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Abstract
Through multiple different pathways, the environmental multiple metals make their ways to the human bodies, where they 
induce different levels of the oxidative stress response. This study further investigated the impact of multiple-metal exposure 
on the risk of developing proliferative diabetic retinopathy (PDR). We designed a case–control study with type 2 diabetic 
patients (T2D), in which the case group was the proliferative diabetic retinopathy group (PDR group), while the control 
group was the non-diabetic retinopathy group (NDR group). Graphite furnace atomic absorption spectrometry (GFAAS) and 
inductively coupled plasma optical emission spectrometry (ICP-OES) were used to detect the metal levels in our participants’ 
urine samples. The least absolute shrinkage and selection operator (LASSO) regression approach was used to include these 
representative trace elements in a multiple exposure model. Following that, logistic regression models and Bayesian kernel 
machine regression (BKMR) models were used to describe the effect of different elements and also analyze their combined 
effect. In the single-element model, we discovered that lithium (Li), cadmium (Cd), and strontium (Sr) were all positively 
related to PDR. The multiple-exposure model revealed a positive relationship between Li and PDR risk, with a maximum 
quartile OR of 2.80 (95% CI: 1.10–7.16). The BKMR model also revealed that selenium (Se) might act as a protective agent, 
whereas magnesium (Mg), Li, and Cd may raise the risk of PDR. In conclusion, our study not only revealed an association 
between exposure to multiple metals and PDR risk but it also implied that urine samples might be a useful tool to assess 
PDR risk.
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Introduction

Diabetic retinopathy (DR) is a retinal condition resulted 
from retinal capillary damage caused by decreased glucose 
tolerance (Sinclair and Schwartz 2019). It is classified as an 
inflammatory neurovascular complication with neurological 
damage or malfunction, which can severely impair vision 
and eventually lead to blindness. According to the World 
Health Organization (WHO) in 2019, 146 million (34.6%) of 
the 422 million diabetes people worldwide have DR (World 
report on vision 2019). These estimates are expected to rise 
as the prevalence of DR increases in the middle- and low-
income nations. Considering visual loss from DR is prevent-
able, WHO has placed DR on the top of their priority list for 
ophthalmologic disorders. Although intravitreal injection of 
anti-VEGF drugs and vitrectomy are the common clinical 
treatment for DR, some problems exist, such as the need 
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for repeated intraocular injections, transient vision improve-
ment, and no-response to treatment in some patients for anti-
VEGF treatment (Reddy et al. 2018). Therefore, advance 
intervention is important to reduce the incidence and delay 
the progression of DR.

Recent studies have shown that multiple-metal exposure 
may increase the risk of developing ocular diseases such as 
DR, age-related macular degeneration (AMD), cataracts and 
glaucoma (Wang et al. 2016; Bede-Ojimadu et al. 2021). 
Zhu and Hua have recently reported there are essential trace 
element (such as manganese (Mn) and zinc (Zn)) deficien-
cies, as well as toxic chemical (such as Cd and cesium (Cs)) 
accumulation in DR patients (Zhu and Hua 2020). Other 
scholars have also observed an association between urine 
barium (Ba), lead (Pb), molybdenum (Mo), Se, and Sr with 
the risk of diabetes (Feng et al. 2015). Trace elements play 
an essential role in the normal function of proteins, enzymes, 
and transcription factors. Toxic metals, however, may clash 
with necessary trace elements and in turn damage enzyme 
activities and other physiological processes. Recent research 
has shown that aberrant trace elements and toxic metal ele-
ments may cause microvascular complications in diabetic 
individuals, and the development of microvascular disorders 
in the fundus might impair vision in people with DR (Zhu 
and Hua 2020).

Modern society is a complex living environment with 
diverse levels of metal exposure. Metals are transported and 
excreted in the body through blood and urine. Whereas urine 
levels reflect long-term chronic exposure to metals, blood 
levels are more relevant to recent acute exposure. Therefore, 
urine can be used as a biomarker to assess the effects of 
multiple-metal exposure on humans. For urine metal levels 
can provide an indication of the absorption and toxicity of 
metals in the body (Pedersen et al. 2005).

The interactions between metals may also have some 
impacts on their effects to human health. The BKMR model 
has been used to evaluate the combined effects of mixed 
components by taking into consideration of any potential 
nonlinear effects and interactions (Zhong et al. 2021). It is 
widely agreed that blood levels are more pertinent to recent 
acute exposure, whereas urine levels represent long-term 
chronic exposure to a specific metal (Pedersen et al. 2005). 
By using BKMR models, Some scholars examined the 
impact of individual metal element and the combined effect 
of different metals. BKMR models are also used to examine 
the association of urine metal element levels with diabe-
tes, hypertension, and other disorders (Zhou et al. 2021). 
Although related studies have preliminarily elucidated the 
effect of metals in the evolution of DR, there are still some 
limitations, such as lack of analysis of trace elements in 
urine and lack of systematic evaluation of the single-ele-
ment effects or the combined effects of metal elements in 
the risk of DR development (Zhu and Hua 2020). Notably, 

the systematic evaluations are crucial to understand how 
multiple metals contribute to the onset of ocular disorders 
and to promote creation of new efficient guidelines to reduce 
the existing level of local environmental contamination. As 
a result, the objectives of this research are to (a) investigate 
the correlation between urinary metal levels and the risk of 
developing PDR in the presence of mixed multiple metal 
exposure; (b) provide new guidelines for the prevention and 
treatment of ocular diseases; (c) may provide an epidemio-
logical basis for enhancing the understanding and detection 
of multiple metal contamination in the environment.

