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Abstract
In the present research work, artificial neural network (ANN) is used to model the performance and emission parameters in 
a four-stroke, single-cylinder diesel engine combusting a blended fuel of diesel and catalytic co-pyrolysis oil produced from 
seeds of Pongamia pinnata, waste LDPE, and calcium oxide catalyst. The optimum yield of oil obtained was 92.5% at 500 
°C temperature. Physical properties of the obtained oil, such as calorific value (44.85 MJ/kg) and density (797 kg/m3), level it 
by that of diesel while the flash point and fire point were found to be lower than that of pure diesel. An ANN model was then 
generated for the prediction of performance characteristics (BTE and BSFC) and emission characteristics  (NOx and smoke) 
under varying loads, braking power, brake mean effective pressure, and torque as inputs using the Levenberg-Marquardt 
back-propagation training technique. The regression coefficients (R2) for BTE, BSFC, smoke, and  NOx predictions were 
determined to be close to unity at 0.99859, 0.99814, 0.96129, and 0.92505, respectively (all values being close to unity). It 
has been discovered that ANN makes an effective simulation and prediction tool for blended fuels in CI engines. It is also sug-
gested to predict the mechanical efficiency, volumetric efficiency, and CO,  CO2, HC emissions using ANN in its future work.

Keywords Pongamia pinnata seeds · Waste LDPE · CaO catalyst · Performance and emission analysis · CI engine · 
ANN modeling

Introduction

There are 380 million trucks and 1.1 billion light-duty cars 
on the road globally. These figures will probably exceed 
the 1.7 to 1.9 billion figures by 2040, with India expected 
to experience a major enhancement in the increase. Future 
technology is unpredictable for the vehicle industry, which 
is now reliant on internal combustion engines (Bhatt and 
Shrivastava 2022). Almost 11 billion liters of liquid fuels 
(diesel, gasoline, and jet fuel) are being used each day 
globally (Leach et al. 2020). Simply switching to electric 
vehicles would not solve the environmental issues. Given 
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the socio-technical constraints and high investment costs, 
it is also challenging to completely replace internal com-
bustion engines with new technology (Vandepaer et al. 
2017; Huang 2018). As a way to fulfil this increment in 
demand for energy besides reduction in the environmental 
damage caused by fossil fuels, renewable fuel sources are 
the demand of the hour. Less viscous fuels are therefore 
thought to be potential replacements for diesel engines 
(Zhu and Andersson 2020). In such a scenario, one of the 
choices for blending with diesel to be used in CI engines 
for transportation would be fuels obtained through the co-
pyrolysis of waste plastics and biomass. This will not only 
make use of readily available waste biomass seeds but also 
assist in reducing the environmental problems caused by 
plastic waste. The method of co-pyrolysis has been dis-
covered to be more reliable than the method of mixing 
various oils to produce homogenous pyrolysis oil. Owing 
to the interaction of radicals during the co-pyrolysis event, 
phase separation could be prevented by producing a sta-
ble pyrolysis fuel (Martínez et al. 2014). However, it has 
also been discovered that the addition of catalysts during 
co-pyrolysis enhances the yield quantity of the liquid oil 
and decreases the quantity of solid char and non-conden-
sable gas emissions in the pyrolysis process in addition to 
improving the quality of the oil obtained to that of fuels 
derived from petroleum (Simell et al. 1995; Kumar et al. 
2015, Ryu et al. 2020).

