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Abstract
For the first time, cadmium oxide (CdO) nanofibers (NFs) and graphene nanosheet (GNS)–doped CdO nanocomposites 
(NCs) have been synthesized by a simple green route using green tea (Camellia sinensis) extract, for subsequent application 
as photocatalysts for methylene blue (MB) removal from an aqueous matrix. In addition, the materials were tested as work-
ing electrodes for supercapacitors. The prepared samples were analyzed by FESEM, UV-Vis spectroscopy, FTIR, and X-ray 
diffraction (XRD). FESEM revealed that the obtained NPs and NCs show fiber-shaped nanostructure. FTIR confirmed the 
presence of biomolecules on CdO and carbon compounds on CdO/GNS, while XRD exhibited the cubic crystalline structure 
of obtained NPs and NCs. The Rietveld refinement using XRD data was performed to ascertain the crystallographic char-
acteristics of the produced samples and look into lattice imperfections. UV-Vis spectroscopy evaluated the optical bandgap 
energies of CdO and CdO/GNS NCs. The CdO/GNS NCs demonstrated a fast cleavage of the dye molecule under UV irradia-
tion, resulting in 97% removal in 120 min. In addition, CdO/GNS NCs showed remarkable chemical stability as an electrode 
material, with a high specific capacitance of 231 F  g−1 at a scan rate of 25 mV  s−1. These observed NCs characteristics are 
higher when compared to pristine CdO NPs. Finally, we found that the investigated NCs showed enhanced multifunctional 
properties, such as photocatalytic and supercapacitor characteristics, which can be useful in practical applications.
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Introduction

Toxic and harmful organic compounds in wastewater created 
by numerous industrial operations cause serious environ-
mental concerns (Georgin et al. 2021a; Jarvin et al. 2021; 
Jorfi et al. 2016; Khan et al. 2020; Taourati et al. 2020). 
The full and efficient eradication of hazardous organic pol-
lutants from wastewater has recently received much atten-
tion worldwide (Mageshwari et al. 2013). In particular, the 
hazardous and poisonous dye effluents released by several 
textile industries significantly threaten our natural ecology 
(Ajmal et al. 2016; Kumar et al. 2021). Most dye effluents 
are refractory and non-biodegradable azo dyes, which have 
carcinogenic properties and can have serious consequences 
for humans and marine life (Ahmad and Majid 2018; Singh 
et al. 2019; Tadjarodi et al. 2015). Specifically, methylene 
blue dye (MB) is widely used in the textile industry, being 
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highly soluble in water and toxic to living beings (Georgin 
et al. 2021b; Salomón et al. 2021). Conventional wastewa-
ter treatment technologies are inefficient and useless due 
to the dyes’ high stability and complicated structure. Dye-
containing wastewater is detrimental to the living organisms 
in the environment and can create problems in the human 
body, either directly or indirectly (Bhattacharya et al. 2019; 
Moussavi and Mahmoudi 2009). As a result, removing this 
contaminant from water is a major problem. In this case, 
photodegradation of the dye under UV or visible light is 
an effective route of removing the color from a water body 
(Jarvin et al. 2023; Mandal et al. 2023; Rane et al. 2019; 
Santos et al. 2023). In this way, several studies have con-
centrated on using semiconductor-based photocatalysts 
to remove organic molecules from wastewater because of 
their tunable band structure (Brombilla et al. 2022; Chawla 
et al. 2023; Dutta et al. 2022; Kumar et al. 2023; Sudhaik 
et al. 2022). However, studies involving the use of cadmium 
oxide (CdO) nanofibers (NFs) and graphene nanosheet 
(GNS)–doped CdO nanocomposites (NCs) for methylene 
blue removal are scarce in the literature.

