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Abstract
Metals have been reported to affect liver functions; however, the association between mixed metal exposure in the urine and 
liver functions remains unclear. The present study analyzed data from the National Health and Nutrition Examination Survey 
(NHANES) program collected in 2005–2018. Weighted multiple linear regression and Bayesian kernel machine regression 
(BKMR) were used to explore the relationship between mixed urinary metal contents and liver function tests (LFTs). A total of 
8158 participants were analyzed in this study. Multiple methods suggested that cadmium (Cd) was significantly positively related 
to LFTs, while cobalt (Co) was negatively related to LFTs. Meanwhile, some other metals showed a significant relationship 
with some indicators of LFTs. Urine metal is related to LFTs, with Cd and Co content changes being closely related to LFTs. 
The metal in urine may represent a marker for predicting liver dysfunction. Further studies are needed to verify this hypothesis.
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Introduction

As a vital organ in the human body, the liver has several 
functions of synthesis and secretion (Hu et al. 2019). Due 
to environmental, infective, genetic, and other factors, liver 
diseases are associated with a heavy burden (Peery et al. 
2019; Yang et al. 2019). According to Globocan, the inci-
dence of liver cancer ranks sixth in newly diagnosed cancer 
cases, while the mortality of liver cancer ranks third in new 

death cases (Sung et al. 2021). The incidence and prevalence 
of non-alcoholic fatty liver disease (NAFLD) are rising rap-
idly worldwide. And it is estimated that 25% of individuals 
worldwide suffer from NAFLD to date (Huang et al. 2021).

There are generally no signs or symptoms in the early stage 
of liver disease. As cheap diagnostic methods, liver function 
tests (LFTs) can rule out liver abnormalities to some extent 
(Newsome et al. 2018). LFT indicators mainly include alanine 
aminotransferase (AST), aspartate aminotransferase (ALT), 
γ-glutamyl transferase (GGT), total bilirubin (TBIL), and alka-
line phosphatase (ALP). The increase in AST and ALT levels is 
the most common indicator of abnormal liver function, among 
which ALT is considered more specific in liver tissue (Tian et al. 
2023). Although these two enzymes also exist in other tissues, 
abnormalities in their levels can prompt attention to the liver. 
The increase in ALT can indicate biliary obstruction, and the 
content of GGT can help judge the abnormal position (Lin et al. 
2022; Zhang et al. 2022). As a by-product of heme metabolism, 
the increase in bilirubin may be an indicator of metabolic abnor-
malities, hemolysis, or liver disease (Liu et al. 2018).

Contact with metals or metalloids can have lifelong disease 
consequences (Tracy et al. 2020). A meta-analysis based on 21 
original studies showed that the serum contents of chromium, 
nickel, and mercury in leukemia patients increased signifi-
cantly, while the serum manganese concentration decreased 
significantly (Shen et al. 2023). Another study found that 
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As, Cd, and Cu were at greater risk of cancer by studying 77 
research papers (Hou et al. 2023). Several studies have sug-
gested that metals are involved in several diseases, including 
cardiovascular, diabetes, kidney, nervous system, and cancer 
diseases, resulting in a severe burden (Al-Aly and Bowe 2020; 
Shen et al. 2018; Shi et al. 2021; Wang et al. 2020).

The liver is an important organ for the metabolism of 
heavy metals. At the same time, liver cells are exposed to 
chemicals, which may lead to liver damage and dysfunction 
(Park et al. 2021). A previous study demonstrated that heavy 
metals can cause various liver diseases, including nonfatty 
acid liver disease (Chung et al. 2020). A study from North-
east China found that mixed metal exposure was related to 
several liver function indexes through testing 1171 indi-
viduals (Zhao et al. 2022). A study from South Korea also 
suggested that exposure to lead (Pb), cadmium (Cd), and 
mercury (Hg) may be closely related to liver function dam-
age (Kim et al. 2021). A study from Zambia found that metal 
exposure significantly impacted the hepatogenic system in 
504 patients (Nakata et al. 2021). However, most current 
research only focuses on a few metals, such as Pb, and the 
number of research samples is not large enough.