Methods

Subjects in research

The study was conducted at the First Affiliated Hospital of 
Anhui Medical University, Anhui Province, China, from 
December, 2017, to March, 2019. Anhui Province locates 
in the eastern part of China (31°52′N, 117°17′E). All par-
ticipants were type 2 diabetes (T2D) patients from Anhui 
Province, China, and completed blood, urine, ophthalmo-
logical, and related systemic examinations. The case group 
(PDR group) was recruited from patients with proliferative 
diabetic retinopathy (PDR) who were requiring surgical 
treatment in the ophthalmology department, and the control 
group (NDR group) was recruited from patients with non-
diabetic retinopathy (NDR) in the hospital. The diagnoses 
of DR and DM were made according to the American Acad-
emy of Ophthalmology guidelines (Flaxel et al. 2020) and 
the American Diabetes Association guidelines (American 
Diabetes 2020), separately.

Case group (PDR group) was defined as diabetic patients 
with any of the characteristic lesions of PDR in the fundus, 
including intraretinal hemorrhages, bead-like changes in 
fundus veins or microvascular abnormalities, retinal or optic 
disc neovascularisation, vitreous hemorrhages, or pre-retinal 
hemorrhages. The control group (NDR group) was diabetic 
patients without any characteristic lesions in the fundus of 
the eye with DR (Garoma et al. 2020). Exclusion criteria for 
both groups: having other retinal sicknesses (e.g., macular 
degeneration, retinal vein occlusion, pathological myopia); 
having other eye sicknesses (e.g., glaucoma, ocular trauma, 
infection and tumors); having mental illness, being pregnant, 
any systemic disease (e.g., acute infectious sickness, autoim-
mune ailment, severe liver or kidney dysfunction, malnutri-
tion, cancer, etc.); employment or experience in unusual set-
tings; taking vitamin or mineral supplements; family history 
of genetic disease, etc. (Liu et al. 2022; Zhu and Hua 2020). 
The pupils of participants’ eyes were suitably dilating with 
1% tropicamide and the eyes were examined by the same 
experienced ophthalmologist.
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Age (± 5 years for cases), diabetes duration (± 2 years for 
cases), and gender were matched 2:1 between the control and 
case groups. Ultimately, 60 participants from the PDR group 
and 120 participants from the NDR group were included 
in the research. All participants provided written informed 
consent, which was reviewed and approved by the Ethics 
Committee at Anhui Medical University (20170305).

Data gathering and definition of variables

Prior to the start of the survey, all participants completed 
an informed consent form, then completed our self-made 
structured questionnaire, which included information on 
gender, age, height, weight, quantity of sleep, frequency of 
exercise, total yearly family income, smoking status, and 
alcohol intake.

Three categories were used to categorize the quality 
of sleep: poor, general, and good. Physical activity levels 
were divided into two groups: < 2 times/week and ≥ 3 times/
week. Three categories of annual family income were estab-
lished: < 10,000 RMB, 10,000–60,000 RMB, and > 60,000 
RMB. Participants who had smoked for a continuous or 
cumulative total of 6 months or more at the time of the sur-
vey were considered smokers. Participants who had shown 
alcoholic habits for 6 months in a row and at least once per 
week were considered alcohol drinkers.

The trained medical professionals used a height- and 
weight-measuring apparatus to determine the participants’ 
height and weight, which were then expressed in centim-
eters (cm) and kilograms (kg). The participants’ BMI was 
then determined, and according to Chinese adult norms, 
it was categorized into four categories: underweight 
BMI < 18.5 kg/m2, normal weight BMI 18.5–23.9 kg/m2, 
overweight BMI 24.0–27.9 kg/m2, and obese BMI ≥ 28.0 kg/
m2 (Li et al. 2020).

Examination of urinary components

Participants had completed the study’s self-made question-
naire and provided their first clean mid-stream urine in the 
morning of the following day. The gathered samples were 
sent to the lab and kept there for further testing in a refrig-
erator at – 80 °C.