In recent years, developing efficient energy storage 
devices has been a practical method to reduce the environ-
mental effect of traditional energy supplies and the rapid 
rise in global energy demand (Balasingam et al. 2016; Ma 
et al. 2017; Simon et al. 2020). The rapid advancement 
of current electronic gadgets and ongoing research into 
renewable energy–based electrochemical energy conver-
sion systems has fuelled the creation of improved high-
performance energy storage technologies (Balasingam 
et al. 2017). Because of their remarkable properties, such 
as fast charge/discharge rate, high power density, long 
cycle life, and improved safety, supercapacitors have been 
identified as highly promising materials for high-power 
applications, such as renewable energy systems, digital 
communications, portable electronics, and hybrid-electric 
vehicles (Abdah et al. 2020; Jiang et al. 2012; Veerakumar 
et al. 2020; Zhi et al. 2013). Supercapacitors are divided 
into two types based on their charge storage mechanisms: 
electric double-layer capacitors (EDLC), which store 
energy as accumulating electric charge at the electrode-
electrolyte interface, and pseudocapacitor, which stores 
energy by a fast faradaic redox reaction between electro-
lyte ions and electrode (Iro et al. 2016; Poudel et al. 2020; 
Yuan and Zhang 2006). Carbon materials such as graphene 
and activated carbon are used as electrode materials in 
EDLC. Conducting polymers and transition metal oxides 
are employed as electrode materials in pseudocapacitors 
(Foo et al. 2016). The manufacture of these supercapaci-
tors has mostly relied on transition metal oxides and carbo-
naceous materials. Transition metal oxides are considered 
good materials for supercapacitor applications because 
they have multiple oxidation states for redox charge 

transfer (An et al. 2019). Carbon materials benefit from 
an inherent double layer, whose efficient charging is criti-
cal to the supercapacitor’s performance. They also have a 
large surface area, are extremely durable, and have a high 
mechanical strength (Kim and Kim 2015; Wadekar et al. 
2020). Using these two materials to create an asymmetric 
supercapacitor improves the device’s performance syner-
gistically (Ishaq et al. 2019).

Graphene (G) is an allotrope of single-layered carbon 
atoms arranged in a two-dimensional layer of sp2-bonded 
carbon honeycomb lattice nanostructure (Wei and Liu 2010; 
Xiang and Yu 2013; Zhou et al. 2021). Although now dis-
covered, G has attracted massive research interest due to its 
enchanting properties. G shows good electrical and thermal 
conductivity and has large mechanical strength and high 
surface area (Kartick and Srivastava 2011; Li et al. 2016). 
Because of its incredible physical and chemical properties, G 
has been identified as a hotbed of innovation (An and Jimmy 
2011). It can be used in prospective applications, such as 
electronics, actuators, sensors, and energy storage.

Nowadays, researchers focus on synthesizing nanopar-
ticles (NPs) decorated with graphene nanosheets (GNS) 
(Albero et al. 2019). Various methods of NP synthesis using 
different physical and chemical procedures, such as sol-gel, 
microwave, co-precipitation, and hydrothermal, have been 
employed (Naseem and Farrukh 2015). These methods 
require high temperatures and chemical additives. Synthe-
sis of NPs via chemical methods leads to biological risk 
and is more toxic. Therefore, we need to move on to a safe 
handling method to avoid these unusual harmful effects. A 
green method is one of the easiest and most environmen-
tally friendly ways to synthesize NPs using biogenic sources, 
such as plant, fruit, and leaf extract, and their unrevealed 
functional biomolecules, which reduce the metal ions into 
metal NPs (Karthik et al. 2017; Pugazhendhi et al. 2019; 
Thema et al. 2015). Utilizing the benefits of green synthe-
sis have been used extensively in the synthesis of several 
nanomaterials. The synthesis of metal oxide NPs is becom-
ing tremendous research in various fields due to their excel-
lent magnetic and thermal properties. Metal oxides, such as 
MgO,  Fe3O4, ZnO, MnO,  TiO2,  SnO2,  Ag2O, and CoO, are 
gaining popularity in catalysis, sensors, supercapacitor, and 
medicinal applications (Balakrishnan et al. 2020; Lazarotto 
et al. 2020; Nuernberg et al. 2011; Rosaline et al. 2022).

Apart from these metal oxides, cadmium oxide (CdO) is 
a well-known semiconductor with low resistance and great 
transmittance on the visible spectrum and is non-toxic (Bala-
murugan et al. 2016; Shad et al. 2019). CdO is a degenerate 
n-type semiconductor (Krasil’nikov et al. 2021; Sadhukhan 
et al. 2019), having both the indirect and direct band gaps 
of 1.98 eV and 2.5 eV, respectively. Energy storage devices, 
photocatalyst optoelectronics, phototransistors, photo-
diodes, solar cells, and gas sensors are some well-known 
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applications used by CdO NPs (Kaviyarasu et al. 2014; Nas-
rullah et al. 2020; Shad et al. 2019).

