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Abstract
Fine particulate matter (PM2.5) poses a significant threat to human life and health, and therefore, accurately predicting PM2.5

concentration is critical for controlling air pollution. Two improved types of recurrent neural networks (RNNs), the long
short-term memory (LSTM) and gated recurrent unit (GRU), have been widely used in time series data prediction due to their
ability to capture temporal features. However, both degrade into random guessing as the time length increases. In order to
enhance the accuracy of PM2.5 concentration prediction and address the issue of random guessing in RNNs neural networks,
this study introduces a TCN-biGRU neural network model. This model is a hybrid prediction approach based on combining
temporal convolutional networks (TCN) and bidirectional gated recurrent units (bi-GRU). TCN extracts higher-level feature
information from longer time series data of PM2.5 concentrations, while bi-GRU captures features from past and future data
to achieve more accurate predictive outcomes. This case study utilizes data from monitoring stations in Beijing in 2021 for
conducting PM2.5 prediction experiments. The TCN-biGRU model achieves an average absolute error, root mean square
error, and R2 of 4.20, 7.71, and 0.961 in its predictive outcomes. When compared to the predictive outcomes of individual
LSTM, GRU, and bi-GRU models, it is evident that the TCN-biGRU model exhibits smaller errors and superior predictive
performance.

Keywords PM2.5 · Neural networks · TCN · Bi-GRU

Introduction

With the acceleration of China’s industrialization pro-
cess, severe climate problems have arisen. Among them, air
pollution has received widespread public attention. Accord-
ing to data from the World Health Organization, about 4.2

Responsible editor: Marcus Schulz

B Ting Shi
tingshi@bjut.edu.cn

Pengyu Li
purylee@163.com

Wu Yang
S202073067@emails.bjut.edu.cn

Ailin Qi
s202173076@emails.bjut.edu.cn

Junfei Qiao
adqiao@bjut.edu.cn

1 Faculty of Information Technology, Beijing University of
Technology, Nanmofang, 100124 Beijing, China

million people die prematurely each year due to exposure
to environmental air pollution (Song et al. 2017).The partic-
ulate matter 2.5 (PM2.5) concentration, which is the main
pollutant, is widely used as an air quality monitoring and
regulatory indicator (Qi et al. 2019).PM2.5 can remain sus-
pended in the air for extended periods and penetrate deep into
the lungs (Liu et al. 2023). Besides, epidemiological studies
have shown that PM2.5 particulate matter severely affects
people’s health (Dong et al. 2019), and long-term exposure
to high PM2.5 concentrations increases the risk of respira-
tory diseases, lung cancer, and cardiovascular diseases (Zou
et al. 2016; Li et al. 2015). Since one of the pathways for the
respiratory system’s exposure to PM2.5 is through the nasal-
brain route, the central nervous system is highly vulnerable to
harm (Liang et al. 2023). Therefore, individuals in areas with
high concentrations of PM2.5 pollution are more prone to
developing neurodegenerative diseases (Younan et al. 2020).
Currently, Beijing has set up 35 monitoring stations to mon-
itor hourly air quality data, including the concentration of
particulate matter 2.5(PM2.5), particulate matter 10(PM10),
air quality index(AQI ), carbon monoxide(CO), nitrogen
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dioxide(NO2), ozone(O3), and sulfur dioxide(SO2), which
is beneficial for people to understand the pollution con-
centration information in their areas. PM2.5 concentration
exhibits nonlinear characteristics regarding time and space,
implying that monitoring stations have limited effectiveness
in preventing and controlling PM2.5 pollution. Therefore,
accurate prediction of PM2.5 concentration holds signif-
icant importance for air pollution prevention and control
(Yule 1927).Air quality predictionmethods involve statistical
regression, machine learning, and deep learning techniques.
In Park et al. (2023), the authors utilized outdoor PM2.5 con-
centration, temperature, and humidity data near indoor target
points as input to calculate indoor PM2.5 concentration using
a multiple linear regression model. Experimental results
demonstrated the feasibility of this approach in predicting
indoor PM2.5 concentration. Furthermore, the article evalu-
ated the model’s performance based on seasons, revealing
that seasonal characteristics significantly influence indoor
PM2.5 concentration and the predictive model’s perfor-
mance. In Song et al. (2015), the authors constructed a
generalized additive model (GAM) to estimate the statistical
relationship between latent variables and PM2.5 concen-
tration. Experimental results demonstrated an increase of
18.73% in the R2 value of this model compared to step-
wise linear regression, indicating its applicability for PM2.5