Urine samples were transferred from the ultra-low tem-
perature refrigerator and thawed at room temperature. The 
extracted material was diluted with 5% nitric acid and then 
mixed homogeneously in a vortex mixer. The samples 
were microwaved in a microwave digester at 90 °C for 1 h 
before being centrifuged at room temperature. The aspirated 
supernatants were sent for further evaluation. An innocuous 
sample was included in the experiment alongside every 20 
samples. The concentration of Cd in the urine was meas-
ured with the use of a Graphite Furnace Atomic Absorption 

Spectrometer (GFAAS, ZEEnit700P, Analytik Jena, Ger-
many). The matrix modifier in the experiment was a 1% 
solvent of diammonium hydrogen phosphate. Inductively 
coupled plasma–optical emission spectrometry (ICP-OES 
7000DV, PerkinElmer Corporation) was used to measure the 
concentrations of 10 different metals in urine. These met-
als included Ba, chromium (Cr), Pb, Li, Mg, Mn, Mo, iron 
(Fe), Se, and Sr.

The accuracy of the measurements was evaluated using 
the spiked recovery method with the spike-and-recovery 
experience ranging from 92 to 104%. The creatinine levels 
in the urine were measured by the BECKMAN DXC800 
Biochemistry Analyzer, USA. Metal element concentrations 
in urine below the limit of detection (LOD) were replaced 
by LOD/√2 (Tellez-Plaza et al. 2013). The findings of the 
research used creatinine correction values [g/(g creatinine) 
or mg/(g creatinine)] to account for the influence of sample 
concentration status on metal element concentrations. All 
elements relying on LOD detection rates were more than 
70%. In order to correct the impact of sample concentration 
status on metal element concentrations, the study’s results 
included metal element concentrations with creatinine 
adjustment values [μg/(g creatinine) or mg/(g creatinine)]. 
The detection rates for all LOD-dependent elements were 
more than 70% (Zhong et al. 2021).

Statistic evaluation

Demographic features of the case and control groups were 
compared using descriptive methods. We used paired sam-
ples t-test and Wilcoxon signed-rank test to describe nor-
mal and skewed distributions. The chi-square test (χ2) was 
employed to compare categories of information. All metal 
concentrations were adjusted for creatinine and then trans-
formed to the natural logarithm.

By using logistic regression models, we calculated ORs 
and 95% confidence intervals (CIs) for PDR and divided 
each urinary metal level into quartiles. A reference was cho-
sen based on the concentration distribution of the lowest 
quartile. To analyze the impact of each metal, we used two 
models. The conditional logistic regression model took gen-
der and age (a continuous variable) into account while calcu-
lating metals in model 1. Additionally, model 2 made adjust-
ments for BMI, sleep quality, physical activity, household 
annual income, smoking status, and alcohol consumption. 
The quartiles of urine element concentrations were entered 
into the models as an ordinal categorical variable to produce 
the linear trend p-values.

We created multi-metal models to assess the impact of 
multiple-metal mixed exposures on diabetic retinopathy, as 
well as a metal correlation heatmap to analyze metal cor-
relations. Considering the diversity and correlation of ele-
ments, LASSO regression is used to select elements into 
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the multiple-exposure model and accomplish dimensionality 
reduction (Alhamzawi and Ali 2018). LASSO regression 
can regress and penalize all variables and exclude rela-
tively unimportant independent variables from the model 
(McEligot et al. 2020). The ORs and 95% CIs for multiple-
metal exposure and PDR were then calculated using logistic 
regression models.

We used BKMR models to investigate individual metal 
effects and their interactions with one another in order to 
better understand the nonlinear effects of metal elements 
on the risk of PDR (Bobb et al. 2018). For brevity, below is 
the abbreviated form of the equation describing the BKMR 
model (Bobb et al. 2015):

where Yi denotes the health outcome, zi is a vector of expo-
sure factors (e.g., air pollution constituents), �T

i
� includes 

possible confounders, and �i stands for the residual. When 
considering environmental pollution mixed exposure, h(zi) 
has a high-dimensional exposure–response function, which 
may be nonlinear and/or involve interactions between mix-
ture components. We created exposure matrices and vari-
ables and employed the kmbayes function to execute the 
Monte Carlo approach (Escobar et al. 2010). In this instance, 
the variables are the demographic traits and the exposure 
matrix comprises the metals chosen through LASSO 
regression.

Firstly, we performed variable selection for the exposure 
variable to fit the BKMR model and calculated the poste-
rior inclusion probability (PIP) for the exposure variable 
(metals) (Valeri et al. 2017). And PIP indicates the relative 
importance of the impact on the outcome, with higher values 
indicating greater influence on the outcome. Then, when 
the other elements were set at their neutral concentrations, 
cross-sectional plots were then shown to demonstrate the 
respective individual-exposure response functions of the 
elements. When the levels of all other metal concentrations 
were set at a certain quartile (e.g.,  P25,  P50, and  P75), we also 
evaluated the variations in individual metal risk between 
their 75th and 25th percentiles. Following that, the cumula-
tive impact of multiple-metal mixing exposure was evalu-
ated by comparing exposure values when all metal were at 
a certain quantile with exposure values when all elements 
were at their median. Furthermore, this study explored the 
interactions between several metals and the risk of PDR and 
displayed bivariate exposures for each two components, with 
all other factors maintained at a certain quantile (median) 
(Bobb et al. 2018).

