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Abstract
The presence of endocrine-disrupting chemicals (EDCs) in aquatic environments such as water, sediment, and sludge received 
more and more attention. However, the bioaccumulate properties of EDCs, particularly progestins and androgens, in various 
tissues of different wild freshwater fish species, as well as their effects on human health, have not been fully studied. The 
muscle, liver, and gills of three wild fish species obtained from the East Dongting Lake in southern China were examined for 
the presence of 19 EDCs (4 progestins, 5 androgens, 6 estrogens, and 4 phenols). Seventeen analytes were detected in all fish 
samples, and the concentrations of progestins, androgens, estrogens, and phenols ranged from ND–78.80 ng/g (wet weight, 
ww), ND–50.40 ng/g ww, ND–3573.82 ng/g ww, and ND–88.17 ng/g ww, respectively. The bioaccumulation of some EDCs 
in wild fish from East Dongting Lake was species-specific. Additionally, AND, EES, P4, and E2 were discovered in the 
liver at higher levels than in the muscle, suggesting that livers had a larger ability for enriching these EDCs than the muscle. 
Furthermore, the relationships between the fish sizes and the EDC concentrations indicated that total weight and length had 
a negligible impact on the bioaccumulation of EDCs in various fish species. Most importantly, the effects of EDCs on human 
health as a result of fish consumption were assessed. Although the estimated daily intakes (EDIs) of most EDCs were much 
lower compared with the corresponding acceptable daily intakes (ADIs) via consuming fish collected in this study, the EDI 
of EE2 in Silurus asotus was higher than the ADI of E2, indicating that Silurus asotus from East Dongting Lake should be 
eaten in moderation by local residents.

Keywords  Endocrine-disrupting chemicals · Freshwater fish species · Tissue distribution · Progestogens · Androgens · 
Health risk assessment

Introduction

Since endocrine-disrupting chemicals (EDCs) can inter-
fere with the endocrine systems of organisms, the occur-
rence of EDCs in the environment is of great concern 
(Liang et al. 2020; Šauer et al. 2020; Thrupp et al. 2018). 
Among these EDCs, progestins, androgens, and estro-
gens—natural and synthetic sex hormones—as well as 

phenols with estrogenic characteristics, are of particular 
interest, since they can modify gene expression, disrupt 
reproduction function, delay sexual development, and 
affect sexual differentiation in aquatic organisms even at 
nanograms per liter levels (Huang et al. 2019; Kidd et al. 
2007; Liang et al. 2019, 2018; Purdom et al. 1994). Addi-
tionally, they also pose a risk to human health such as 
obesity, diabetes, breast cancer, and prostate cancer and 
lead to abnormal development of the reproductive organs 
(Diamanti-Kandarakis et al. 2009).

Fish are sensitive indicator organisms for the effects of 
exposure to contaminants in the aquatic environment (Ell-
estad et al. 2014). As consumers at high trophic levels, fish 
can accumulate a considerable amount of EDCs through 
the gills, oral intake, and surface skin (Jia et al. 2017). 
Therefore, selecting fish as the subject could indicate not 
only the direct effects of contaminants on biota, such as 
bioconcentration, but also the indirect trophic transmission 
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along food chains, such as biomagnification (Fan et al. 
2019). Moreover, due to their high nutritional value, fish 
are commonly consumed by human beings (Jia et al. 2017). 
According to the Food and Agriculture Organization of the 
United Nations (2019), the fish production and supply in 
Asia were the highest in the world owing to the enormous 
demands for fish as the daily diet of Asians (Cheung et al. 
2008). Therefore, consumption of fish exposed to EDCs 
may pose a great threat to human health (Jia et al. 2016). In 
addition, a chemical’s capacity for bioaccumulation could 
be utilized to predict long-term negative consequences that 
were not always addressed by acute toxicity and short-term 
exposure tests (Nallani et al. 2012). Thus, the studies on 
bioaccumulation of progestins, androgens, estrogens, and 
phenols in fish are significant because present regulatory 
efforts to identify the environmental and human risks of 
contaminants are based on bioaccumulation assessments 
(Arnot and Gobas 2006). However, research on EDCs 
in the environment has been predominantly focused on 
estrogens and phenols, and little focus has been placed on 
the bioaccumulation of progestins and androgens in fish 
despite their prevalence in pharmaceutical therapeutic 
applications and their existence in the aquatic environment.