In this present study, the preparation of CdO and CdO/
GNS nanocomposites (NCs) by an eco-friendly method 
using green tea extract has been conducted. Tea extract 
contains a large number of polyphenolic compounds, which 
are used in the reduction of metal ions into metal NPs. The 
predominant organic compound of polyphenol is Epigallo-
catechin gallate (EGCG), an effective compound that takes 
part in the reduction process (Gottimukkala et al. 2017; 
Nagabhushana et al. 2016; Sutradhar et al. 2014). This work 
represents the potentiality of CdO NFs and CdO/GNS NCs 
to degrade MB dye, as well as for supercapacitors.

Experimental procedure

Synthesis of CdO NPs

CdO NPs were prepared by green route using tea (Camellia 
sinensis) extract. Two grams of the best hand-picked teas 
from tea bags was dipped in 100 mL of boiling water until 
the extract was well blended. The extract was then filtered 
and kept at 5 °C in the beaker for further use. Over a mag-
netic stirrer, Cd(NO3)2 (0.5 mol  L−1) was solubilized in 50 
mL of distilled water for 2 h. Following the predetermined 
period, 50 mL of filtered tea extract was slowly added to the 
Cd(NO3)2 solution. The color was changed to dark brown, 
and the solution was stirred for 1 h. The mixture was then 
centrifuged after being rinsed three times with deionized 
water. After, the mixture was dried for 12 h at 120 °C. The 
powdered sample was then calcined for 4 h at 400 °C.

Synthesis of CdO/GNS NCs

The graphene utilized in this study was bought from KNVS 
incorporation (Nagpur, India). First, 0.25 g of graphene was 
added to 50 mL of distilled water and magnetically stirred 
for 1 h at room temperature. Then, the prepared CdO NPs 
(0.75 g) were incorporated into the mixture and stirred for 
3 h. After stirring, the mixture was washed and centrifuged 
three more times with deionized water. Then, the obtained 
material was dried at 60°C for 15 h in a hot air oven. Finally, 
the material was collected in an air-tight container for further 
characterization. Figure 1 shows the CdO and CdO/GNS 
synthesis procedure schematic diagram.

Characterization techniques

The green-synthesized CdO NPs and CdO/GNS NCs were 
systematically characterized using several techniques. 
Fourier-transform infrared (FTIR) analysis was realized on 
a Jasco 4600 type-A spectrometer at room temperature by 

making KBr pellets. X-ray diffraction (XRD) analysis was 
done on a Rigaku-Ultima III diffractometer, with Cu-Kα 
(λ = 1.5418 Å) radiation at a grazing angle 1° and stepped 
size of 0.01°. FESEM images were obtained on a Hitachi-
Japan S–3000H scanning electron microscope. The optical 
properties of the materials were recorded from UV-Vis 
spectrometer spectrophotometer LI-295, 8 W, 50 Hz.

Photocatalytic tests

The photocatalytic activities of CdO and CdO/GNS were 
investigated on the MB degradation under UV light using 
an artificial UV lamp (11 W). First, an initial concentration 
of MB solution of 10 mg/L was prepared. Then, 25 mg of 
CdO and CdO/GNS was added to each 100 mL dye solu-
tion. Before UV irradiation, the suspension (dye + pho-
tocatalyst) was stirred for 30 min in the dark to reach an 
equilibrium between the MB and photocatalyst. After dark 
stirring, the reaction mixture was exposed to UV light. 
About 5 mL of suspension was taken at each 20 min and 
centrifuged to separate the phases. The dye degradation 
efficiency was calculated using the UV-Vis spectrophotom-
eter (Jasco, LI-295) at 664 nm. The degradation efficiency 
was obtained by Eq. 1 (Jarvin et al. 2021; Pugazhendhi 
et al. 2019):

Co is the initial MB concentration, and Ct is the MB 
concentration after degradation.

The photocatalytic assays were performed in triplicate. 
The experimental error was below 5.5%.

(1)Degradation,% =
Co − Ct

Co

× 100

Fig. 1  Schematic diagram of green synthesis of CdO NFs and CdO/
GNS NCs
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Electrochemical studies