Every change made to the speed, load, blend ratios, or 
other factors when using alternative fuel blends in a CI 
engine requires re-conducting the entire experimental 
process. Both time and money are required for this. For a 
specific objective to anticipate and evaluate the outputs in 
reaction to variations in the inputs, a theoretical model can 
be developed. For this theoretical study, artificial neural 
networks (ANN) can be utilized for the prediction of the 
outcomes of the performance and emission characteristics. 
ANN is superior to traditional polynomial approaches since 
it requires less complexity, money, and time. ANN was used 
successfully for predicting the heat transfer performance of 
a fabricated heat exchanger (Verma et al. 2017). The ANN 
approach is applied to fit the complicated nonlinear rela-
tionship. The ANN is generating a lot of curiosity because 
of its capability to map non-linear data utilizing a range of 
approximation functions in predictive modeling for non-lin-
ear complex systems (Mohan et al. 2023a). The integration 
of empirical modeling via artificial neural networks (ANN) 
was successfully incorporated into numerical modeling 
through the utilization of the Diesel-RK software (Salam and 
Verma 2019). To adhere to rigorous emission regulations 
for diesel engines, the current trend is to utilize eco-friendly 
fuel blends for diesel engines that generate very few amounts 
of dangerous pollutants while performing at par with pure 
diesel. Numerous emission factors, including  NOx and CO 

emissions for diesel in blend with crude palm oil (Yusaf 
et al. 2011), modifying engine settings to reduce emis-
sions (Yap et al. 2012), emissions from biodiesel (Ismail 
et al. 2012), and piston bowl optimization for soot and  NOx 
emissions (Costa et al. 2014) have all been predicted using 
ANN. With a prediction accuracy of 0.85 ± 0.12 across 
19 response variables, an ANN was used to create a rough 
empirical model of the experimental data; empirical redun-
dancy exists in the functioning of the IC engine due to the 
high number of strong relationships between different sys-
tem variables (Salam and Verma 2020).

Additionally, prediction of performance character-
istics such as efficiency or specific fuel consumption 
and emission parameters such as  NOx have also been 
conducted for different types of engines. The use of 
butanol and ethanol (Rezaei et al. 2015) or vegetable 
oil (Krishnamoorthi et al. 2019) are only a few to name. 
In one study, artificial neural network (ANN) technique 
was used to predict the most significant operating condi-
tions for CI engine when a mixture of pyrolytic plastic 
oil, ethanol, and diesel was tested (Das 2021). In a recent 
study, the waste plastic oil (WPO) obtained by the cata-
lytic pyrolysis of medical plastic wastes was tested in a 
diesel engine, ANN modeling is applied to predict the 
performance and emission characteristics (Panda et al. 
2023). However, not much research works have been 
performed on the pyrolytic oil obtained from biomass 
being blended with pure diesel in a CI engine. There-
fore, in the current research work, three blends of die-
sel and catalytic co-pyrolytic fuel (PB2) produced from 
the waste seeds of Pongamia pinnata and waste LDPE 
(low-density polyethylene) in the presence of calcium 
oxide (CaO) catalyst are being tested for the modeling 
of CI engines using artificial neural networks (ANN). 
Synthesized calcium oxide as a heterogeneous catalyst 
has already been utilized previously in extraction of 
methyl ester from waste cooking oil (Singh and Verma 
2019). It is worth noting that this research marks the 
first instance of such experimentation using ANN. The 
performance and emission parameters of the blended 
fuels were predicted through the neural network using 
experimentally obtained engine-specific inputs and a 
trained neural network.

Materials and methods

Preparation of catalytic co‑pyrolysis oil and engine 
set‑up

Seeds of Pongamia pinnata, usually referred to as Karanja, 
were gathered from a neighboring market of the Central 
University of Jharkhand, Ranchi, extracted from their 
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shells, and then, dried in the sun for 24 to 48 h. The seeds 
were ground into powder after drying. The LDPE, on the 
other hand, was gathered as used curd and milk pouches 
from the neighborhood restaurants and hotels. The 
pouches were then thoroughly rinsed with water, allowed 
to dry in the sun for 24–48 h, and finally cut into little 
(1–2 mm) pieces. To get rid of any remaining moisture, 
the seeds and waste LDPE were dried for 24 h at 50 °C 
temperature in a hot-air oven. Locally purchased calcium 
oxide (CaO) catalyst was utilized in its original form for 
the catalytic co-pyrolysis procedure in a batch reactor. The 
catalytic co-pyrolysis was carried out in a furnace-reactor 
setup to obtain the liquid fuel as described in our previ-
ous work (Mohan et al. 2023b). The resulting liquid fuel 
was designated as PB2, and three blends made for use in 
engines were designated as  PB2@10 (10% PB2 + 90% die-
sel),  PB2@20 (20% PB2 + 80% diesel), and  PB2@30 (30% 
PB2 + 70% diesel), with  D100 code being used for pure 
diesel in this study.