Fish feeding habits are the primary determinants of the 
transmission of pollutants among food webs (Arnot and 
Gobas 2004). Accordingly, contaminant residues in dif-
ferent fish species are influenced by feeding behaviors. 
However, the species-specific distributions of EDCs, par-
ticularly progestogens and androgens, in wild freshwater 
fish with various feeding behaviors in the lake have been 
less reported. In addition, the toxic effects of chemicals on 
aquatic organisms typically correlate with the absorption 
and accumulation of these chemicals in specific tissues 
(Ismail et al. 2021). Therefore, determining the contamina-
tion of EDCs in multiple tissues instead of only muscle is 
more comprehensive.

Dongting Lake, located in northeastern Hunan province, 
China, is the first large lake in the downstream region of 
the Three Gorges Reservoir and exhibits a highly dynamic 
hydrological regime and high turbidity (Dai et al. 2005). 
Dongting Lake is an important international wetland with 
numerous ecological functions. However, Dongting Lake 
has recently experienced the accumulation of contaminants 
and serious deterioration of the lake ecosystem (Müller 
et al. 2008). Therefore, three wild edible freshwater fish 
species were obtained from the East Dongting Lake and 
used to analyze the distribution characteristics of the 19 
EDCs (4 progestins, 5 androgens, 6 estrogens, and 4 phe-
nols) in their muscle, gill, and liver tissues. As far as we 
know, the concentrations of progestins and androgens in 
wild freshwater fish have not yet been reported, despite 
that progestins and androgens were generally considered 
to disrupt the reproductive system of aquatic organisms. 

Additionally, the relationships between the measured EDCs 
and fish sizes among different fish species were investi-
gated. Finally, the effects of target EDCs on human health 
by fish consumption in this area were estimated in order to 
reduce and control them.

Materials and methods

Sampling

In September 2017, 69 fish samples in total were obtained from 
an expert fisherman using fishing nets in the vicinity of Yuey-
ang City in Dongting Lake. The fishes included 22 Ctenophar-
yngodon idella (C. idella, total length 37.3 ± 1.44 cm and total 
weight 0.96 ± 0.08 kg), 19 Carassius auratus (C. auratus, total 
length 21.4 ± 1.31 cm and total weight 0.34 ± 0.05 kg), and 28 
Silurus asotus (S. asotus, total length 34.2 ± 6.14 cm and total 
weight 0.27 ± 0.15 kg). These three species, which are catego-
rized as herbivorous, omnivore, and carnivorous fish, respec-
tively, were the most prevalent edible species in the lake. The 
fish samples were promptly dissected after measuring the live 
total length and total weight. The muscle, liver, and gills were 
collected, cleaned with ultrapure water, dried and homogenized, 
and then stored at − 20 °C.

Chemical and sample preparation

In total, 19 EDCs, including 4 progestins (progesterone 
(P4), levonorgestrel (LNG), medroxyprogesterone (MP), 
and norethindrone (NET)), 5 androgens (testosterone 
(TES), androstenedione (AND), methyltestosterone (MT), 
19-nortestosterone (19-NT), and stanozolol (ST)), 6 estro-
gens (estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol 
(EE2), diethylstilbestrol (DES), dienestrol (DIE), and hex-
estrol (HEX)), and 4 phenols (bisphenol A (BPA), 4-non-
ylphenol (4-NP), 4-tert-octylphenol (4-t-OP), and 4-octyl-
phenol (4-OP)), were chosen for this study and determined 
simultaneously with 4 internal standards (progesterone-d9; 
testosterone-d3; 17β-estradiol-2,4-d2; and bisphenol A-d16). 
In the Text S1 and Text S2 of Supplementary materials, the 
specifics relating to chemical, material, and sample prep-
aration were covered. The concentrations of EDCs were 
reported as nanograms per gram wet weight (ww) for fish 
samples.