Data input and calibration checks were performed using 
EpiData 3.1 software. The follow-up analysis was con-
ducted using SPSS, version 23.0 (SPSS Inc., Chicago, IL, 
USA), and R software (version 3.6.1; R Core Team). And 

Yi = h(zi) + �T

i
� + �i

α = 0.05 was chosen as the threshold for bilateral statistical 
significance.

Results

Population characteristics

This study recruited a total of 60 PDR case groups and 120 
matched NDR controls. The study groupings and experi-
mental procedures are shown in Fig. 1. Table 1 provided 
the participants’ fundamental demographic details. The 
participants’ average ages were 54.20 ± 8.57 years for the 
NDR group and 53.48 ± 8.57 years for the PDR case group. 
Patients in the PDR group had a lower mean BMI than those 
in the control group (p < 0.05). However, when being cat-
egorized according to Chinese adult criteria, there was no 
discernible change in BMI between the PDR and control 
groups (p > 0.05). Additionally, there were no appreciable 
variations in the two groups’ levels of alcohol intake, physi-
cal activity, yearly family income, smoking status, or quality 
of sleep (p > 0.05).

Concentrations of metal elements in urine

Since the distribution of the initial metal concentrations in 
the urine of the case and control groups was skewed, we 
used percentiles  (P25,  P50, and  P75) to describe the values. 
The distribution of the 11 urine metal elements is summa-
rized in Table S1, where all metal elements were detected 
at > 70%. In comparison to the control group, Mg, Mo, Li, 
Sr, and Cd levels were all considerably higher (p < 0.05). 
The heat map of the Spearman correlation for urine metals 
is then shown in Fig. 2. The highest correlation was between 

Fig. 1  Study groupings and experimental procedures
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Table 1  Main baseline 
characteristics of case and 
control

Characteristics Case (n = 60) Control (n = 120) t/χ2 P value

Men, n (%) 33 (55.0) 66 (55.0)
Age, year, mean (SD) 53.48 ± 8.57 54.20 ± 8.57  − 0.529 0.967
BMI, kg/m2, mean (SD) 23.91 ± 3.48 28.49 ± 9.36  − 3.659  < 0.001
BMI, kg/m2, n (%) 9.894 0.016

   < 18.5 2 (3.3) 3 (2.5)
  18.5–23.9 29 (48.3) 39 (32.5)
  24.0–27.9 22 (36.7) 40 (33.3)
   ≥ 28.0 7 (11.7) 38 (31.7)

Sleep quality, n (%) 2.925 0.232
  Poor 14 (23.3) 18 (15.0)
  General 16 (26.7) 27 (22.5)
  Good 30 (50) 75 (62.5)

Physical activity, n (%) 0.492 0.483
   < 2 45 (75.0) 84 (70.0)
   ≥ 3 15 (25.0) 36 (30.0)

Household annual income, RMB, n (%) 0.327 0.849
   < 10,000 6 (10.0) 9 (7.5)
  10,000– 36 (60.0) 74 (61.7)
   > 60,000 18 (30.0) 37 (30.8)

Smoking status, n (%) 1.813 0.178
  Ever 8 (13.3) 26 (21.7)
  Never 52 (86.7) 94 (78.3)

Alcohol consumption, n (%) 0.715 0.398
  Ever 13 (21.7) 33 (27.5)
  Never 47 (78.3) 87 (72.5)

Fig. 2  The Spearman correla-
tion heatmap of urinary ele-
ments’ levels (log) among the 
overall participants
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Li and Sr with R = 0.59, followed by Fe and Mn with cor-
relation coefficient of 0.58.

Single‑element exposure model for PDR

The risk of PDR was categorized for each metal element 
concentration (adjusted for creatinine and converted by 
natural logarithm) into quartiles, with the lowest group 
(Q1) serving as a reference. Table 2 shows that Mg, Li, 
Sr, and Cd concentrations in model 1 were positively cor-
related with PDR risk. These correlations persisted in Li, 
Sr, or Cd after model 2’s correction for other possible con-
founders (p-trend < 0.05). And in the highest quartiles, 
we found a link between exposure to Li, Sr, or Cd (Q4 vs. 
Q1: OR = 3.12, 95% CI: 1.31–7.40; OR = 3.09, 95% CI: 
1.13–8.49; OR = 2.45, 95% CI: 1.02–5.86).

Multiple exposure model for PDR

We utilized LASSO regression to filter these 11 metal ele-
ments and included representative elements in the multiple-
exposure model (Fig. 3a and b). According to the LASSO 
regression screening results, four metals (Mg, Li, Se, and 
Cd) were selected in the model. The study then investigated 
the relationship between PDR risk and mixed exposure to 
four metals, with adjustment for all potential covariates 
(Table 3). And the potential covariates include age, gender, 
BMI, sleep quality, physical activity, yearly family income, 
smoking status, passive smoking, and alcohol consumption. 
As observed, increased Li levels were positively correlated 
with PDR, with the highest quartile OR of 2.80 (95% CI: 
1.10–7.16), respectively. Meanwhile, the results showed no 
association between Mg, Se, or Cd and PDR risk.