prediction. Due to the often complex and nonlinear relation-
ships between variables, there is a need for improvement in
the predictive accuracy of these methods. For example, Li
et al. (2022b) constructed a random forest regression model
incorporating MAIAC AOD, meteorological, topographical,
date, and location data to estimate daily PM2.5 concentra-
tions in the Huaihai Economic Zone from 2000 to 2020.
The results demonstrated the effectiveness of this approach
in accurately predicting PM2.5 concentrations in a separate
study. Besides, in Wang et al. (2021), the authors employed
PSO-SVR, GWO-SVR, PSO-GSA-SVR, and GRNN (with
spread=0.4 and spread=0.5) to fit three intrinsicmode feature
functions (imf) based on CEEMD. By randomly combining
the predictive results of the three imfs to generate 125 indi-
vidual models and subsequently selecting these individual
models through the DPC method for combined predic-
tions, the authors achieved significantly accurate forecasts
for PM2.5 time series data in four Chinese cities. However,
the methods mentioned above did not address the tempo-
ral correlations in PM2.5 concentration data. Additionally,
these models exhibit limited capability to represent complex
functions, and there is room for improvement in their gen-
eralization capabilities for complex prediction problems.In
recent years, neural networks have significantly developed
with improved computer computing power. Compared with
traditional methods, neural networks can deal with complex

nonlinear relationships (Zhang et al. 2021a). Therefore, an
increasing number of scholars worldwide utilize deep learn-
ing for regression problem-solving. Among these, recurrent
neural networks (RNNs) are designed to handle sequen-
tial information effectively (Zhang et al., 2019) and have
found widespread application in fields like fault diagno-
sis, machine translation, and speech recognition, achieving
promising results (Mansouri et al. 2022; Li et al. 2018; Kim
and Lee 2020; Ackerson et al. 2021; Zhou et al. 2019).
However, RNNs suffer from the vanishing gradient prob-
lem and the exploding gradient problem caused by long
sequences.

LSTM and GRU neural networks have been proposed
to address this issue. Since PM2.5 concentration data has
dynamic characteristics over time and can be described using
time seriesmodels, theLSTMandGRUneural networks have
been applied in PM2.5 concentration prediction research. For
example, Li et al. (2022c) established a GRU-based PM2.5

concentration predictionmodel that utilizes themean relative
error (MRE), root mean square error (RMSE), and Pearson
correlation coefficient as evaluation criteria to evaluate the
network’s accuracy. Extensive experiments demonstrated the
model’s appealing predictive performance. Besides, Zhou
et al. (2019) used hourly PM2.5 concentration and weather
information in Beijing as input and trained fourmodels based
on seasons using a GRU model. The authors demonstrated
that the GRU-based model has a higher prediction accu-
racy and is suitable for time series prediction of atmospheric
pollutants. Ge et al. (2019) used a deep bidirectional and
unidirectional long short-termmemory (DBU-LSTM) neural
network to obtain feature information for PM2.5 concentra-
tion data and relied on tensor decomposition to complete
missing data. Experiments highlighted the model’s feasi-
bility. However, none of the existing works discussed the
correlation between other data in the dataset and PM2.5

concentration and the correlation between PM2.5 concen-
trations.

Furthermore, Huang et al. (2021) proposed an EMD-GRU
neural network based on empirical mode decomposition
(EMD) for predicting PM2.5 concentration. The PM2.5 con-
centration sequence was decomposed using EMD, and the
resulting sub-sequences and meteorological features were
input into a constructed GRU neural network for training
and prediction. Experimental results highlighted that this
method accurately predicted PM2.5 concentration. Zhang
et al. (2022a) suggested a method for hourly prediction
of Beijing’s PM2.5 concentration based on a Bi-LSTM
neural network and discussed the effectiveness of incorpo-
rating meteorological features. Indeed, the corresponding
experimental results revealed that exploiting meteorological
features effectively reduces the prediction error of PM2.5
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concentration. Besides, Ding and Zhu (2022) constructed an
LSTM model based on principal component analysis (PCA)
and attention mechanism to eliminate the correlation effect
between indicators and reduce model complexity, achieving
good experimental prediction results. However, LSTM and
GRU models degrade into random guessing as the length of
the time series data increases.