LC–MS analysis and QA/QC

Nineteen target analytes were analyzed by the method described 
in our previous study based on Agilent 1260–6460 liquid chro-
matography-mass spectrometry (LC–MS, Agilent Technolo-
gies, USA) (Luo et al. 2019). More information on instrumental 
analysis was shown in Text S3 of the Supplementary materials. 
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To guarantee the effectiveness and reproducibility of the ana-
lytical method, quality assurance and quality control (QA/QC) 
were carried out. The method detection limit (MDL) varied from 
0.14–1.70 ng/g ww. The method quantitation limit (MQL) varied 
from 0.43–5.67 ng/g ww. There were no target EDCs found in 
the procedure blanks. The recoveries ranged from 52.7 to 119%. 
The RSDs ranged for repeatability and reproducibility were 
0.45–14.84% and 0.54–23.97%, respectively. Specific method 
performance parameters are displayed in Table S1.

Risk characterization

Only the fish muscle was investigated for its potential health 
risks because the muscle was the primary tissue ingested by 
the local population. The highest concentrations of EDCs 
detected in fish muscles (given in Table 1) were used to 
estimate the health risks to locals after consuming fish based 
on “a worst-case scenario.”

Estimated daily intake (EDI) of each EDC by fish con-
sumption was calculated by employing the following 
equation:

where Ci (ng/g) is the concentration of the compound i, DIR 
(g/day) is the daily ingestion rate of fish muscle for consum-
ers, and BW (kg) is the body weight for residents. In this 
study, BW and DIR for people living in Hunan Province, 
China, are 58.7 ± 12.0 kg and 0.060 ± 0.046 kg/day, respec-
tively (Jia et al. 2018).

Statistical analysis

Target EDC concentrations below the MDL were not consid-
ered while determining the detection frequency. For purposes 
of statistical analysis, the data below the MQL were set to zero 
(Lu et al. 2017). The significant differences (p < 0.05) between 
concentrations of different EDCs for each tissue were evaluated 
by the Mann–Whitney U test through SPSS software (IBM, 
USA). Moreover, the comparison of concentrations of each EDC 
between different species and tissues was also performed by the 
Mann–Whitney U test. The Spearman correlation analysis was 
developed to evaluate the correlation between concentrations of 
each EDC and fish sizes by SPSS software.

Results and discussion

Occurrence of EDCs in wild freshwater fish

Target EDC concentrations in the wild freshwater fish from 
East Dongting Lake are summarized in Table 1. Seventeen 

(1)EDI
i
=

C
i
× DIR

BW

analytes (including 4 progestogens, 5 androgens, 5 estro-
gens, and 3 phenols) were detected in all fish samples con-
taining the muscle, liver, and gills, but E1 and 4-t-OP were 
not found in any fish samples.

As for estrogens, interestingly, synthetic estrogen 
DES was detected with the highest detected frequency 
(DFs = 15.53%) among target estrogens despite being listed 
as a banned veterinary drug in China since 2011 (Yang et al. 
2021). Our previous study also showed that the DES had 
the highest detection frequency in the muscle of wild fish 
from the Changsha section of the Xiangjiang River (Zhou 
et al. 2019). The Xiangjiang River flows into Dongting Lake 
eventually. The high detection frequencies of DES in wild 
fish in Xiangjiang River and Dongting Lake suspected that 
DES was still illegally used by residents for livestock pro-
duction, and the supervision of relevant drugs should be 
further strengthened. Compared with previous studies, the 
E2 concentrations (ND–16.46 ng/g) in fish species from 
East Dongting Lake in the present study were lower than 
those in Taihu Lake, China (4.91–364 ng/g dw) (Wang 
et al. 2015). The concentrations of DES in fish in this study 
(ND–3.21 ng/g) were the same as those in Loma Lake, 
China (0.11 ng/g) (Dan et al. 2017). The concentration of 
EE2 in fish in the present study (ND–3574 ng/g) was much 
higher than that in Xiangjiang Lake, China (ND–27.3 ng/g) 
(Zhou et al. 2019) and in Loma Lake, China (1.18 ng/g,). To 
date, there is no existing data pertaining to the concentra-
tions of DIE and HEX in fish.