BKMR evaluations

The BKMR model was applied in this work to assess the 
effects of mixed exposure for the four metals chosen from 
the LASSO regression and shown in Fig. 4. We evaluated 
the PIP for the metal elements included in the BKMR model 
(Table S2). PIP indicates the relative importance of the 
impact on the outcome. Higher values (close to 1) imply 
greater relevance for the outcome, while lower values (close 
to 0) indicate less importance. Secondly, when the remain-
ing components were maintained at their median amounts, 
we modeled separate exposure–response functions for each 
element (95% CI). In accordance with the findings of the sin-
gle-element model, the exposure levels of three metals (Mg, 
Li, and Cd) were positively linked with the risk of develop-
ing PDR, as shown in Fig. 4a. Furthermore, we observed a 
negative correlation between Se and PDR risk.

Figure 4b shows the overall effect of the mixture. The 
combined effect (95% CI) of all factors was presented when 

the five elements were all fixed at specific percentile levels 
 (P25 to  P75, step value = 5th) compared to their median. In 
this case, the cumulative effect of all factors was statisti-
cally significant when they were above their 50th compared 
to the median. In this study, we observed a significant joint 
effect when the four metals (Mg, Li, Se, and Cd) were at or 
above 55th compared to their median values. The four met-
als’ combined impact was significantly and positively corre-
lated with PDR risk. At the same time, the overall exposure 
had a negative impact on PDR risk when they were at the 
40th and 45th percentiles (Table S3).

The distribution of separate exposures on the combined 
impact was then examined in this study. For example, when 
the remaining metal concentrations were fixed at different 
percentile levels (25th, 50th, and 75th), the difference in 
single-exposure risk when all of them were fixed to their 
75th percentile versus when all of them were fixed to their 
25th percentile was calculated (Est and 95% CI, Est = 0 indi-
cates null). As shown in Fig. 4c, when the other remaining 
metal concentrations were fixed at the specified percentile, 
increased exposure to Cd or Li was positively linked with 
PDR risk (75th vs. 25th). Different Se or Mg concentrations 
had no statistically significant impact on the remaining ele-
ments, regardless of their concentration (Table S4).

The bivariate exposure–response results are shown in 
Fig. 4d, with a column denoting “exposure 1” and a row 
denoting “exposure 2.” When the concentrations of the other 
elements were kept fixed at their median values, “exposure 
1” was the metal under investigation. “Exposure 2” was 
when they were at  P25,  P50, and  P75. If the curves intersect, 
there may be an interaction, and the graph showed that there 
was no interaction between these variables on the outcome. 
Moreover, we found that the potential association of Cd, Li, 
or Mg with the other three metals increased the risk of PDR. 
The positive slope of Cd, Li, or Mg became steeper with 
increasing urine concentrations when the remaining metals 
were at their median.

Discussion

We found substantial disparities in metal levels between the 
two groups in our investigation. In the single-element model, 
after adjusting for other possible confounders, Li, Sr, and Cd 
were shown to be significantly positively linked with PDR 
risk compared to the lowest concentration group. Further-
more, in the multiple exposure model, rising quartiles of 
Li were significantly correlated with the incidence of PDR. 
Consistent to the findings in the multiple exposure model, 
the BKMR model similarly demonstrated a monotonic rise 
in the effect of Li corresponding with its increasing concen-
tration. High concentrations of Mg, Li, and Cd significantly 
increase PDR risk, while Se has the opposite effect.
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Table 2  Odds ratios (ORs) and 
95% confidence intervals (95% 
CIs) according to PDR for urine 
elements in single-element 
model

Model 1: Metals were calculated in the conditional logistic regression model separately and only adjusted 
by age (continuous variable) and gender
Model 2: Additionally adjusted for BMI, sleep quality, physical activity, household annual income, smok-
ing status, alcohol consumption
Linear trend p values were derived by entering the quartiles of urine elements’ concentrations into the 
models as an ordinal categorical variable
a  The units of metal elements were micrograms per gram creatinine [μg/(g creatinine) or mg/(g creatinine)]