Figure 1 depicts the experimental configuration of the 
CI engine using diesel and mixed fuels. An eddy current 
dynamometer that was synchronized with the engine was 
used to manually change the load from no load (0%) to the 
highest load (80%). The speed was set at 1500 revolutions 
per minute, and measurements of variables including fric-
tional power, brake mean effective pressure, and brake power 
were made to be used in calculations for the current study. 
Table 1 displays the engine’s specifications that were used 
for this study. For this study, a single-cylinder, 4-stroke die-
sel engine with a fixed speed of 1500 rpm was employed.

Uncertainty analysis

According to the relationship demonstrated below in Eq. (1), 
errors and uncertainty about observations from experiments 
were examined (Habib 2020). The calculation errors were 
considered as per the values provided below in Table 2.

Artificial Neural Network (ANN)

Models called artificial neural networks (ANN) resemble 
how the human brain operates. ANNs are composed of mul-
tiple layers of neurons comprehending that the relationships 
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Fig. 1  a Schematic diagram of the CI engine set-up. b Actual engine set-up

Table 1  Specifications of engine

Type of engine Diesel

Stroke Four
Cooling Water-cooled
Speed (rpm) 1500
Power (kW) 3.5
Cylinder bore (mm) 87.50
Compression ratio 17.50
Connecting rod length (mm) 234.00
Swept volume (cc) 661.45
Stroke length (mm) 110.00
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between the input, hidden, and output layers can assist with 
future problem-solving techniques and use real and expected 
data. Once the response is aligned, the network self-adjusts 
utilizing a feedback mechanism using input from the dynamic 
network as a whole. Because it can map non-linear data using 
a variety of approximation functions, the ANN has generated 
a lot of attention in predictive modeling for complicated, non-
linear systems. The complex nonlinear connection is fitted 
using this method (Mohan et al. 2023c). The load, brake mean 
effective pressure (BMEP), brake power (BP), and torque were 
chosen as the associated input factors for the current research 
to forecast the performance in the form of brake thermal effi-
ciency (BTE) and brake specific fuel consumption (BSFC), as 
well as  NOx and smoke emission characteristics. One hundred 
layers of neurons (optional) were chosen for the current predic-
tion modeling, whereby one hidden layer of neurons mimics 
one human brain. Data distribution was another factor that 
was taken into account in which the developed model was 
trained using 70% of the whole data, while the applied model 
was validated and tested using 15% of the total data each. The 
ANN model was created utilizing MATLAB® 2022a, version 
(9.12.0.2039608), while the Levenberg-Marquardt algorithm 
was trained to forecast the results.

Equation (1) displays the error function used to assess the 
phase performance as a function of mean square error (MSE).

where n is the number of data points. λi and βi, respectively, 
represent the experimental and expected values. The optimiza-
tion of a network model based on the input (t) and output (o) 
is displayed in Eq. (2) below.
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Results and discussion