Among the three phenols, the detection frequency of BPA 
(28.64%) and the average concentration of BPA (2.05 ng/g) 
were the highest. The BPA levels measured in fish samples 
from East Dongting Lake (ND–88.17 ng/g) were in accord-
ance with the finding from Dianchi Lake (ND–83.5 ng/g) 
(Liu et al. 2011) and higher than those from the Nether-
lands (1–11 ng/g) (Belfroid et al. 2002). BPA is primarily 
used in the manufacture of epoxy resins and polycarbonate 
plastics (Gyllenhammar et al. 2012; Natalie et al. 2010), and 
its high detected concentration may be related to industrial 
development and sewage and wastewater discharge in lake-
side cities. The concentration of 4-NP (ND–0.35) in fish in 
the current study was lower than that in Xiangjiang River 
(ND–148 ng/g) (Zhou et al. 2019).

In addition, the detection frequency of natural progestin 
P4 (24.27%) in this study was the highest among the target 
progestins, which might be related to its endogenous exist-
ence in the aquatic environment and fish. Natural progesto-
gens, which served as sex pheromones in teleost fish, are 
essential for oocyte growth and maturation, spermatogen-
esis, and sperm maturation (Kime 1990; Kobayashi et al. 
2002; Nagahama and Yamashita 2008; Scott et al. 2010). 
The concentrations of P4 in this study (ND–20.26 ng/g) 
were higher than those in the muscle of cultured fish 
(ND–5.4 ng/g) in three freshwater aquaculture farms in 
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Guangzhou, China (Liu et al. 2017). The concentrations 
of MP, LNG, and NET in fish samples from East Dongting 
Lake ranged from ND–78.80 ng/g, ND–25.63 ng/g, and 
ND–61.02 ng/g, respectively. TES, like P4, also had the 
highest detection frequency among 5 targeted andro-
gens. The concentrations of 19-NT, AND, MT, and ST in 
fish samples from East Dongting Lake exhibited a range 
of ND–3.90 ng/g, ND–45.07 ng/g, ND–50.40 ng/g, and 
ND–4.96 ng/g, respectively. However, the research on pro-
gestins and androgens in freshwater fish remains limited; 
to our knowledge, no other investigations have yet reported 
on the contamination characteristics of progesterone and 
androgen in fish.

Distributions of EDCs in different fish species 
and tissues

The concentrations of each EDC in different fish species are 
shown in Table 1. As shown in Table 1, for liver samples, 
the concentrations of AND in C. idella (ND–45.07 ng/g) 
were significantly higher than those of omnivorous C. 
auratus (ND–2.30 ng/g), and the concentrations of EE2 
in C. idella (ND–40.90 ng/g) were significantly higher 
than those of S. asotus (ND–6.00 ng/g) (p < 0.05). For 
gill samples, the concentrations of BPA in C. idella 
(ND–88.17 ng/g) were significantly higher than those in 
C. auratus (ND–3.73 ng/g) (p < 0.05). The contents of NET 
(ND–24.69 ng/g) and TES (ND–0.70 ng/g) in C. idella 
were lower than those in S. asotus (ND–28.49 ng/g and 
ND–3.12 ng/g, respectively). The finding suggested that 
the bioaccumulation of some EDCs in fish was species-
specific. However, for C. idella, C. auratus, and S. asotus, 
there was no significant difference in the EDC concentra-
tions in the muscle among different species, indicating that 
the trophic role is not the only factor influencing the bio-
accumulation of EDCs in the specific tissue; other factors 
such as ecological habits, growth dilution, and metabolic 
capability may also affect the bioaccumulation of EDCs 
in food chains (Sun et al. 2017; Yuan et al. 2012; Zhou 
et al. 2007).