The electrochemical behaviors of CdO NFs and CdO/GNS 
NCs were observed on an electrochemical workstation with 
a three-electrode cell set-up (CHI660D, Champaign, IL) at 
room temperature. The electrochemical performance of the 
as-prepared electrodes has been examined by electrochemical 
impedance spectroscopy (EIS), cyclic voltammetry (CV), and 
galvanostatic charge-discharge (GCD). The modified nickel 
foam (NF) substrate with the active material CdO NFs and 
CdO/GNS NCs was used as a working electrode, Ag/AgCl 
electrode as a reference electrode, and platinum wire as a coun-
ter, respectively. A modified working electrode was fabricated 
by mixing synthesized samples, acetylene black (conductive 
induction), and binder polytetrafluoroethylene (PTFE) in mass 
ratios (85:10:05). The substances were ground by using agate 
mortar and pestle. Ethanol solvent was also used to make the 
paste. The mass of the active material is used as 2 mg. The col-
lected paste was coated on the surface of the nickel foam (1×1 
 cm2) and allowed to dry at 80 oC for 12 h. 6M of KOH solution 
was employed as an aqueous electrolyte for the electrochemical 
experiment. The potential window (ΔV) was applied from −0.7 
to 0.3 V for the experiment. The specific capacitance (Csp) 
was obtained from CV (Eq. 2) and GCD (Eq. 3) curves, using 
Eqs. 2 and 3 (Balasingam et al. 2016; Balasingam et al. 2017):

(2)Csp =
∫ I(V)dv

smΔV

(

F g−1
)

where Csp is the specific capacitance (F  g−1), I is the dis-
charge current (A), m is the mass of the material (g), s is the 
scan rate (mV  s−1),∫I(V)dv is the integrated area of the CV 
curve, ∆V is the potential window (V), and ∆t is discharge 
time (s).

Results and discussion

FESEM

The morphology of CdO, Gr, and G-CdO nanomaterials was 
obtained by FESEM, as shown in Fig. 2a–d. From FESEM 
analysis, the green-synthesized pure CdO nanopowder at the 
temperature of 400 °C for 4 h shows a nanofiber (NFs) like 
structure (Fig. 2a). As shown in Fig. 2b, the FESEM image 
of Gr suggests a lamellar nanosheet (GNS) like the structure 
of Gr with the monolayer. After adding GNS with CdO NFs, 
the temperature of 60 °C for 15 h resulted in CdO NFs being 
well decorated on the surface of GNS. Figure 2c and d show 
the different magnifications of CdO/GNS NCs. The average 
diameter and length of the pure CdO NFs were found to be 
43.7 ± 2 nm and 399 ± 6 nm, respectively. The FESEM 
results obtained from CdO/GNS NCs diameter and length 
were 25 ± 7 nm and 756 ± 4 nm, respectively. The particle 
size of CdO/GNS NCs is lesser than pure CdO NFs, which 

(3)Csp =
IΔt

mΔV

(

F g−1
)

Fig. 2  FESEM results of a CdO 
NFs, b graphene nanosheets, 
and c, d CdO/GNS NCs at dif-
ferent magnifications
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results in NCs with a larger specific surface area. Hence, 
the as-prepared NCs can be used as photocatalysts and elec-
trodes for supercapacitor applications.

FTIR

FTIR technique is useful for identifying different functional 
groups on graphene and its composites. Figure 3 represents 
the typical FTIR spectrum of synthesized CdO NFs and 
CdO/GNS NCs. The bands at 3594, 3521, and 3438  cm−1 
are assigned to the O-H group of water molecules (Bala-
murugan et al. 2016; Krasil’nikov et al. 2021; Shad et al. 
2019) present on the CdO and CdO/GNS NCs. The band 
at 3230  cm−1 indicated the presence of the N-H stretching 
vibrational group. Also, the band at 1423  cm−1 is assigned 
to the presence of O-H bonding of water molecules. The 
metal-oxide stretching vibration of CdO was observed at 
957, 864, and 697  cm−1 (Kaviyarasu et al. 2014; Nasrullah 
et al. 2020). From the G-CdO FTIR spectrum, the absorption 
band at 1633 corresponds to the C=C stretching of graphene 
(Hassanien et al. 2019; Husein et al. 2021). As a result, CdO 
and G-CdO exhibit the same absorption peak range, and no 
band shifts were observed after adding graphene.

XRD

Figure 4 shows the XRD patterns of CdO NPs and CdO/GNS 
NC samples. CdO NPs exhibit various diffraction peaks at 2θ 
= 32.99°, 38.28°, 55.25°, 65.87°, and 69.2°, corresponding 
to the crystal planes (111), (200), (220), (311), and (222) of 
CdO, respectively. The diffraction peaks could be matched 
with the CdO single-phase cubic structure (Karthik et al. 