This study proposes a hybrid neural network called
TCN-biGRU to address this issue and preserve historical
information to a greater extent. This model combines the
advanced feature extraction capability of TCN neural net-
works with bi-GRU neural networks’ time series prediction
ability. Unlike other studies that focus on improving accu-
racy by optimizing model parameters or increasing model
complexity, this model is designed based on the data fea-
ture analysis, taking into account the advantages of TCN
and bi-GRUmodels that are consistent with the inherent fea-
tures of the data. In the developed architecture, the TCN
neural network achieves an exponentially large receptive
field (Liu et al. 2020) due to the dilated convolutions and
residual connections structures, where the neural network’s
input can be a long time series data segment. Compared to
LSTM neural networks, GRU neural networks have a sim-
pler architecture, less computational complexity, and faster
training speed (Wang et al. 2021). Moreover, incorporating
directional information can improve the model’s accuracy
by considering the strong correlation between PM2.5 con-
centrations between the previous and subsequent periods.
Additionally, the bi-GRU neural network involves two GRU
models from the time series and the reverse time series direc-
tions, providing complete historical and future information
for each time point in the input sequence of the output layer
(Liang et al. 2020). Hence, the proposed TCN-biGRU neural
network combines the advantages of both models and can
be used in the prediction research of PM2.5 concentrations.
This research fills a gap by exploring the fusion of TCN and
bi-GRU models. The main contributions of this paper are as
follows:

1) Pollutants highly correlated with PM2.5 concentrations
are investigated as inputs to the neural network, which
improved the prediction accuracy compared to solely
relying on PM2.5 concentrations.

2) The autocorrelation of PM2.5 concentrations is explored,
and a strong correlation between PM2.5 concentrations
and the concentrations in the previous and subsequent
periods is verified, providing a basis for using bi-GRU
neural networks.

3) Aneural networkmodel is proposednamedTCN-biGRU,
and comparative experiments are conducted using the
Beijing air quality data from 2021/01/01 to 2021/12/31
to validate the effectiveness and performance advantages
of the developed method.

Methods

To accurately predict the PM2.5 concentration (μg/m3),
this paper proposes a neural network model based on TCN-
biGRU implemented using measurement data from air qual-
ity monitoring stations in Beijing. Additionally, to improve
the model’s accuracy, the relationship between other factors
(PM10 (μg/m3), AQI , CO (μg/m3), NO2 (μg/m3), O3

(mg/m3), and SO2 (μg/m3)) and PM2.5 concentration is
discussed, as well as the autocorrelation analysis of PM2.5

concentration.
Themodel input is historical air quality data. However, the

correlation between each pollutant and PM2.5 concentration
is calculated to increase themodel’s accuracy. Since the Pear-
son correlation coefficient measures the correlation between
variables (Shi et al. 2021), it is utilized to analyze the correla-
tion between each pollutant and PM2.5 concentration. Thus,
the auto-correlation coefficient of PM2.5 concentration data
is calculated. Moreover, a suitable number of timesteps is
selected based on the calculation cost and accuracy by eval-
uating 4, 6, 12, 18, and 28 timesteps. Finally, the monitoring
point data is input to the input layer of the TCN-biGRU
neural network, and the predicted value of the monitoring
point PM2.5 concentration is obtained. Next, the process is
described in detail.

Correlation analysis

The monitoring stations report data on multiple pollutants,
with existing studies revealing a correlation between pollu-
tants (Zhang et al. 2021b; Wu et al. 2022; Popescu et al.
2017). Therefore, in this study, the Pearson correlation
coefficient represents the relationship between PM2.5 con-
centration and the concentration of other pollutants. The
Pearson correlation coefficient (Pearson 1900) formula is as
follows:

ρXY = Cov(X ,Y )

σXσY
(1)

Cov(X ,Y ) = 1

n

n∑

i=1

(Xi − X̄)(Yi − Ȳ ) (2)

where X and Y represent the concentration of PM2.5 and
other pollutants, respectively,Cov(X ,Y ) is the covariance of
X , Y , and σX , and σY denotes the standard deviation between
PM2.5 concentration and other pollutant concentrations.