Therefore, the present study used the American National 
Health and Nutrition Examination Survey (NHANES) data 
from 2005 to 2018 to investigate the associations between 
metal mixture in urine and LFTs using weighted multiple linear 
regression and Bayesian kernel machine regression (BKMR).

Methods

Study population

We conducted a secondary analysis of the data from 
NHANES. NHANES was implemented by the National 
Center for Health Statistics (NCHS) and is a program of 
studies designed to assess people’s health and nutritional 
status in the USA since 1960. Details of the study design, 
method, or data are available online at https://​www.​cdc.​gov/​
nchs/​nhanes/​index.​htm.

A total of seven cycles of NHANES data from 2005 
to 2018, including 2005–2006, 2007–2008, 2009–2010, 
2011–2012, 2013–2014, 2015–2016, and 2017–2018, were 
used in the present analysis.

Among the total 70,190 participants, 51,522 were 
excluded because of missing urinary metal data, while 4183 
were excluded due to liver function data being absent. More-
over, a total of 222 participants who were pregnant were 
excluded. In addition, a further 205 participants with hepa-
titis B and C virus or liver cancer were excluded. And 5900 
participants with missing data on covariate were excluded. 
Finally, 8158 participants from NHANES were included in 
the current analysis.

All the participants in these NHANES studies provided 
consent, and NCHS Research Ethics Review Board approved 
the study protocols.

Urinary metal measurements

Between 2005 and 2018, ten metal elements were part of 
the NHANES urine routine examination and measured in 
each cycle, including barium (Ba), cadmium (Cd), cobalt 
(Co), cesium (Cs), molybdenum (Mo), lead (Pb), antimony 
(Sb), thallium (Tl), tungsten (Tu), and uranium (Ur). Because 
many data in the detection of Ur were below the lower moni-
toring limit, this metal was discarded in the present analysis. 
Samples were processed, stored, and transported for analysis 
and were directly measured using mass spectrometry. Details 
of these dates can be seen on the website (https://​wwwn.​cdc.​
gov/​Nchs/​Nhanes/​2005-​2006/​UHM_D.​htm).

Liver function tests (LFTs)

In the 2005–2018 NHANES cycles, LFTs in serum were meas-
ured using different methods with a Beckman Coulter UniCel 
DxC800 Synchron Clinical System. The present study selected 
ALT, AST, TBIL, GGT, ALP, ASL/ALT ratio, and hepatic stea-
tosis index (HSI) as liver function indicators. ALT and AST are 
enzymes released after liver cell membrane injury and will rise 
rapidly during acute liver injury and are measured using kinetic 
rate methods. The increase in ALP level is seen in cholestasis. 
The method to measure ALP utilizes a simple reaction wherein 
ALP acts upon a substrate in the presence of magnesium and 
zinc activators to form a colored product whose optical density is 
measured at 450 nm. GGT is used to identify the causes of chol-
estasis in the clinical setting (Lee et al. 2022). The concentration 
of TBIL in serum depends on bilirubin production and hepat-
ocyte clearance so that TBIL can reveal the balance between 
them (Xiao et al. 2021). TBIL serum level was measured using 
a timed-endpoint Diazo method. HSI is an effective marker for 
predicting liver fat content (Meffert et al. 2014). The formula is 
HSI = 8 × (ALT/AST) + BMI + 2 (for female) + 2 (for diabetes).

Covariates

Previous studies collected covariates linked to liver func-
tions or urinary metals from questionnaires and laboratory 
examinations. In the present study, data including age, sex, 
education levels, race, economic, smoking, and drinking sta-
tus, as well as the history of diagnosis of diabetes mellitus 
or hypertension from questionnaires, were collected. Data 
including BMI, total cholesterol (TCHO), and high-density 
lipoprotein cholesterol (HDL-C), were collected from labo-
ratory examination records.