2017; Nasrullah et al. 2020) by comparison with the JCPDS 
card file 01-073-2245. The diffraction planes of CdO were 
indexed with lattice constant a = 4.6990 Å and belonged to 
the space group of Fm-3m (225), indicating the pure crystal-
line of CdO NPs. A prominent peak confirmed the exfolia-
tion of graphite into graphene layers at 2θ = 26.45°, linked 
to the (002) plane with d-spacing 3.368 Å in graphene XRD 
investigation (Hassanien et al. 2019; Husein et al. 2021). The 
anchoring of CdO nanoparticles onto GNS is reflected in the 
diffractogram of CdO/GNS, which is identical to graphene 
and hybrid CdO NPs. The average crystallite sizes of CdO 
NFs and CdO/GNS NCs were 48 ± 3 and 41.62 ± 6 nm, 
respectively.

Rietveld refinement

Figure 5a and b show the Rietveld refinement of CdO NFs 
and CdO/GNS NCs using XRD data. Rietveld analysis has 
been carried out using the Pseudo-Voigt shape function by 
FULLPROOF software. Pseudo-Voigt approximation of 
the Voigt function is perhaps the most extensively utilized 
for examining the X-rays of the analytical peak functions. 
The pseudo-Voigt function is an amalgam of Gaussian and Fig. 3  FTIR spectra of CdO NFs and CdO/GNS NCs

Fig. 4  XRD patterns of graphene, CdO NFs, and CdO/GNS NCs
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Lorentzian elements in the ratio of ƞ/(1-ƞ), where ƞ is 
the Pseudo–Voigt mixing parameter. From Fig. 5b, the 
observed (black), calculated (red), and difference (blue 
bottom) profiles show that the characteristic difference 
profile for intensity is either positive or negative and con-
centrated at the center of the peak. Although the difference 
profile plot is likely the best method to follow and guide 
a Rietveld refinement, the numerical fit of the computed 
pattern to the actual data can also be presented. This result 
is commonly expressed in terms of R values. The obtained 
R values, such as pattern reliability factor (Rp), weighted 
profile R-value (Rwp), expected R-value (Rexp), chi-squared 
value (χ2), and goodness of fit (GoF), are given in Table 1. 
GoF can be calculated from the ratio of Rwp and Rexp (i.e.) 
GoF = Rwp / Rexp. χ2, which is defined by (GoF)2 = χ2 
(Mariammal et al. 2011; McCusker et al. 1999).

UV‑Vis analysis

Figure 6 depicts the optical absorption spectra of CdO NFs 
and CdO/GNS NCs. The samples were previously ultrasoni-
cated in distilled water for posterior analysis. CdO exhib-
its the absorption peak located at 267 nm (Fig. 6a), which 
is attributed to the interband transition of a deep level of 
valence band electrons and assigned to the excitonic feature 
of CdO (Kumar et al. 2016). After adding GNS to CdO, the 
absorption peak shifted to 320 nm (Fig. 6b), reflecting the 
quantum confinement effect of the NCs (Hassanien et al. 
2019; Husein et al. 2021). The energy bandgap was calcu-
lated by Eq. 4 (Hassanien et al. 2019):

where α is the absorption coefficient, ʋ is the frequency 
of light, h is Planck’s constant, A is the constant, Eg is the 
energy bandgap, and n is the transition process involved 
(n = 2 for direct electron transition, and n = 1/2 for indi-
rect electron transition). The bandgap energies for pristine 
CdO NFs and CdO/GNS NCs are 4.7 and 2.43 eV, respec-
tively (Fig. 6c, d). The greater absorption and lower energy 
bandgap of CdO/GNS NCs raise the possibility that, when 
exposed to UV light, they may have a better photocatalytic 
degradation efficiency for the target pollutants (Silvestri 
et al. 2019a; Umar et al. 2022).

Photocatalytic studies

The catalytic efficiencies of CdO and CdO/GNS NCs towards 
MB dye photodegradation are shown in Fig. 7a and b, respec-
tively. Under the stimulated UV irradiation, the valence band 
(VB) electrons  (e−) of CdO are excited to the conduction band 

(4)�h� = A
(

h� − Eg

)

Fig. 5  Rietveld refinement of (a) CdO NFs and (b) CdO/GNS NCs

Table 1  Reliability factors of CdO NFs and CdO/GNS NCs

Parameters CdO CdO/GNS

Rp 20.7 51.9
Rwp 23.1 34.8
Rexp 14.78 16.9
GoF 1.56 2.059
χ2 2.43 4.242
a 4.6895 2.33219
b 4.6895 5.34087
c 4.6895 6.749072
α = β = γ 90 90
Phase: 1 Cubic Cubic
Volume of the cell 103.18 103.565
Phase: 2 - Hexagonal
Volume of the cell - 84.066
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(CB), leaving holes  (h+) in the VB, creating the formation 
of  e−/h+ pairs (EHPs). The photogenerated  e− and  h+ subse-
quently undergo redox processes, resulting in many active spe-
cies. The photogenerated  e− reacts with dissolved molecular 
oxygen, generating superoxide ions  (O2