Catalytic co‑pyrolysis

The thermo-catalytic pyrolysis of Pongamia pinnata seeds 
and waste LDPE along with CaO catalyst was performed in 
a temperature range of 375–550 °C. The maximum liquid oil 
yield of 92.5 wt% was obtained at the temperature of 500 °C 
when the ratio of seeds and LDPE was kept at 1:2 while the 
CaO catalyst was kept at 10% of the total feed, forming the 
ratio of 3:6:1 for biomass seeds, waste plastic, and catalyst. 
At this temperature, the yield of non-condensable gases (NC 
Gases) was also found to be minimum at about 1.5 wt%, and 
the residual char was found to be about 6 wt% at the optimum 
condition implying that almost all the feed was able to get 
converted to liquid fuel with minimum residue. The amount 
of NC gases and the solid char increased with temperature 
beyond and before 500 °C temperature while the maximum 
NC gas formation was observed at the highest temperature 
and the maximum char was observed to be formed at the low-
est temperature under consideration. It has also been found 
that calcium oxide, when used as a catalyst during the pyroly-
sis process, helps in reducing the yield of tar in addition to 
the reduction in the formation of  CO2. Its low cost also pro-
motes it as a feasible option to be used as a catalyst (Simell 
et al. 1995). The liquid oil was then processed through frac-
tional distillation to remove any water content or sediments 
for obtaining the purest form of fuel to be characterized and 
blended with diesel to be further used in the CI engine. The 
ratio of 3:6:1 was selected for the biomass seed, waste plas-
tic, and CaO as the other ratios did not provide the optimum 
amount of liquid fuel as desired. After checking the output 
through various ratios, the current ratio was selected.

Properties of obtained pyrolytic fuel

At a temperature of 500 °C, the Pongamia pinnata seeds 
and waste LDPE were catalytically co-pyrolyzed with CaO 

Table 2  Measurements used in the experimental study

Parameters Range Accuracy/resolution Uncertainty

Cylinder pressure transducer 350 bars ± 1% 0.50%
Encoder (measuring crank angle and speed) - ± 0.25% 0.15%
Load cell sensor for load measurement 0–50 kg ± 0.25% 0.15%
Brake power 0–3.5 kW ± 0.0107 0.25%
Differential pressure transmitter for the measurement of fuel flow 

rate
0–500 mm WC ± 0.10% 0.05%

Pressure transmitter for the measurement of air flow rate (−) 250 mm WC ± 0.5% 0.18%
NOx emission 0–5000 ppm 1 ppm 0.02%
Smoke emission 0–100% volume ± 1% 0.1%
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catalyst in a 3:6:1 ratio. The highest amount of 92.5% liquid 
fuel yield was attained at this temperature and ratio. Table 3 
displays the physical characteristics of the produced fuel in 
comparison to diesel. Although it was discovered that PB2 

has a lower density at room temperature than diesel, the 
difference between the density of the two fuels is too small, 
making the fuel blending practical. It was also discovered 
that the calorific values (LCV and HCV) were very close to 

Table 3  Physical properties 
of liquid fuel obtained from 
catalytic co-pyrolysis of 
Pongamia pinnata, waste 
LDPE, and CaO

Properties/samples ASTM standard PB2 D100

Appearance - Dark brown Light brown
Odor - Smoky Aromatic
Density @ 25 °C (kg/m3) D287 797 816
LCV calorific value (kJ/kg) D4809 42395 42991
HCV calorific value (kJ/kg) D4809 44856 45452
Flash point (°C) D93-58T 37 53
Fire point (°C) D93-58T 40 56
Kinematic viscosity @ 40 °C (cSt) D445 2.21 2.09
Dynamic viscosity @ 40 °C (cP) D445 1.80 1.73

Fig. 2  a Validation perfor-
mance. b Error histogram for 
brake-specific fuel consumption 
prediction
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those of diesel. It was also found that PB2 had a lower flash 
point and fire point than  D100, which may help with more 
rapid and thorough combustion. Additionally, it was dis-
covered that the kinematic and dynamic viscosity was only 
slightly higher than  D100, which would not impede the flow 
of fuel inside the combustion cylinder. When compared to 
 D100, PB2 was determined to have a smoky smell and was 
darker in color in comparison to diesel.

Performance and emission of obtained liquid oil 
in CI engine

Brake‑specific fuel consumption and brake thermal 
efficiency

At 20% load, the BSFC was 0.49, 0.5, 0.51, and 0.48 kg/
kWh respectively for  D100,  PB2@10,  PB2@20, and  PB2@30. 