The distributions of EDCs in different tissues of each 
fish species are shown in Fig. 1. In C. idella, the concen-
trations of androgen AND and estrogen EES in the muscle 
were significantly lower than those in the liver. Similarly, 
in the case of C. auratus, the P4 concentrations in the 
muscle were notably lower than those in the liver. In S. 
asotus, the levels of estrogen E2 were remarkably lower 
than those in the liver. Liu et al. (Liu et al. 2011) studied 
the distribution of E2 in wild C. auratus in Dianchi Lake 
and found that the enrichment ability of estrogens and 
phenols in C. auratus liver was significantly more potent 
than those in the muscle. At present, there was no research 

on the distribution of progestins and androgens in differ-
ent fish tissues. The liver plays a crucial role in primary 
metabolism and is the major site for the accumulation, 
biotransformation, and excretion of pollutants (Moon 
et al. 1985). The concentrations of AND (Kow = 2.8), EES 
(Kow = 3.7), P4 (Kow = 3.9), and E2 (Kow = 4) in the liver 
exhibited higher values compared to those in the muscle, 
which showed higher hepatic accumulation. Interestingly, 
in S. asotus, the contents of P4 (Kow = 3.9) in the liver 
were considerably lower than those in the muscle, and the 
LNG (Kow = 3.5) levels in the muscle were also higher than 
those in both the liver and gills. C. auratus and S. aso-
tus are herbivorous and carnivorous, respectively. These 
results underscore the distinct tissue-specific accumulation 
of EDCs with similar or even identical hydrophobicity 
across various fish species with disparate trophic roles. 
This observation further underscores the pivotal role of 
a trophic level of fish species in dictating the distribution 
of EDCs among various tissues. In C. idella, the levels 
of estrogen DES in the muscle were significantly lower 
than those in the gills, which may be due to the passive 
exchange of contaminants between fish and the aquatic 
environment through the gills. In addition, the gill is an 
important site of interaction with contaminants because 
it is the first organ to be in contact with water and resus-
pended sediment particles (Jia et al. 2016). The results 
suggested that water exposure might be the main exposure 
route of DES to C. idella.

Correlation analysis

Spearman correlation analysis was used to determine the 
relationship between the concentrations of EDCs in the ana-
lyzed tissues (muscle, liver, and gills) and the total lengths 
and weights of the three fishes. The correlation coefficients 
are shown in Table 2.

For C. idella, the concentrations of P4 in the muscle 
were negatively correlated with total lengths (r =  − 0.45, 
p < 0.05). The concentrations of BPA in the muscle were 
positively correlated with total weights (r = 0.52, p < 0.05). 
There was a positive correlation between the MT levels in 
the liver and total lengths (r = 0.44, p < 0.05). For S. aso-
tus, the concentrations of HEX in the gills were positively 
correlated with total weights (r = 0.48, p < 0.05). These 
results indicated that P4, BPA, MT, and HEX gradually 
accumulated in the fish as the fish grew. However, there 
was no significant correlation between the total weights 
and lengths of the C. auratus and the concentrations of 
EDCs. The levels of pollutants in fish tissues depend on 
the combined effects of feeding behavior, habitat, geo-
graphic location, life stage, and other factors on the pollut-
ant intake and elimination rate. Juvenile fish have higher 
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metabolic capability and intake rate than adult fish, and 
adult fish accumulate more EDCs as they grow. Consider-
ing that fish have been exposed to EDCs for a long time, 
a balance between the rate of uptake and elimination of 
EDCs in the fish might account for the weak correlation 
(Jia et al. 2017). Therefore, the correlation between total 
weight and length and EDC concentration of different fish 
species was various, and the influence of body size on 
the bioaccumulation of EDCs in different fish species was 
relatively small.