Elementsa Quartile 1 Quartile 2 Quartile 3 Quartile 4 Ptrend

Mg  < 19.27 19.27~ 32.33~  ≥ 61.52
Case/Control 10/30 4/30 26/30 20/30
Model 1 1 (ref) 0.47 (0.15–1.5) 1.85 (0.88–3.89) 1.6 (0.75–3.44) 0.046
Model 2 1 (ref) 0.52 (0.16–1.67) 1.8 (0.84–3.83) 1.61 (0.74–3.52) 0.080
Cr  < 11.05 11.05~ 28.28~  ≥ 42.99
Case/Control 15/30 14/30 14/30 17/30
Model 1 1 (ref) 0.96 (0.46–1.99) 0.95 (0.46–1.98) 1.1 (0.55–2.20) 0.803
Model 2 1 (ref) 0.84 (0.40–1.79) 1.03 (0.49–2.14) 1.24 (0.61–2.51) 0.636
Mo  < 14.1 14.1~ 28.36~  ≥ 54.5
Case/Control 11/30 8/30 18/30 23/30
Model 1 1 (ref) 0.77 (0.31–1.91) 1.39 (0.66–2.95) 1.65 (0.80–3.39) 0.074
Model 2 1 (ref) 0.64 (0.25–1.64) 1.46 (0.68–3.13) 1.54 (0.74–3.20) 0.108
Fe  < 7.86 7.86~ 22.91~  ≥ 57.02
Case/Control 12/30 12/30 14/30 22/30
Model 1 1 (ref) 0.99 (0.44–2.20) 1.11 (0.51–2.41) 1.47 (0.73–2.98) 0.227
Model 2 1 (ref) 1.02 (0.45–2.32) 1.16 (0.52–2.58) 1.55 (0.76–3.19) 0.207
Ba  < 0.1 0.1~ 1.48~  ≥ 5.21
Case/Control 14/30 8/30 23/30 15/30
Model 1 1 (ref) 0.66 (0.28–1.57) 1.35 (0.68–2.65) 1.04 (0.5–2.16) 0.505
Model 2 1 (ref) 0.65 (0.27–1.57) 1.40 (0.70–2.82) 1.05 (0.5–2.19) 0.582
Li  < 2.51 2.51~ 6.37~  ≥ 14.65
Case/Control 7/30 7/30 20/30 26/30
Model 1 1 (ref) 1.02 (0.36–2.92) 2.11 (0.89–5.00) 2.50 (1.08–5.79) 0.007
Model 2 1 (ref) 1.00 (0.35–2.91) 2.48 (1.03–5.97) 3.12 (1.31–7.40) 0.003
Mn  < 0.16 0.16~ 0.55~  ≥ 2.24
Case/Control 13/30 8/30 27/30 12/30
Model 1 1 (ref) 0.69 (0.29–1.67) 1.56 (0.81–3.04) 0.94 (0.43–2.07) 0.538
Model 2 1 (ref) 0.73 (0.29–1.83) 1.52 (0.77–2.98) 0.96 (0.43–2.14) 0.589
Pb  < 3.4 3.4~ 9.64~  ≥ 27.37
Case/Control 17/30 11/30 10/30 22/30
Model 1 1 (ref) 0.74 (0.35–1.60) 0.69 (0.31–1.50) 1.19 (0.62–2.27) 0.587
Model 2 1 (ref) 0.71 (0.32–1.57) 0.77 (0.35–1.73) 1.19 (0.61–2.32) 0.616
Elementsa Quartile 1 Quartile 2 Quartile 3 Quartile 4 Ptrend

Se  < 48.3 48.3~ 91.01~  ≥ 167.21
Case/Control 16/30 17/30 15/30 12/30
Model 1 1 (ref) 1.03 (0.52–2.04) 0.96 (0.47–1.94) 0.82 (0.39–1.74) 0.597
Model 2 1 (ref) 1.30 (0.63–2.65) 1.12 (0.55–2.31) 0.99 (0.46–2.12) 0.760
Sr  < 48.21 48.21~ 90.28~  ≥ 195.56
Case/Control 5/30 8/30 28/30 19/30
Model 1 1 (ref) 1.48 (0.48–4.52) 3.37 (1.30–8.78) 2.71 (1.00–7.35) 0.013
Model 2 1 (ref) 1.45 (0.47–4.50) 3.51 (1.34–9.20) 3.09 (1.13–8.49) 0.007
Cd  < 0.15 0.15~ 0.42~  ≥ 0.94
Case/Control 7/30 10/30 15/30 28/30
Model 1 1 (ref) 1.34 (0.51–3.53) 1.80 (0.72–4.50) 2.62 (1.12–6.11) 0.010
Model 2 1 (ref) 1.24 (0.45–3.43) 1.59 (0.61–4.09) 2.45 (1.02–5.86) 0.035
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The existing studies showed that patients with type 2 dia-
betes at low BMI levels are at increased risk of developing 
DR and that higher BMI may have a protective effect against 
DR (Chen et al. 2022; Man et al. 2016). PDR is the progres-
sive stage of DR, and the average BMI of patients with PDR 
in this study was lower than that of DR in the control group, 
also reflecting the risk role of low BMI levels.

Mg plays a crucial role in several enzymatic processes 
involved in maintaining glucose homeostasis. Numerous 
studies have shown that Mg deficiency leads to reduced tol-
erance to oxidative stress and accelerates the progression 
of diabetes-related complications, and Mg supplementation 
shows beneficial to diabetic patients. However, a study found 
that middle-aged population with low dietary Mg consump-
tion did not have an increased risk of diabetes (Dubey et al. 
2020). Some scholars found a direct correlation between uri-
nary Mg and fasting blood glucose levels in T2D patients 
(Sales et al. 2011). The increased urinary Mg excretion in 
diabetic patients may be due to the effects of hyperglycemia, 
hyperfiltration, and the insulin effect on Mg renal channels 
(Ebrahimi Mousavi et al. 2021). In our study, elevated urine 

Mg levels were correlated with an increased incidence of 
PDR in T2D patients.