Autocorrelation analysis

To validate that the PM2.5 concentration at time T is influ-
enced by the PM2.5 concentration of the previous and
subsequent time points and to demonstrate the importance
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of bi-GRU in the TCN-biGRU model, the autocorrelation
function (ACF) is utilized to prove that the PM2.5 concen-
tration time series has autocorrelation, i.e., ACF reveals the
correlation at each lag (Flores et al. 2012). The concept and
formula of autocorrelation function (ACF) were first intro-
duced in Yule (1927). The concept and formula of ACF have
gradually evolved and taken shape throughout the develop-
ment of time series analysis. The ACF is defined as follows:

Corr =
n−k∑

i=1

(xi − u)(xi+k − u)∑n
i=1(xi − u)2

(3)

where K is the order, u is the mean value of the sequence,
and xi and xi+k correspond to item i of the two separated
sequences.

TCN-biGRU neural network

We combine the TCN and bi-GRU neural networks into
TCN-biGRU to benefit from the advantages of each network.
This section will introduce the TCN and biGRU neural net-
works separately.

TCN neural network

TCN is a convolutional neural network proposed by Bai
et al. (2018). Its design combines best practices, such as
fully convolutional networks, dilated convolutions, residual
connections, and causal convolutions (Hu et al. 2022). Exper-
imental results have shown that TCN outperforms RNN and
LSTM networks in predicting longer time series data (Yan
et al. 2020) due to relying on dilated convolutions and resid-
ual layer modules that increase the network’s receptive field
and obtain more historical information. Hence, the proposed
model exploits this characteristic of theTCNnetwork. There-
fore, the following sections detail the dilated convolution
and residual layer modules of TCN. Besides, the fully con-
volutional networks and causal convolutions ensure that the
network’s input and output sequence lengths are the same and
that information does not “leak” into the past data. It should
be noted that these two parts will not be discussed in this

paper. Using dilated convolutions can achieve exponentially
large receptive fields. The receptive field can be understood
as the maximum number of steps back from the current data
at time T . When the kernel size is k=2, and the dilation rate
is d = [1,2,4], dilation allows for the input to be sampled at
spaced intervals during convolution. Figure1 illustrates the
structure diagram of a dilated convolution, which is formu-
lated as follows (Bai et al. (2018)):

F(s) = (x ∗d f )(s) =
k−1∑

i=0

f (i)ẋs−di̇ (4)

where x ∈ Rn is the input of a one-dimensional sequence, f
is the convolution kernel, and s is the element in the sequence.
The receptive field’s formula is as follows:

R = (k − 1) ∗ (
∑

i

di + 1) (5)

Therefore, to increase the receptive field, the convolution ker-
nel size k is changed, or the dilation factor d is increased.
However, as the network becomes deeper, this strategy
increases the computation cost, gradient explosion, and gra-
dient vanishing (Li et al. 2022a).

To solve these problems, residual layer modules are added
to TCN,with Fig. 3 presenting the updated structure diagram.
The residual layer module comprises two identical layers,
including dilated causal convolution, weight normalization,
ReLU, and dropout layers (not used). The 1× 1 convolution
layer ensures that the input and output of the residual have
the same dimensions. The output o of input i is presented in
Eq.6 (Bai et al. (2018)), and therefore, the receptive field R of
the TCN neural network with N residual blocks is presented
in Eq.7 (Bai et al. (2018)). Factor 2 is set because a cell has
two layers.

o = Actication(i + F(i)) (6)

R = 2 ∗ (k − 1) ∗ N ∗ (
∑

i=0

di + 1) = N ∗ (k − 1) ∗ 2i (7)

Fig. 1 The structure diagram of
the dilated convolution Output

Input

Hidden Layer

Hidden Layer
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Bi-GRU neural network