−). The formation of 
 h+ also reacts with water  (H2O) and hydroxide ions  (OH−) to 
form highly reactive hydroxyl radicals (•OH). The  O2

− and 
•OH radicals have high oxidation performance, completely 
oxidizing the dye molecules, resulting in final products like 
 CO2 and  H2O (Ahmad and Majid 2018; Kumar et al. 2016; 
Singh et al. 2019). The degradation efficiency of pure CdO 
NFs towards MB dye was 94% in 160 min under UV irradia-
tion. On the other hand, CdO/GNS NCs have a maximum deg-
radation efficiency of 97% in 120 min (Fig. 7c). This may be 
assigned to a larger active surface area of CdO/GNS NCs when 
compared to CdO NFs after CdO was decorated on the GNS, 
which is an excellent  e− acceptor and conductor. Under UV 

irradiation, the  e− are generated by the photons and are readily 
transferred from CdO CB to GNS, which could suppress the 
recombination rate of EHPs (Umar et al. 2022). Therefore, 
the photocatalytic performance of CdO/GNS was greater than 
pure CdO NFs. The proposed mechanism of the photocatalytic 
process is given below.

CdO + hv → e−
CB

+ h+
VB

(Rapid EHP recombination)

CdO∕GNS + hv → e
−
CB

+ h
+
VB

(EHP recombination was suppressed, large surface area)

e−
CB

+ O2 → O2

h+
VB

+ H2O → ∙OH

Fig. 6  UV-Vis spectra of (a) CdO NFs and (b) CdO/GNS NCs, and bandgap energies of (c) CdO NFs and (d) CdO/GNS NCs
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Figure 7d shows the kinetic graph of CdO NFs and CdO/
GNS NCs. Kinetic models can determine the degradation 
rate constant of organic molecules on semiconducting mate-
rials. It was observed that both CdO NFs and CdO/GNS NCs 
presented a degradation process following pseudo-first-order 
(PFO) kinetics (Jarvin et al. 2021; Vieira et al. 2022). The 
PFO kinetics is given by Eq. 5:

where kapp is the apparent rate constant for PFO kinetics, Co 
is the initial dye concentration after dark adsorption, and C 
is the dye concentration after a certain reaction time t.

h+
VB

+ OH−
→ ∙OH

∙OH + dye → CO2 + Degradation products

O−
2
+ dye → CO2 + Degradation products

(5)ln
Co

C
= kappt

The determination coefficient (R2) and the kapp were eval-
uated and compared in Table 2. As a result, it is possible 
to observe that the kapp for CdO/GNS NCs was 1.28 times 
higher than the kapp of CdO NFs. According to the previous 
results, an illustrative diagram of the photocatalytic mecha-
nism toward MB degradation was proposed and is shown 
in Fig. 8.

In order to demonstrate the remarkable photocatalytic 
activity of CdO/GNS NCs towards MB degradation, the 
photocatalytic efficiency of CdO/GNS NCs was compared 
with some recently reported photocatalysts, as represented 
in Table 3. According to the results presented in Table 3, it 
is possible to infer that the material produced in this work 

Fig. 7  Photocatalytic activity of (a) CdO NFs and (b) CdO/GNS NCs, c degradation efficiency graph, and (d) kinetic graphs of CdO and CdO/GNS NCs

Table 2  Reaction rate constants and correlation coefficients for CdO 
and CdO/GNS NCs

Material kapp  (min−1) R2

CdO 0.0175 0.9851
CdO/GNS 0.0224 0.9682
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exhibits great potential for application as a photocatalyst 
for the abatement of pollutant organic molecules from 
wastewater.