Li may cause hyperglycemia in the undertreated diabetic 
patients (Hermida et al. 1994). Chronic Li treatment did not 
alter body weight or blood glucose level in diabetic mice 
(Graniel-Amador et al. 2022). Li contamination has attracted 
a lot of attentions recently and chronic poisoning is the most 
common form of Li poisoning. Although Li toxicity may be 
related to oxidative stress response, the results from differ-
ent research are very contradictory (Kiełczykowska et al. 
2014). In a study, after 2 months of Li supplementation, the 
rats showed a remarkable rise in lipid peroxidation which 
resulted in a significant drop in the enzyme activities of 
reduced glutathione, catalase, glutathione transferase, and 
superoxide dismutase (SOD) (Malhotra and Dhawan 2008). 
A decrease in SOD levels was also observed in healthy sub-
jects treated with Li (Khairova et al. 2012). In our study, the 
high level of Li exposure seemed to have a positive impact 
on the risk of PDR development in patients with T2D.

Cd exposure leads to excessive reactive oxygen species 
(ROS) production, increased oxidative stress response at the 

Fig. 3  The metal elements selected into the multiple exposure model by LASSO regression. a The change trajectory of each variable coefficient 
(λ). b Cross-validation plot for the penalty term

Table 3  Multiple exposure 
model for PDR associated with 
multiple trace elements and 
characteristics of participants

The quartiles were used as shown in Table 2 and analyzed by conditional logistic regression in each metal
Adjusted for age, gender, BMI, sleep quality, physical activity, household annual income, smoking status, 
passive smoking, alcohol consumption
Linear trend p values were derived by entering the quartiles of urine elements’ concentrations into the 
models as an ordinal categorical variable

Elements Quartile 1 Quartile 2 Quartile 3 Quartile 4 Ptrend

Mg 1 (ref) 0.53 (0.16–1.81) 1.41 (0.62–3.21) 1.25 (0.51–3.04) 0.236
Li 1 (ref) 1.05 (0.35–3.15) 2.24 (0.89–5.63) 2.80 (1.10–7.16) 0.013
Se 1 (ref) 0.99 (0.47–2.08) 0.66 (0.29–1.46) 0.60 (0.25–1.42) 0.066
Cd 1 (ref) 1.61 (0.55–4.68) 1.80 (0.66–4.91) 2.28 (0.89–5.85) 0.088
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cellular level, and exhaustion of antioxidant defenses, which 
in turn causes biologically relevant molecules and cellular 
damage (Kar and Patra 2021). Numerous in vivo studies of 
short- and long-term Cd exposure shown that Cd can lead to 
hyperglycemia and disturb glucose homeostasis in lab ani-
mals (Nguyen et al. 2022). In patients with T2D, it was also 
observed that there is a significant association between ele-
vated urinary Cd levels and elevated fasting glucose (Schwartz 
et al. 2003). In addition, Cd exposure increases the tendency 
for insulin resistance and endocrine dysfunction (Little et al. 
2020). Furthermore, the increased levels of oxidative stress 

response, reduced antioxidant defenses, and a hyperglycemic 
state are all associated with the progression of DR. The other 
findings indicated a strong association between toxic metal 
deposition (Cd and Cs) and insufficiency of critical trace ele-
ments (Mn and Zn) (Zhu and Hua 2020). High levels of Cd 
and Pb, as well as low levels of Zn, Cr, and Mn, were also 
related to diabetic complications (Afridi et al. 2013). This 
finding may be helpful in the prevention and treatment of 
diabetic retinopathy. Consistent with the previous findings, 
this research discovered that high levels of Cd exposure were 
connected with PDR risk in T2D patients.

Fig. 4  The BKMR model of five metal elements evaluated the effect 
of mixed exposure on PDR risk. a The univariate exposure–response 
function and 95% CI for each metal element when the other elements 
were fixed at the median concentration  (P50). b The overall effects of 
mixed-exposure in elements fixed to different percentiles as compared 
when they were at their medians  (P50). c The effects of single-metal 

exposure between its 75th and 25th percentiles, when the remaining 
metals were fixed at different percentiles (25th, 50th, or 75th). d The 
bivariate cross-section effects of the exposure–response function of a 
single element where the second element was fixed at different per-
centiles (25th, 50th, or 75th)
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Se is involved in a complex system of anti-oxidative stress 
response through Se-dependent glutathione peroxidase and 
other selenoproteins. Se supplementation may have a protec-
tive effect on retinal pigment epithelium (RPE) against the 
chronic damaging effects from glucose during the progres-
sion of diabetic retinopathy (González et al. 2018). Although 
research has demonstrated a favorable correlation between 
dietary Se consumption or high blood Se levels and the inci-
dence of diabetes, there are no recommendations so far for 
Se supplementation or restriction to prevent diabetes (Dubey 
et al. 2020). Urine Se levels in T2D patients with diabetic 
nephropathy and DR were considerably lower than those in 
T2D individuals without complications (Zhou et al. 2019). 
Similar to the above results, our study demonstrated a nega-
tive correlation between Se levels and the risk of developing 
PDR, which suggested a protective effect of Se.

