon 
dioxide emissions performance, regional disparity and affecting 
factors in China. China Industrial Economics 1:45–54

Wen L (2020) Li Z Provincial-level industrial CO2 emission drivers 
and emission reduction strategies in China: combining two-
layer LMDI method with spectral clustering. Sci Total Environ 
700:134374

Yang XM, Chen HQ, Gong YS, Zheng XH, Fan MS, Kuzyakov Y 
(2015) Nitrous oxide emissions from an agro-pastoral ecotone 
of northern China depending on land uses. Agr Ecosyst Environ 
213:241–251

Zhang W, Zeng M, Zhang Y et al (2023) Reducing carbon emissions: 
can high-speed railway contribute? J Clean Prod 413:137524

Zheng JL, Mi ZF, Coffman D et al (2019) The slowdown in China’s 
carbon emissions growth in the new phase of economic develop-
ment. One Earth 1(2):240–253

Zhou B, Zhang C, Song HY et al (2019) How does emission trading 
reduce China’s carbon intensity? An exploration using a decom-
position and difference-in-differences approach. Sci Total Environ 
676:514–523

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Quantitative assessment, spatial and temporal characteristics, and dynamic evolution of carbon emissions from animal husbandry in China: 2001–2020
	Abstract
	Introduction
	Research methods and data sources
	Methodology for measuring carbon emissions from the livestock industry
	Dagum Gini coefficient and decomposition method
	ESDA method
	Kernel density estimation method
	Markov chain analysis method

	Results and analysis
	Time-series characteristics analysis of carbon emissions from the livestock industry at the national level
	Gini coefficient decomposition
	Spatial correlation and agglomeration patterns of carbon emissions from the livestock sector in China
	Dynamic evolution of the distribution of carbon emissions from livestock
	Dynamic evolution of the distribution of carbon emissions

	Discussion
	Conclusion
	References