There was found a decrement in the BSFC as the load 
increased. The enhanced fuel atomization, better mixing, 
and high in-cylinder temperature at increased loads con-
tribute to the combustion process and result in low specific 
fuel consumption. Fuel combustion is improved at higher 
engine speeds due to improved fuel and air mixing. As the 
load increased, the BSFC decreased for all blends as at 40% 
load, the BSFC was found to be 0.35, 0.34, 0.31, and 0.35 
kg/kWh for  D100,  PB2@10,  PB2@20, and  PB2@30, respec-
tively. As the load increased to 60%, the BSFC was found 
to be 0.29, 0.3, 0.3, and 0.3 kg/kWh while at the highest 
load (80%), minimum BSFC of 0.3, 0.28, 0.3, and 0.3 kg/
kWh was found for  D100,  PB2@10,  PB2@20, and  PB2@30, 
respectively.

A pattern of increase in the BTE with an increase in 
load was observed for all fuel blends and  D100. At 20% 
load, the BTE observed for  D100 was 17.4% while for 

Fig. 3  a Validation perfor-
mance. b Error histogram 
for brake thermal efficiency 
prediction
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the blends  PB2@10,  PB2@20, and  PB2@30, it was found 
to be 16.11%, 17.46%, and 17.06%, respectively. At 40% 
load, the BTE was found to be 24.77%, 24.32%, 26.53%, 
and 23.11% respectively for  D100,  PB2@10,  PB2@20, and 
 PB2@30. However, with an increase in load to 60%, the 
BTE was found to be 29.16%, 27.11%, 28.79%, and 
27.38% for  D100,  PB2@10,  PB2@20, and  PB2@30, respec-
tively. At the highest load of 80%, the BTE for  D100, 
 PB2@10,  PB2@20, and  PB2@30 were found to be 28.69%, 
28.66%, 28.8%, and 28.5%. It was observed that there is 
a small difference between the BTE of D100 and three 
blends  (PB2@10,  PB2@20, and  PB2@30), however, the clos-
est efficiency to the D100 was observed when  PB2@20 was 
used at all loads.

NOx and smoke emissions

At 0% load, the  NOx emission of  PB2@20 was found to be 
80% less than  D100, while for  PB2@30, it decreased by 25%, 
and  PB2@10 had a similar emission to that of  D100. Within 
the load range of 20–60%, the  NOx emission of all blends 
increased compared to  D100; however, the least increment 
was observed with  PB2@20 compared to the other two 
blends. At the highest load (80%), the  NOx emission of 
 PB2@10 was found to decrease by 3.8%,  PB2@30 observed 
a 19.5% decrement, while  PB2@30 was found to have 13% 
lesser  NOx emission than  D100.

The smoke formation was the least for  PB2@30 with a 
decrement of 10.37% at 20% load, 31.51% at 40% load, and 

Fig. 4  Regression plot for BSFC prediction
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39.57% at 60% load, while at 80% load,  PB2@10 had the 
maximum decrement of 22.5% in comparison to  D100. At 0% 
load, the  PB2@30 blend had the lowest smoke formation at 
21.53% less than that of  D100. The presence of oxygenated 
fuels in the form of PB2 blends resulted in a complete com-
bustion of the blended fuel which might be the reason for 
the decrement of smoke at higher loads with higher blends 
assisting in complete and efficient combustion with a better 
air-fuel ratio maintained with blends in comparison to  D100.

ANN prediction modeling

The CI engine was tested with three blends of pure die-
sel  (PB2@10,  PB2@20, and  PB2@30), and the data was 

successfully utilized to fit the ANN prediction model. The 
development of a highly effective ANN model was depend-
ent on the performance and emissions data gathered through 
the trials. The next sections go into further depth about the 
performance (BTE and BSFC) and emissions  (NOx and 
smoke) results from the ANN modeling.