As a heavy metal, Cr also generates toxic effects and 
pathophysiological damage after long-term exposure and 
bioaccumulation. It has been speculated that Cr toxicity 
is mainly caused by the oxidative stress response induced 
by increased ROS production, antioxidant imbalance, and 
genomic alterations, which eventually cause damage to 
organs and tissues of the body (Chakraborty et al. 2022). It 
was shown in lab animals that after 30 days of oral admin-
istration of potassium dichromate  (K2Cr2O7), an imbalance 
appeared between antioxidants (SOD and glutathione per-
oxidase (GPxs)) and oxidative parameters, and the oxidative 
stress response was induced in the kidney and liver (Aline 
et al. 2019). Our study indicated that there is a positive cor-
relation between increasing Cr urinary level and PDR risk in 
T2D, which suggested Cr exposure increased the incidence 
of PDR.

Over time, toxic metals from environmental sources accu-
mulate in the RPE, causing damage to the adjacent external 
nerve retina when their concentration reached a critical point 
of damage (Pamphlett et al. 2020). Toxic metal elements can 
compete with essential trace elements in the body, disturb-
ing numerous enzyme activities and interfering the homeo-
stasis of metal elements. It then results in oxidative stress 
response, DNA damage, lipid peroxidation, etc. (Koedrith 
and Seo 2011). Numerous anti-oxidant enzymes are found 
in the retina. Impaired antioxidant defenses will lead to the 
production of retinal reactive oxygen and nitrogen species 
(ROS/RNS), and this condition may also be exacerbated with 
the change of tissue glucose levels (Madsen-Bouterse and 
Kowluru 2008; Al-Shabrawey and Smith 2010). Such micro-
nutrient imbalances may lead to increased levels of oxidative 
stress and reduced antioxidant defense in diabetic patients, 
which ultimately causes the development of diabetic com-
plications (Dubey et al. 2020). Microvascular changes in the 
fundus of the eye in DR patients may be caused by oxida-
tive and metabolic stress response in the retina (Miller et al. 
2020). Characterized by neovascularization of the fundus, 

PDR is a severe stage of DR that is commonly observed in 
patients with long duration of diabetes and unstable glyce-
mic control. Choosing PDR patients as a case group may 
provide a better assessment of the impact of metal elements 
on the risk of developing DR. And PDR may be associated 
with inflammatory responses, chronic hypoxia, oxidative 
stress, and other reactions in the body (Aouiss et al. 2019). 
Therefore, exposure to metal elements may contribute to 
the progression of PDR by affecting the homeostasis of the 
metal environments and oxidative stress levels in the body.

There are a few limitations in our study. First, this study 
included a limited variety of metal elements and could not 
include all metals that might be of relevance. Second, 24-h 
collection of urine should be taken into account in future 
research since single urine collection may not sufficiently 
represent the actual metal levels in the blood. Due to some 
limitations of the study data, this case–control study may not 
be able to fully reveal the causal relationship between metal 
elements and the risk of developing PDR. Subsequent stud-
ies should adopt a more rigorous design and adequate sam-
ple size to provide a more definitive relationship. Further-
more, this study only provides a preliminary data about the 
significance of abnormal urine metal levels; further research 
is required in order to fully understand the mechanisms of 
their toxicity and the microscopic damage caused by metal 
consumption.

There are several highlights in our research. First of all, 
our study may be the first one to evaluate the impact of 
multiple-metal exposure on the risk of developing PDR in 
patients with T2D, whereas other studies mainly focused on 
the effects of a specific metal or trace element in the diabetic 
development. Secondly, this work used the BKMR model to 
provide a systematic and scientific evaluation of multiple-
metal exposure. Thirdly, the findings of this study may pro-
vide epidemiological evidence that multiple-metal exposure 
may affect the risk of developing PDR, which would help 
us to better understand the risk impact of metal pollution on 
human health.

Conclusions

In this work, we observed that exposure to multiple met-
als was correlated with the incidence of developing PDR in 
patients with T2D. Among them, Mg, Li, Cd and Cr may 
increase likelihood of getting PDR, while Se may have a 
protective effect. Our findings revealed a correlation between 
urine metal levels and PDR risk in T2D patients, suggesting 
that urine sample could serve as an useful tool in assessing 
PDR risk. Future studies could further explore the role of 
urine samples in assessing the risk of other eye diseases. 
Considering the limitations that only one time urine sample 
was obtained among relatively small number of study group, 
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future research should increase the sample size and/or con-
duct multi-center studies to investigate the specific mecha-
nisms of DR caused by multiple metals mixture exposure.
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