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/UHM_D.htm
https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/UHM_D.htm
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Educational levels were classified as < 9th grade, 
9th–11th grade, high school, college, and graduate or above. 
Ethnicity was classified as follows: Mexican American, 
other Hispanic, non-Hispanic white, non-Hispanic black, 
and other ethnic groups. If participants had smoked at least 
100 cigarettes in their lifetime or had at least 12 alcoholic 
drinks in 1 year, they would be considered smokers or 
drinkers, respectively. The history of diabetes mellitus 
or hypertension was determined according to the self-
reported history of physician-diagnosed diabetes mellitus 
or hypertension. Laboratory results were measured using 
different standardized methods. Details of them were 
described on the NHANES website.

Statistical analysis

NHANES used complex methods like survey design 
and non-response and post-stratification adjustment to 
form accurate estimates. In the present study, continuous 
variables like age were expressed as median ± standard 
deviation. Categorical variables like sex were represented 
as numerical and frequency distribution. Because the urinary 
metals did not belong to the normal distribution, these were 
transformed logarithmically to normalize their distributions.

Linear regression

A survey-weighted multiple linear regression model was used 
to assess the associations between urinary metals (Ba, Cd, 
Co, Cs, Mo, Pb, Sb, Tl, and Tu) and LFTs (ALP, ALT, AST, 
GGT, TBIL, AST/ALT, and HSI). In the model, data were 
adjusted for age, sex, education level, race, poverty, smoking, 
alcohol user, BMI, total cholesterol, high-density lipopro-
tein cholesterol, diabetes, and hypertension. Subsequently, 
the urinary metal content was divided into four quartiles. 
The first quartile was regarded as a reference value. We used 
a multiple linear regression model to explore the potential 
dose–response relationship. In the models, we judge whether 
there is collinearity between metals by variance inflation 
factor (VIF). The fitting of statistical model is measured by 
Akaike information criterion (AIC) (Fu et al. 2021; Kailembo 
et al. 2018). We calculated the false discovery rate (FDR) by 
the Benjamini-Hochberg (BH) procedure. The analysis was 
implemented in R via the package “survey.”

Bayesian kernel machine regression (BKMR)

BKMR is a new method to estimate the health effects of 
multivariate exposure (Bobb et al. 2018). This method can 
estimate the ability of a multi-pollutant mixture to affect 
health and estimate the total exposure, the impact of a single 
exposure, and the interaction between chemicals. The current 

study compared nine types of urine metal contents with dif-
ferent percentiles fixed simultaneously and with those fixed 
at the median to estimate the overall impact on LFTs.

To estimate the single effect of metal content in urine, the 
difference associated with LFTs was set when a certain metal 
content was at the 75th and 25th percentiles and the other 
eight metal contents were fixed at the 25th, 50th, and 75th 
percentiles, respectively. Through the BKMR model, we cal-
culate the posterior inclusion probability (PIP). PIP is a vari-
able importance measurement method from 0 to 1, which can 
determine the relative importance of different urine metals to 
liver function (Laine et al. 2020; Yu et al. 2022). PIP threshold 
of 0.5 is usually used to judge whether this effect is significant 
or not. The Spearman correlation coefficient between metals 
was calculated to judge the correlation between metals. The 
analysis was implemented in R via the package “bkmr.”

R software (v4.2.2; https://​www.r-​proje​ct.​org/) was used 
to perform the aforementioned analyses. P < 0.05 (two-
tailed) was considered to indicate a statistically significant 
difference.

Results

Baseline characteristics of participants

A total of 8158 participants met the conditions for analysis. 
Details are shown in Fig. 1.

Among the 8158 participants, the average age was 
49.398  years, 51.0% were men, and 46.0% were non-
Hispanic white. In terms of education level, college 
education accounted for 29.4%. About 45.7% and 71.8% 
of participants were considered smokers and drinkers, 
respectively. In addition, 35.0% and 12.3% of participants 
had a history of hypertension and diabetes, respectively. 
The average levels of HDL-C and TCHO were 1.364 mg/L 
and 5.016 mmol/L, respectively. The details of the baseline 
characteristics of participants are shown in Table 1.