Health risk assessment

Diet is a crucial pathway for humans taking EDCs. Pre-
vious clinical observations and epidemiological analysis 
indicated that EDCs might have harmful effects on the neu-
rological and reproductive systems, leading to the onset 
of obesity and cancer (Diamanti-Kandarakis et al. 2009). 
Since all studied fish are traded species and valuable for 
fish exports, the EDIs of diverse EDCs of residents after 
consuming these three contaminated fish species were 

Fig. 1   Concentrations of EDCs in different tissues A C. idella, B C. auratus, and C S. asotus. *p < 0.05 indicate the significant differences 
between different tissues



105836	 Environmental Science and Pollution Research (2023) 30:105829–105839

1 3

Ta
bl

e 
2  

S
pe

ar
m

an
 c

or
re

la
tio

n 
co

effi
ci

en
ts

 b
et

w
ee

n 
th

e 
ED

C
s a

nd
 fi

sh
 si

ze
s

*  p 
<

 0.
05

ED
C

C
. i

de
lla

C
. a

ur
at

us
S.

 a
so

tu
s

W
ei

gh
t

Le
ng

th
W

ei
gh

t
Le

ng
th

W
ei

gh
t

Le
ng

th

M
us

cl
e

Li
ve

r
G

ill
s

M
us

cl
e

Li
ve

r
G

ill
s

M
us

cl
e

Li
ve

r
G

ill
s

M
us

cl
e

Li
ve

r
G

ill
s

M
us

cl
e

Li
ve

r
G

ill
s

M
us

cl
e

Li
ve

r
G

ill
s

P4
 −

 0.
19

0.
08

0.
01

 −
 0.

45
*

0.
00

0.
18

/
0.

04
 −

 0.
02

/
0.

03
0.

00
0.

21
0.

07
0.

31
 −

 0.
09

0.
23

0.
03

M
P

/
 −

 0.
01

/
/

0.
12

/
/

0.
32

/
/

0.
11

/
/

 −
 0.

10
0.

36
/

 −
 0.

12
0.

39
LN

G
0.

37
 −

 0.
05

 −
 0.

23
0.

09
0.

10
 −

 0.
10

/
/

0.
00

/
/

0.
15

 −
 0.

25
/

/
0.

14
/

/
N

ET
 −

 0.
28

0.
18

 −
 0.

03
0.

14
0.

25
 −

 0.
22

/
0.

01
0.

17
/

0.
00

 −
 0.

19
 −

 0.
28

/
0.

40
 −

 0.
25

/
0.

45
19

-N
T

 −
 0.

28
/

 −
 0.

05
 −

 0.
26

/
0.

10
0.

24
0.

24
/

0.
15

0.
15

/
0.

03
0.

18
0.

06
 −

 0.
18

0.
20

0.
33

A
N

D
/

0.
01

 −
 0.

05
/

0.
09

0.
10

/
0.

04
0.

16
/

 −
 0.

27
0.

28
/

/
 −

 0.
16

/
/

 −
 0.

40
M

T
0.

09
0.

18
 −

 0.
05

0.
00

0.
44

*
0.

10
/

0.
00

/
/

0.
15

/
 −

 0.
13

0.
27

/
/

0.
33

/
TE

S
/

 −
 0.

40
/

/
 −

 0.
16

/
/

 −
 0.

27
0.

05
/

 −
 0.

16
 −

 0.
18

/
 −

 0.
17

 −
 0.

11
 −

 0.
33

 −
 0.

12
 −

 0.
13

ST
/

0.
02

 −
 0.

33
/

0.
00

 −
 0.

33
/

 −
 0.

12
0.

27
/

 −
 0.

32
0.

22
0.

06
0.

08
0.