Compared to the input, forget, and output gates in LSTM
neural networks, the GRU neural network is optimized and
has only a reset and an update gate. The former gate pre-
serves useful past information, and the latter combines past
and current information. Moreover, the reset gate captures
short-term dependencies in time series, and the update gate
captures long-term dependencies. The GRU neural network
structure is simple and thus reduces processing and training
time (Zhang et al. 2022b). The structure diagram of GRU is
illustrated in Fig. 2, where Ht−1 represents the hidden state
of the previous timestep, Ht is the hidden state of timestep t,
H̃t is the candidate hidden state of timestep t , and Rt and Zt

represent the reset door and update door, respectively. W is
the weight parameter, and b is the deviation parameter. The
GRU core formulas are as follows (Cho et al.2014):

Rt = σ(XtWxr + Ht−1Whr ) (8)

Zt = σ(XtWxz + Ht−1Whz) (9)

H̃t = tanh(XtWxh + (Rt ∗ Ht−1)Whh) (10)

Ht = Zt ∗ H̃t + (1 − Zt ) ∗ Ht−1 (11)

The bi-GRU neural network comprises a forward and a
backward GRU (Ortega-Bueno et al. 2019), with one GRU
processing the time series data, arranged forward and the
other backward. The structure diagram is presented in Fig. 2,
and the output formula is formulated in Eq. 12. Considering

that the PM2.5 concentration is highly correlated with the
concentration data of the previous and subsequent moments,
using a bi-GRUneural network to train the network fromboth
forward andbackward directions improves the network’s pre-
dictive accuracy.

Ht = (
←
Ht +

→
Ht )/2 (12)

TCN-biGRU neural network

Figure 3 illustrates the main network architecture of the pro-
posed TCN-biGRU prediction model. The Dense 1 layer
aims to change the shape of the TCN network output data
from (batch_ size, nb_filters) to (batch_size, timesteps *
input_dim), where nb_filters is the number of filters used in
the convolution layer. It should be noted that this work does
not employ a dropout in the residual linking layer, as our tri-
als revealed that it did not significantly improve the model’s
performance. Besides, the TCN-biGRU neural network has
a large receptive field and can extract features through time
series and reverse time series, enhancing PM2.5 concentra-
tion prediction.

Experiment

The deep learning models employed in this paper are built
using the Keras framework and Python programming lan-
guage. All experiments are conducted on a 64-bit Windows
10 operating system with an Intel Core i7-8750H CPU pro-
cessor.

Fig. 2 The structure diagram of
GRU model and bi-GRU model
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Fig. 3 The structure diagram of
the dilated convolution
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To verify the prediction accuracy of the proposed TCN-
biGRU model, the air quality data of Beijing were collected
and released by the National Environmental Monitoring Sta-
tion for time series prediction. The dataset covers hourly data
from January 1st, 2021, to December 31st, 2021, includ-
ing 7 features: PM2.5 (μg/m3), PM10 (μg/m3), AQI , CO
(μg/m3), NO2 (μg/m3), O3 (mg/m3), and SO2 (μg/m3).
For data for each contaminant, if three or more samples
(rows) are missing in a row, samples (rows) with missing
information attribute values are deleted. If there are fewer
than three consecutive missing data, the mean is used for
completion. We use 80% of the data as the training set and
20% as the test set of the neural network.

Correlation analysis

The correlation between PM2.5 concentration and the con-
centrations of other pollutants is verifiedbasedon thePearson
correlation coefficients between the PM2.5 concentration
and the remaining six pollutant concentrations. Figure 4
depicts the corresponding heatmap highlighting that PM2.5

concentration positively correlates with PM10, AQI , NO2,
and SO2 concentrations and negatively with O3 concentra-

tion. The Pearson correlation coefficient ranges from−1 to 1,
with each correlation coefficient corresponding to a specific
color (shown on the right side of the figure). As the corre-
lation coefficient approaches 1, the color becomes lighter,
and as it approaches −1, it becomes darker. A larger abso-
lute value of the Pearson correlation coefficient indicates a
stronger correlation. Additionally, the correlation with CO
and O3 is relatively small. Therefore, our neural network
inputs are PM2.5, PM10, AQI , NO2, and SO2. Note that
the same neural network structure and parameters are used
to conduct a comparative experiment against solely utilizing
the PM2.5 concentration as input. The corresponding results
are presented in Sect. 3.3.