Weighted multiple linear regression

Urine metal content level data were subject to weighted 
multiple linear regression after logarithmic transformation. 
Results showed that AST was positively correlated with Cd 
but negatively correlated with Cs, Pb, and Tl. ALT was neg-
atively related to Cs but positively correlated with Cd. And 
Cd was positively correlated with GGT, while Cs and Mo 
were negatively correlated with GGT. TBIL was positively 
correlated Ba and Cd, while it was negatively correlated to 
Co and Cs. In addition, Cd and Pb were positively correlated 
with ALP, while Cs was negatively correlated with ALP.

For AST/ALT, Ba and Tl were negatively correlated 
with it, while Co and Sb were positively correlated with 

https://www.r-project.org/
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it. Moreover, Ba and Tl were positively correlated with 
HSI, and Co was negatively correlated with it. The details 
of the analysis results are shown in Table 2 and Supple-
ment Table 1.

After testing, the VIF values in all models were less 
than 10, suggesting that there was no obvious collinearity 
problem. Details are shown in supplementary Table 2. In 
addition, the AIC values of each model can also be seen 
in supplementary Table 3.

Weighted multiple linear regression after quartile 
grouping

To further explore the relationship between urinary metal 
and liver function, urinary metal quartiles were grouped 
and then subjected to weighted multiple linear regression.

Compared with the reference quartile, Ba was 
positively correlated with ALT and HSI, but negatively 
with AST/ALT. Cd had a significant positive correlation 
with ALP, ALT, AST, GGT, and TBIL. Co was negatively 
related to ALT, TBIL, and HSI, but positively correlated 
with AST/ALT. Moreover, Sb was positively correlated 
with AST/ALT. And Tl was negatively related to AST/
ALT, but positively correlated with HSI.

Meanwhile, Cs, Mo, and Tu did not show a significant 
correlation with LFTs. Details are shown in Table 3 and 
Supplement Table 4. The VIF values in each model were 
less than 10, indicating that there was no obvious col-
linearity problem. Details are shown in supplementary 
Table 5. The AIC values of each model are shown in sup-
plementary Table 6.

Bayesian kernel machine regression

The BKMR analysis showed no statistically significant 
overall effect in the AST, ALT, GGT, and AST/ALT models.

TBIL increased significantly when all urinary metal 
content was in the 25th and 55th percentiles, while no 
significant effect was above the 55th percentile. As for 
ALP, analyses showed a significantly positive overall effect 
of ALP levels in the 25th and 75th percentiles. And analyses 
showed a significantly negative overall effect of HSI levels 
in the 25th and 75th percentiles, while no significant effect 
was above the 45th percentile.

In multivariable-adjusted models, the contents of eight 
urine metals were fixed at the 25th, 50th, and 75th percen-
tiles. It was found that Cd had a significant positive correla-
tion with AST. By contrast, Cs had a negative correlation 
with AST. In the ALT model, Ba and Cd were positively 
correlated with it, but Co and Cs were negatively correlated. 
And Cd was significantly positively correlated to GGT, while 
Cs was significantly negatively correlated to GGT.

The results of the TBIL model were more complex. 
Although only Pb had a significant positive relationship 
when the content of other metals was fixed at the 25th per-
centile, Cd, Pb, Sb, and Tl had a significant positive correla-
tion when fixed at the 50th and 75th percentiles. And when 
the content of other metals was fixed at the 25th percentile, 
only Co had a significant negative correlation with TBIL. 
When fixed at the 50th and 75th percentiles, Co and Mo had 
a significant negative correlation with TBIL.

In addition, Co and Pb had a positive correlation with 
ALP, while Cs had a negative correlation. Results are 
shown in Figs. 1 and 2. Ba, Co, Sb, and Tl were positively 

Fig. 1   Flow chart of the study 
population. NHANES, National 
Health and Nutrition Examina-
tion Survey
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correlated with AST/ALT, while Cd and Cs were nega-
tively correlated with it. For HSI, only Co had a significant 
negative correlation with it, while Ba and Tl were posi-
tively correlated with it. Results are shown in Fig. 3, Sup-
plement Figs. 3 and Supplement Figs. 4.