Electrochemical studies

The electrochemical performances of CdO NFs and CdO/
GNS NCs electrodes were determined by CV, GCD, and 
EIS spectroscopy techniques using 6 M of KOH electro-
lyte solution (Fig. 9). The CV characterization for CdO NFs 
and CdO/GNS NCs under different scan rates (25 to 150 
mV/s) is shown in Fig. 9a, b. All the CV curves are within 
the range of −0.7 to 0.3V. The CV curve of pristine CdO 
shows a non-rectangular shape, which is attributed to the 
redox reaction occurring on the active electrode surface 
(Fig. 9a). A pair of redox peaks appeared, and it clearly 
states that the electrode is pseudo-capacitance (Balasingam 
et al. 2016; Balasingam et al. 2017). From Fig. 9a, it is seen 
that the scan rate is increasing from lower to higher, and 

simultaneously, current densities of oxidation and reduction 
peaks are increased and shifted. It is due to the reversible 
reaction at the surface of the active electrode. The redox 
peaks are noticeable at a high scan rate of 150 mV/s, with no 
obvious distortion. From Fig. 9b, the shape of CV curves for 
the CdO/GNS NCs sample divulged the quasi-rectangular 
behavior, which involved faradaic redox reactions (Kumar 
et al. 2017; Packiaraj et al. 2019). The graph distinguishes 
pseudo-capacitance nature with the high surface area due 
to the presence of GNS material. Hence, the charge storage 
mechanism was used to analyze the appearance of faradaic 
redox reactions on the surface of the active electrode. The 
specific capacitance of CdO and CdO/GNS were calculated 
from the CV curves using Eq. (2). The specific capacitance 
values for CdO at scan rates of 25, 50, 75, 100, 150 mV/s are 
found to be 203, 178, 160, 139, and 116 F  g−1, and for CdO/
GNS NCs, they are found to be 231, 207, 180, 165, and 140 
F  g−1, respectively. The specific capacitance value of CdO/
GNS NCs is much higher than CdO NFs. Due to the follow-
ing features (Balasingam et al. 2016): (i) the CdO/GNS NCs 
provide more electroactive sites for store charges through 
EDLC, as well as faradaic reaction (ii) fast charge transfer 
is made possible by the CdO anchored on the GNS, which 
effectively minimized the agglomeration of the electroactive 
components and decreased internal resistance. The obtained 
specific capacitance value calculated from CV is higher than 
earlier reported by Kumar et al. (2017).

Figure 9c and d show the GCD profiles of CdO NFs 
and CdO/GNS NCs under different current densities with 
6 M KOH electrolytes. Generally, linear and non-linear 
discharge areas can categorize discharge behavior. While 
charge storage occurs in the first type based on an adsorp-
tion/desorption process, the second type occurs due to a 

Fig. 8  Photocatalytic degradation mechanism of MB dye

Table 3  Comparison of degradation efficiencies of MB dye for different photocatalysts

Photocatalyst Dye concentra-
tion (mg  L−1)

Catalyst dos-
age (g  L−1)

Irradiation source Time (min) Degradation 
efficiency (%)

Reference

Mn3O4/rGO 1 0.02 Sunlight 120 60 Jarvin et al. (2021)
MgO 15 0.05 UV light 240 99 Mageswari et al. (2013)
CdO/GO 25 0.025 Visible 90 91 Ahmad and Majid (2018)
Ag-doped ZnO 1 0.079 Sunlight 30 95 Jarvin et al. (2022)
TiO2/biochar 10 1 UV light 180 80 Silvestri et al. (2020)
Zn2SnO4 10 1 UV light 25 96 Silvestri et al. (2019b)
CdO/rGO 0.4 0.05 UV light 110 80 Kumar et al. (2016)
Fe3O4/GO 1 0.03 Sunlight 30 91 Umar et al. (2022a)
Poly(1-napthylamine) 5 0.1 UV light 160 61 Umar et al. (2022b)
CdO/Cds 0.4 0.05 UV light 100 71 Kumar et al. (2017)
Cr-Co-doped CdO 5 0.02 Sunlight 60 99.5 Munawar et al. (2021)
Cu-Cu2O-Cu3N 5 0.25 Sunlight 360 96 Paredes et al. (2023)
Fe/CdO 10 0.01 UV light 130 87 Mandal et al. (2023)
CdO/GNS 10 0.025 UV light 120 97 Present work