Autocorrelation analysis

The effectiveness of the developed bi-GRU neural network
is demonstrated by employing the PM2.5 concentration data.
The results are depicted in Fig. 5, where the vertical axis is
the confidence coefficient, the horizontal axis is the lag k, and
the blue area is the confidence interval. Figure 5 infers that
the PM2.5 concentration has a high correlation with itself,
and the correlation coefficient gradually decreases as the lag
k increases. Specifically, the autocorrelation coefficient is
still around 0.9 when k=4, 0.8 when k=6, 0.7 when k=12, 0.6
when k=18, and 0.5when k=28. The lag k provides a basis for
the timestep values in Section 3.5.1. In addition, the bi-GRU
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Fig. 4 A heatmap of the correlation between PM2.5 concentration and
other pollutant concentrations

neural network obtains more feature information from the
forward and reverse sequences. Therefore, our model uses
a bi-GRU neural network and fuses it with the TCN neural
network.

Determination of model parameters

Due to the critical roles that activation function types and
neuron counts play in the accuracy of artificial neural net-
work models, it is ensured that other parameters were kept
constant and separately investigated the effects of activation

Fig. 5 A graph showing the results of autocorrelation analysis on
PM2.5 concentration

function types and neuron counts on the model. Four acti-
vation functions—linear, tanh, sigmoid, and ReLU—were
selected for experimentation. In the case of neuron count
analysis, the TCN network is chosen as a baseline. While
maintaining the same structure for the bi-GRU neural net-
work, the neuron count of the TCN neural network is altered
within the bounds of its predictive capacity. Following attain-
ing the TCN’s predictive limit, the TCN-biGRU model is
established based on this baseline structure.

Data standardization

The Z -score normalization method is utilized to unify the
different scales of the data and improve comparability. The
dataset is normalized through Z -score normalization by set-
ting the mean to 0 and the standard deviation to 1. Using
the entire dataset’s overall mean and standard deviation mit-
igates the impact of outliers. This technique enhances model
predictive performance (Tanaka et al. 2022). This common
normalization method standardizes the data by subtracting
and dividing the mean by the standard deviation. Z -Score is
formulated as follows:

Z = x − μ

σ
(13)

where μ and σ are the average and the standard deviation of
all data, respectively.

Evaluating criterion

Our model’s prediction accuracy is evaluated based on the
mean squared error (MSE), used as the loss function, and
the MAE, RMSE, and R2 evaluation metrics. These metrics
are commonly used to evaluate the variability and accuracy
of data, with the corresponding formulas presented in Eqs.
14–17, where N is the number of samples, yi is the actual
value, y̌i is the predicted value, and ȳi is the average value.
Note that the smaller the MSE, MAE, and RMSE, the higher

Fig. 6 Prediction results of the model when timesteps=4
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Fig. 7 Prediction results of the model when timesteps=6

the model’s accuracy. Moreover, the closer R2 is to 1, the
higher the model’s accuracy.

MSE = 1

N

N∑

i=1

(
yi − ŷi

)2 (14)

MAE = 1

N

N∑

i=1

| yi − ŷi | (15)

RMSE =
√√√√ 1

N

N∑

i=1

(
yi − ŷi

)2 (16)

R2 = 1 −
∑

i

(
ŷi − yi

)2
∑

i (ȳi − yi )2
(17)

Model prediction experiments

Determination of timesteps and input data

The “timesteps” parameter indicates how many times-
tamps of input data should be included in each unit model’s
input, representing how many previous consecutive input
data points are relevant to the current data. Therefore, the

Fig. 8 Prediction results of the model when timesteps=12

Fig. 9 Prediction results of the model when timesteps=18

Fig. 10 Prediction results of the model when timesteps=28

Table 1 Performance comparison of models with different timestep
values

Timesteps MAE RMSE R2 Time (s)