PIP values under different models can be seen in 
supplementary Table 7, and the PIP values of Ca in many 
models were relatively high, indicating that it had a great 
influence on LFTs.

We analyzed the correlation of nine metals and found 
that they were all positively correlated, but none of them 
reached a significant correlation. Among them, Cs and Tl 
have the closest relationship (P = 0.77). The data can be 
seen in supplementary Fig. 5.

Table 1   Baseline characteristics of the study participants

Data are presented as median or n (%)
BMI body mass index, TCHO total cholesterol, HDL-C high-density 
lipoprotein cholesterol, AST aspartate aminotransferase, ALT alanine 
aminotransferase, GGT​ gamma-glutamyl transferase, TBIL total 
bilirubin, ALP alkaline phosphatase

Variable Cycle 2005–
2018 (N = 8158)

Age (years) 49.398 (17.746)
Male (%) 4157 (51.0%)
Race/ethnicity (%)

  Mexican American 1280 (15.7%)
  Other Hispanic 775 (9.5%)
  Non-Hispanic white 3754 (46.0%)
  Non-Hispanic black 1610 (19.7%)
  Other races 739 (9.1%)

Education level (%)
   < 9th grade 860 (10.5%)
  9–11th grade 1143 (14.0%)
  High school 1827 (22.4%)
  College 2398 (29.4%)
  Graduate or above 1928 (23.6%)
  Poverty 2.553 (1.618)
  Smoker (%) 3727 (45.7%)
  Drinker (%) 5829 (71.8%)
  Hypertension (%) 2856 (35.0%)
  Diabetes mellitus (%) 1000 (12.3%)
  BMI (kg/m2) 29.094 (6.827)
  HDL-C (mg/L) 1.364 (0.413)
  TCHO (mmol/L) 5.016(1.082)
  AST (U/L) 25.711 (15.681)
  ALT (U/L) 25.277 (17.457)
  GGT (IU/L) 28.657 (41.729)
  TBIL (mg/dL) 0.697 (0.334)
  ALP (IU/L) 68.593 (23.721)
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Discussion

The results of analyses found that Cd had a significant 
positive correlation with liver function, while Co had a 
significant negative correlation. Ba, Cs, Mo, Sb, Pb, and 
Tl significantly correlated with some LFTs.

The liver is the main target organ affected by Cd 
poisoning (Han et  al. 2022), which acts mainly on 
mitochondria (Lee and Thévenod 2020). The existing 
evidence suggests that Cd can promote the rupture of the 
outer and inner membranes of mitochondria, leading to 
mitochondrial damage (Genchi et al. 2020). A recent study 
showed that Cd could induce toxicity by upregulating 
mitochondrial calcium single transporter (Liu et  al. 
2023a). Some studies are consistent with the present 
analysis which concluded that Cd could be related to liver 
injury in the US population (Hong et al. 2021; Xu et al. 
2022).

ROS is a key factor that Pb affects liver function. Pb 
induces ROS formation by inhibiting the enzyme activity 
of respiratory complex. In addition, studies have shown that 
Pb can also reduce the activities of many other key enzymes 
in the cells (Lakka et al. 2023). Other studies have shown 
that Pb binds to structural proteins or any cytoplasmic 
proteins, which leads to the decline of antioxidant defense 
performance of cell membranes (Quan et al. 2020).

At present, through animal experiments, it is considered 
that Co may cause oxidative stress in the mitochondria 
of hepatocytes to produce reactive oxygen species, 
which in turn leads to permeability transformation and 
apoptosis of hepatocytes (Díaz-de-Alba et al. 2021). In 
addition, there are also studies showing that Co could be 
hepatotoxic through lysosomes (Briffa et al. 2020). The 
epidemiological study on Co remains limited. Similarly, 
Cs is a metal recognized to be harmful to the human body. 
It can affect several human functions, including the weight 
of newborns (Zhang et al 2022). However, there are few 
reports about the effect of Cs on human liver function.