Brake‑specific fuel consumption (BSFC) and brake thermal 
efficiency (BTE)

The MSE for the training of the created ANN model was 
successful because the MSE for the applied algorithm 
training with BSFC results was quite low at 5.2915E−05 
for training, 2.7716E−04 for validation, and 7.0508E−06 

Fig. 5  Regression plot for BTE prediction
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for testing, with value of R being 0.99 for training and 1 
each for validation and testing. The MSE results found for 
prediction of BTE prediction were also very low at 0.00 
for training, 2.2513 for the validation, and 0.8568 for test-
ing the applied algorithm in the dataset. As displayed in 
Fig. 2a, for BSFC prediction, the validation performance 
was the best at 2 epochs with the minimum possible MSE 
value of 0.00027716, while the error histogram was found 
to be evenly distributed signifying fewer errors while com-
puting, as shown in Fig. 2b. Similarly, the training for BTE 
prediction of PB2 at all blends considered was effectively 
implemented at 3 epochs each with the lowest feasible MSE 
value of 2.2513, as displayed in Fig. 3a. Furthermore, the 
resulting dataset appeared to be generally evenly distributed, 
as indicated by the distribution curve of the error histogram 
in Fig. 3b. Obtaining lower MSE values and R close to 1 in 
all phases of application of the neural network has been the 

prime objective since it leads to better prediction results. A 
similar value of MSE (< 4%) was obtained while predict-
ing BTE and other performance and emissions parameters 
with inputs of fuel blend and equivalence ratio (Rezaei et al. 
2015). The value of MSE was found to be 0.01 for perfor-
mance prediction using a diesel-ethanol blend as fuel and 
different pressures as input parameters (Bahri et al. 2017).

R values close to 1 have also been found at 0.999 while 
predicting the performance (BTE, BSFC) and emission char-
acteristics using waste frying oil as fuel blend and injection 
timings as input parameters (Babu et al. 2020). The R value 
of 0.99 was also found using castor oil as a fuel blend to 
predict the brake power, BSFC, and emission characteristics 
with blend percentage and engine speed as inputs (Etghani 
et al. 2013) while similar results were obtained using com-
pression ratio and exhaust gas as inputs (Krishnamoorthi 
et al. 2019).

Fig. 6  a Validation perfor-
mance. b Error histogram for 
smoke emission prediction
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The training, testing, and validation test regression plots 
for BSFC and BTE are displayed in Figs. 4 and 5, respec-
tively, which illustrate how closely the targeted and output 
values corresponded at the specified input, yielding an R2 
value of 0.99859 for BSFC prediction and 0.99814 for 
BTE prediction for all ANN implementation phases. The 
validation and testing regressions also achieved a value 
of 1 in the case of BSFC; however, the training regression 
for BSFC was found to be at 0.99889. For BTE prediction, 
the training, testing, and validation phases of implemen-
tation gained the R2 value of 1. A regression coefficient 
(R2) value close to 1 has been the target for all predictions 
done in previous works as well. An R2 value of 0.9915 was 

found using Karanja and Rosell oil as blends for the pre-
diction of BSFC, BTE, and other performance parameters 
with engine load, blend percentage, and compression ratio 
as inputs (Shrivastava et al. 2020) while a value of 0.99 
for R2 was obtained using waste cooking oil and methyl 
ester biodiesel as blends to obtain the same performance 
characteristics (Muralidharan and Vasudevan 2014). In all 
the discussed cases, the Levenberg-Marquardt algorithm 
with the back-propagation technique was applied as in the 
current study. The little variation in the value of regres-
sion coefficient might be due to the BSFC along with BTE 
performance of  PB2@10 and  PB2@30, found to have a dif-
ference with that of  PB2@20 and  D100.