Timesteps=4 4.19 8.13 0.953 158

Timesteps=6 4.76 10.16 0.930 146

Timesteps=12 4.73 9.32 0.940 182

Timesteps=18 4.69 8.35 0.952 214

Timesteps=28 4.93 8.97 0.949 270

Table 2 Performance comparisonofmodelswith different input dimen-
sion values

Input dimension MAE RMSE R2

input_dim=1 4.12 8.89 0.949

input_dim=5 4.19 8.13 0.955

Table 3 Predictive results of different activation function models

Activation MAE RMSE R2

ReLu 4.19 8.13 0.953

tanh 5.09 9.97 0.935

sigmoid 5.47 11.11 0.920

linear 4.45 8.35 0.954
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Table 4 Predictive results of models with different neuron counts

Neuron MAE RMSE R2

32 4.62 8.72 0.942

50 4.19 8.13 0.953

64 4.52 8.57 0.944

100 4.56 8.84 0.941

128 4.65 9.35 0.941

“timesteps” value is determined by referring to the lag order
k in autocorrelation analysis (Section 3.1.3). Timesteps are
a very important hyperparameter in neural networks, and an
appropriate value can improve the accuracy of time series
prediction models. To select a suitable value for timesteps,
comparative experiments are conducted with the timestep
value set to 4, 6, 12, 18, and 28while keeping other neural net-
workparameters the same.Theprediction results for different
“timesteps” values are depicted in the figure below (Fig. 6, 7,
8, 9, 10, partial results are displayed), revealing that when the
timesteps are 4, the model can track the PM2.5 concentration
during dramatic changes better than in the other four timestep
values. The experimental results are reported in Table 1,
highlighting that the proposed model performs best when
the timestep is 4, while simultaneously, the computation and
training time of the system are relatively short. Therefore,
4 timesteps are selected. Additionally, various input data
setups are compared, including PM2.5, PM10, AQI , NO2,
and SO2, and using only PM2.5, to verify that the neural net-
work’s prediction accuracy is higherwhenusing thefive input
data. Similarly, the input dimensions of the data are modified
while preserving the other parameters, with the correspond-
ing results reported in Table 2. The results infer that the
MAE is better when input_dim=1, but the RMSE and R2 are
inferior when input_dim=5. Hence, to enhance the model’s
accuracy, input_dim = 5. It is observed that insufficiently
comprehensive input parameters can impact the accuracy of
the model’s predictions.

Determination of activation functions and neuron count

In order to achieve optimal performance of the model and
achieve more accurate predictions, we separately investi-
gated the impact of different activation functions and neuron
counts on the model’s accuracy. While keeping other net-

work parameters consistent, four commonly used activation
functions are explored: linear, tanh, sigmoid, and ReLU. The
experimental results are presented in Table 3, revealing that
the model performs best when the ReLu activation function
is chosen for the neural network.

For the selection of neuron counts, five different cases of
neuron counts are evaluated: 32, 50, 64, 100, and 128, as
shown in Table 4. The results indicate that as the number of
neurons in the TCN hidden layers increases, the prediction
performance improves significantly and gradually decreases.
The model’s performance reaches optimal when the neuron
count is set to 50. Therefore, the neuron count is set to 50 in
the experiments.

Prediction results

It is compared against the LSTM and GRU neural networks
to validate the proposed model’s accuracy. Since the LSTM,
GRU, and TCN-biGRU neural networks converged after 150
iterations (see Fig. 11), we set 150 epochs for each model.
The predicted results of all models are reported in Table 5.
Some of the predicted results are visualized in Fig. 12.

Furthermore, it is compared against the bi-GRU andTCN-
GRU neural networks to validate the proposed model better.
In the test data, the TCN-biGRU neural network had a
lower mean absolute error, root mean square error, and a
higher R2 than the competitor neural networks. Figure 12
reveals that the TCN-biGRU-based predicted values follow
the trend of the actual values to a certain extent, and it per-
forms better than the competitor networks when the data
have larger variations. Additionally, the results demonstrate
that the TCN-biGRU neural network converged significantly
faster than the LSTM and GRU neural networks. Therefore,
the suggested network can be effectively applied for PM2.5

concentration prediction.
Furthermore, to validate the effectiveness of our proposed

model, its predictive results are compared with two different
hybrid models. The predictive outcomes of the CNN-LSTM
modelwere sourced from the study byXie et al. (2023), while
the predictive outcomes of the LSTM-Attention model were
sourced from the study by Gao and Li (2022), ensuring con-
sistency in the dataset and model settings. The predictive
results are presented in Table 6, revealing that the TCN-
biGRU neural network outperforms the other two models.
Hence, establishing the TCN-biGRU neural network model