Our results showed that urinary Co and Cs was negatively 
correlated with LFTs, which was contrary to the previous 
studies that suggested metal hepatotoxicity. We think that 
this negative correlation may because of the antagonistic 
relationship between metals (Feng et al. 2018; Xie et al. 
2023). Due to the competition of metabolic pathways and 
metal carriers, Cs has a negative correlation with LFTs.

Ba, Mo, and Tl show negative correlation with some 
LFTs. This may also be due to the competitive relationship 
between metals. Similar to this study, there are many studies 
that show that some metals are negatively correlated with 
LFTs or non-alcoholic fatty liver disease (Li et al. 2023; 
Xie et al. 2023). However, there is no better explanation 
except the competition relationship between metals, and its 
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mechanism needs to be further studied and discussed in the 
future.

A previous study, which was also based on NHANES 
data, found a clear association between the content of five 
metals in blood and liver function (Li et al. 2023). Although 
the metal in urine is not as accurate as that in blood, its 
simplicity in terms of sample collection represents an 
advantage. Supposing that technology to analyze the metal 
content in urine will become available, screening out 
individuals with liver function damage and reminding them 
to seek medical treatment in time will be easier.

Research shows that among the types of man-made gar-
bage (Stanton et al. 2022), metals are second only to plastics, 
accounting for 14%. Environment, society, and governance 
(ESG) are very important in the development of metal pro-
jects and resource transformation (Lèbre et al. 2019). More 
and more studies suggest that enterprises need to fulfill their 
social and environmental responsibilities while showing 
green development (Khan and Liu 2023, Yang et al. 2023), 
to reduce the impact of metals on human health.

A recent study found that mixed metal exposure may 
be negatively correlated with liver function markers by 
qgcomp (Tang et al. 2023). It is consistent with the conclu-
sion of this study. Another study found that exposure to 

volatile organic compounds had a significant effect on LFT 
(Liu et al. 2023b). These studies show that various envi-
ronmental pollutants are potentially dangerous to the liver.

The present study has the following advantages. First, 
the present is the first study to evaluate the correlation 
between the urine levels of nine metal and LFTs. Second, 
the present analysis was based on the NHANES database, 
which consists of several representative samples of the 
general population in the USA. The generated evidence is 
highly reliable. Thirdly, several advanced statistical meth-
ods were to ensure the reliability of the results.

However, the present analysis had the following short-
comings. First, although the analysis was adjusted for sev-
eral confounding factors, some potential confounding fac-
tors were not included in the statistical model because they 
were not easy to calculate. Secondly, NHANES utilized 
random urine samples to detect the metal concentration 
in urine instead of using 24-h urine mental analysis. The 
measurement of metal content in urine still needs to be 
fixed. Third, NHANES utilized a cross-sectional design, 
so the causal relationship could not be further judged; the 
present analysis could only conclude that some metals in 
urine were related to LFTs. Fourthly, we cannot discuss 
the influence of participants taking hepatotoxic drugs on 

Fig. 2   Overall effect of metal content in urine on LFT based on 
BKMR. Associations between overall urinary metal content with 
AST (A), ALT (B), GGT (C), TBIL (D), and ALP (E) levels based 
on Bayesian kernel machine regression. All models were adjusted for 

age, sex, education level, race, poverty, smoker, alcohol user, BMI, 
total cholesterol, high-density lipoprotein cholesterol, diabetes, and 
hypertension
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patients’ LFTs and hope that this factor can be fully con-
sidered in future research.

Using NHANES data of the American population from 
2005 to 2018, it was found that Cd and Cs contents in urine 
significantly correlated with LFTs. The present results 
showed that exposure to metals may be related to liver 
dysfunction and the metal content in urine may be a marker 
for predicting liver dysfunction. However, further research 
is needed to verify the present findings.

Conclusion

Using NHANES data of the American population from 
2005 to 2018, we found that Cd and Co contents in urine 
significantly correlated with LFTs. Our results show that 
exposure to metals may be related to liver dysfunction, and 
the metal content in urine may be a marker for predicting 
liver dysfunction. More research is needed to verify our 
findings in the future.
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