Fig. 7  a Validation perfor-
mance. b Error histogram for 
 NOx emission prediction
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Smoke and  NOx emissions

The ANN model utilized for the prediction of smoke and 
 NOx emissions was found to be successful. Figure 6a, b dis-
plays the validation performance curve and error histogram 
respectively for smoke emissions prediction. The best vali-
dation was found at 2 epochs with an MSE value of 2.3601, 
while for training, validation, and testing of smoke emission 
prediction, the MSE was found to be 45.2901 for testing, 
2.3601 for validation, and 16.3130 for testing while the val-
ues of R were determined to be 0.9726 for training and 1 
for both testing and validation phases. The MSE for  NOx 
emission prediction was found to be at 27.1447 for training, 
1.3343E+04 for validation, and 6.5241E+04 for testing with 

best validation at 8 epochs while R was found to be 0.9998 
for training and − 1 both for validation and testing of the 
applied model. Lower values of R during the prediction of 
emission parameters were also found using vegetable oil as 
a fuel blend with compression ratio and engine speeds as 
inputs (Krishnamoorthi et al. 2019) or while using hydro-
gen and lemongrass oil as fuel blends with load and hydro-
gen percentage as input parameters (Hariharan et al. 2020). 
Error histograms for smoke and  NOx emissions prediction 
are displayed in Figs. 6b and 7b. The plots show an even 
distribution of the patterns with the minimum error possible 
determining the best fit possible for the applied model.

The regression plots are displayed in Figs. 8 and 9 for the 
prediction of smoke and  NOx emissions, respectively. The 

Fig. 8  Regression plot for smoke emission prediction
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value of the regression coefficient (R2) for all cases com-
bined was found to be 0.96 for smoke emission prediction, 
while R2 was found to be 0.92 for  NOx emission prediction. 
However, the R2 for training, validation, and test for smoke 
emissions were determined to be 0.97, 1, and 1, respectively, 
while for  NOx emission prediction, R2 was found to be 0.99 
for training and − 1 each for validation and test phases of 
the implemented ANN model. The R2 for all cases needs to 
be close to 1 for a successful implementation of the applied 
model. R2 has also been found to be 0.96 using butanol as 
a blend with diesel having fuel mixtures and engine speed 
as input (Gürgen et al. 2018) while an R2 value of 0.93 was 
found for the prediction of emission using engine speed, 
load, and blends as input parameters (Liu et al. 2020). The 
deviation in the regression coefficient might be due to the 
more  NOx and smoke formation by PB2@10 and PB2@30 
at lower loads; however, the emission of PB2@20 was found 

to be in line with that of pure diesel, resulting in the overall 
better performance of obtained catalytic oil.

Conclusions

The following conclusions could be derived from the above 
study:

• The seeds of Pongamia pinnata, waste LDPE, and CaO 
catalyst were utilized for catalytic co-pyrolysis in the 
ratio of 3:6:1 in a batch reactor yielding the optimum 
yield of oil (92.5 wt%) at 500 °C.

• The obtained fuel (PB2) was then tested for its physi-
cal properties in which the calorific value of PB2 was 
observed to be 44.85 MJ/kg while the density was also 
observed to be in line with  D100.

Fig. 9  Regression plot for  NOx emission prediction
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• The load, torque, BP, and BMEP were chosen as the 
inputs to the artificial neural network to predict BTE and 
BSFC (performance characteristics) and  NOx and smoke 
emissions (emission characteristics).

• The value of R2 was found to be 0.99 each for BTE and 
BSFC while it was 0.96 and 0.92 for smoke and  NOx 
emission prediction, respectively.

• The error histogram showed an even distribution in all cases 
while the MSE was found to be as minimum as possible.

• The values of MSE, R, and regression coefficient were 
found to be in line with the existing literature.

• The current study also validates that the aforementioned 
feed mixture can definitely be used for usage as trans-
portation fuels as the implemented ANN model was 
successful in forecasting the performance and emission 
characteristics of the PB2 and diesel blends.

The future work might include the prediction modeling of 
other performance and emission parameters such as mechanical 
and volumetric efficiencies and the CO,  CO2, or HC emissions. 
The ANN modeling could also be implemented to further assert 
the combustion parameters for the selected fuel blends.
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