Fig. 11 With the increase of the
number of iterations, the loss
values of the three models reach
a stable level in about 150
iterations
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Table 5 Performance comparison of five different neural networks
under the same conditions

Model MAE RMSE R2

LSTM 4.80 10.14 0.938

GRU 4.85 10.60 0.932

Bi-GRU 4.72 10.36 0.935

TCN-GRU 4.61 9.31 0.947

TCN-biGRU 4.19 8.13 0.955

is highly necessary for enhancing the accuracy of PM2.5

concentration prediction.

Discussion and conclusion

Discussion

This study introduces the TCN-biGRU neural network for
predicting PM2.5 concentration, with various factors and
parameters influencing the model’s accuracy. The paper
investigates the impact of single-input versus multiple-input
variables on predictive accuracy and the influence of neural
network hyperparameters such as timestep, activation func-
tion, and number of neurons on predictive accuracy.

Table 1 highlights that using five input variables yields a
prediction result with a 0.76 lower RMSE and a 0.009 higher
R2 compared to using only PM2.5 concentration as input.
Table 2 reveals that the predictive accuracy is highest when
timesteps=4, with a significant reduction inMAE and RMSE
by 0.74 and 2.03, respectively, and an improvement in R2 by
0.023, compared to other scenarios. Table 3 demonstrates
that using the ReLu activation function results in the largest
reduction inMAE and RMSE by 1.28 and 2.98, respectively,
compared to the reference experiment. The impact of TCN
neural neuron count on predictive accuracy is presented in
Table 4, where using 50 neurons yields the maximum reduc-

Fig. 12 The prediction results of PM2.5 concentration using five types
of neural networks

Table 6 Performance comparison of two different neural networks
under the same conditions

Model MAE RMSE R2

TCN-biGRU 4.19 8.13 0.955

CNN-LSTM 4.53 9.24 0.948

LSTM-Attention 4.64 9.52 0.945

tion in MAE and RMSE by 0.46 and 1.22, respectively,
compared to the reference experiment. Both input variables
and hyperparameters influence themodel’s accuracy. Among
these, the choice of timesteps and activation function has
a more pronounced impact on the model’s output than the
effects of input variables and the number of neurons on the
model’s accuracy.

Figure 12 reveals that all five models can effectively track
the variations in PM2.5 concentration data. However, when
confronted with larger fluctuations, the TCN-biGRU neural
network exhibits superior tracking performance compared
to the other four models. Additionally, by comparing Tables
5 and 6, it is evident that fused neural networks like CNN-
LSTM and LSTM-Attention show better predictive accuracy
than standalone LSTM and GRU neural networks. Nonethe-
less, compared to the TCN-biGRU neural network proposed
in this study, there remains some disparity. From the above
discussions, it is evident that the TCN-biGRUneural network
can be utilized for predicting PM2.5 concentration.

Conclusion

This paper introduces the TCN-biGRU model for predict-
ing PM2.5 concentration in Beijing based on a combination
of temporal convolutional neural network (TCN) and bidi-
rectional gated recurrent unit (bi-GRU) neural network. The
model considers the relationship between meteorological
features and PM2.5 concentration and the impact of PM2.5

concentration’s self-correlation on predictions. It also inves-
tigates the influence of input parameters, neuron counts, and
activation functions on prediction accuracy. Based on the
experimental results, it is evident that the input variables of
the neural network and the neural network’s hyperparameters
influence the model’s accuracy. Furthermore, the TCN-
biGRUmodel is also comparedwith other predictionmodels.
The experimental results indicate that this approach outper-
forms the other comparative models with MAE, RMSE, and
R2 values of 4.19, 8.13, and 0.955, respectively. This research
offers valuable insights for PM2.5 concentration prediction
and environmental control.
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