117399Environmental Science and Pollution Research (2023) 30:117390–117403 

1 3



117400 Environmental Science and Pollution Research (2023) 30:117390–117403

1 3

pseudocapacitive mechanism. Figure 9c represents the GCD 
profile for pure CdO, which shows the pseudocapacitive 
nature. Figure 9d represents the GCD graph of CdO/GNS 
NCs, clearly showing a nearly triangular shape with a volt-
age plateau, demonstrating both the EDLC and the pseudo-
capacitance contributions (Balasingam et al. 2016; Balas-
ingam et al. 2017). The GCD plot of NCs electrode shows 
more discharge time than pure CdO, resulting in the active 
electrode’s large storage capacity. The specific capacitance 
values for CdO NFs and CdO/GNS NCs were calculated 
by Eq. (3). The specific capacitance values of CdO NFs at 
various current densities of 4, 6, 8, and 10 A  g−1 were 136, 
116, 103, and 95 F  g−1, respectively. The values for CdO/
GNS NCs are 153, 133, 118, and 103 F  g−1 for the same 
current densities. The capacitance values of NCs are higher 
than NFs due to the high surface area of GNS. The charge-
discharge profile displayed a linear discharge, indicating that 
the hybrid active material presents electrochemical behavior 
via EDLC and pseudo-capacitance reactions. In contrast to 
increasing discharge current densities, the predicted specific 
capacitance values are decreasing. This trend is because, at 
greater current densities, the faradaic redox reaction between 
the electrolyte and electrode surface does not have enough 
time to complete, which leads to an increase in resistance 
(Umar et al. 2022; Packiaraj et al. 2019; Kumar et al. 2017). 
Figure 9e and f represent the calculated capacitance values 
of CdO NFs and CdO/GNS NCs, corresponding to differ-
ent scan rates and current densities. The obtained specific 
capacitance value calculated from GCD is higher than earlier 
reported by Munawar et al. (2021).

The cyclic performance of the modified electrode was 
carried out by charge-discharge at a current density of 0.01 
 Ag−1 for 1000 cycles. Figure 9g reveals the cyclic stability of 
CdO NFs and CdO/GNS NC electrodes. After 1000 cycles, 
only 70% was retained by the CdO NFs, but CdO/GNS 
NC electrodes obtained 90% retention after 2000 cycles. 
The electrochemical reaction process is further studied by 
EIS analysis, mainly used to investigate the ion movement 
between electrolyte and electrode surface with an amplitude 
of 5 mV in a frequency range from 0.01 Hz to 100 kHz. Fig-
ure 9h shows the Nyquist plots of the CdO NFs and CdO/
GNS NC electrodes after 1000 cycles GCD. In the high-
frequency region, CdO displays a small semicircle with the 
spike on the Z-real axis representing the equivalent series 
resistance (ESR). The spike is associated with the electrolyte 
solution’s diffusion resistance on the electrode surface. The 

diameter of the semicircle represents the interfacial charge 
transfer resistance (Rct) (Balasingam et al. 2016; Balasingam 
et al. 2017; Umar et al. 2022). CdO/GNS NCs show a very 
small semicircle with a spike at the low-frequency region. 
The inclined line at the low-frequency region indicates the 
diffuse resistance of electrolyte ions inside the electrode 
materials. The ESR values of the pristine CdO and CdO/
GNS NCs before and after the cycling test were determined 
to be 0.205 Ω and 0.161 Ω. The Rct values for CdO and CdO/
GNS materials were 2.7 Ω and 1.5 Ω, respectively. Com-
pared to CdO, CdO/GNS NCs electrode presented lower 
ESR and Rct values, designating the good ionic conductivity 
and excellent charge transport of electrolyte ions (Munawar 
et al. 2021).

Conclusions

CdO NFs and CdO/GNS NCs were successfully prepared by 
a simple green method using tea extract as a reducing agent. 
The length and the diameter of the CdO NFs and CdO/GNS 
NCs were calculated using FESEM images. CdO NFs are 
well decorated in the GNS. FTIR spectrum confirms the 
presence of C=C stretching of graphene, and CdO peaks are 
observed in the CdO/GNS NCs with no shift. XRD pattern 
exhibits the cubic crystalline structure of CdO NFs and the 
presence of GNS. Rietveld refinement provides the reliabil-
ity factors of CdO and CdO/GNS NCs. UV-Vis spectrum 
shows that the energy bandgap of CdO/GNS NCs was com-
paratively lower than pristine CdO NFs, resulting in better 
photocatalytic efficiency for CdO/GNS NCs. In addition, 
the larger surface area for CdO/GNS NCs contributed to its 
better photocatalytic performance towards MB dye degra-
dation under UV irradiation. The high specific capacitance 
achieved by green-synthesized CdO/GNS was 231 F  g−1 at 
25 mV  s−1. After the 1000 cycles, the active electrode CdO/
GNS NCs exhibit 90% chemical stability. Compared to pure 
CdO NPs, the observed features of the NCs are higher. In the 
end, we found that the examined NCs exhibited improved 
multifunctional qualities, including photocatalytic and 
supercapacitor features, which can be highly helpful in real-
world applications.
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