02
/

0.
18

0.
05

CA
F

/
/

 −
 0.

27
/

/
0.

11
/

0.
02

0.
10

/
0.

39
0.

05
/

0.
32

 −
 0.

17
0.

00
0.

32
 −

 0.
12

4-
N

P
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
4-

t-O
P

/
 −

 0.
07

 −
 0.

31
/

 −
 0.

24
 −

 0.
14

/
/

 −
 0.

22
/

/
 −

 0.
09

/
0.

12
0.

30
/

0.
20

0.
39

B
PA

0.
52

*
0.

05
0.

28
0.

20
0.

02
0.

23
0.

35
 −

 0.
03

0.
09

0.
25

0.
22

0.
06

0.
15

 −
 0.

20
 −

 0.
27

0.
10

 −
 0.

12
 −

 0.
20

D
ES

/
0.

14
 −

 0.
20

/
0.

27
 −

 0.
12

0.
34

/
0.

04
0.

21
/

0.
00

 −
 0.

21
 −

 0.
05

0.
20

 −
 0.

13
0.

09
0.

23
D

IE
 −

 0.
33

0.
02

0.
12

 −
 0.

33
0.

00
0.

03
/

 −
 0.

07
 −

 0.
30

/
 −

 0.
19

 −
 0.

29
/

0.
05

 −
 0.

02
/

0.
08

0.
12

E2
/

/
/

/
/

/
/

 −
 0.

13
/

/
 −

 0.
09

/
/

 −
 0.

10
/

/
 −

 0.
05

/
EE

2
/

0.
23

0.
22

/
0.

02
0.

25
/

0.
09

/
/

0.
15

/
0.

03
 −

 0.
13

 −
 0.

30
0.

08
 −

 0.
32

 −
 0.

15
H

EX
/

/
/

/
/

/
/

/
/

/
/

/
/

/
0.

48
*

/
/

 −
 0.

17



105837Environmental Science and Pollution Research (2023) 30:105829–105839	

1 3

calculated according to Eq. (1). The EDIs of EDCs in wild 
C. idella, C. auratus, and S. asotus in East Dongting Lake 
are shown in Table 3.

ADI is the acceptable daily intake of a pollutant that 
does not cause obvious health risks in a person’s life 
(Diogo et al. 2013). When EDI of EDC is higher than 
ADI, EDC will hurt human health. C. idella, C. auratus, 
and S. asotus are typical wild freshwater fish often eaten 
by residents. According to the Joint FAO/WHO Expert 
Committee on Food Additives (JECFA) and General 
Administration of Quality Supervision, Inspection, and 
Quarantine of the People’s Republic of China, the ADI of 
P4, TES, E2, and BPA is 30 μg/BWkg/day, 2 μg/BWkg/
day, 0.05 μg/BWkg/day, and 5 μg/BWkg/day, respectively. 
There was no ADI for other EDCs at present, so the ADIs 
of these four substances were used as the representatives 
of the four kinds of substances to be compared with EDIs 
of other EDCs. As shown in Table 3, the EDIs of most 
EDCs were much lower compared with the corresponding 
ADIs. However, the EDI of EE2 in S. asotus (0.0747 μg/

BWkg/day) was higher than the ADI of E2 (0.05 μg/
BWkg/day), indicating that S. asotus from East Dongting 
Lake should be eaten in moderation by local residents. 
Given the composite nature of EDCs in the fish, the total 
EDIs of three fish species were compared. As shown in 
Table 3, the total EDI of S. asotus was higher than those 
of C. idella and C. auratus, also revealing that consump-
tion of carnivorous S. asotus posed higher health risks 
than the ingestion of C. idella and C. auratus from East 
Dongting Lake.

Conclusions

Seventeen analytes (including 4 progestogens, 5 andro-
gens, 5 estrogens, and 3 phenols) were detected in wild 
freshwater fish from East Dongting Lake except E1 and 
4-t-OP which were not found in any fish samples. The 
concentrations of EDCs in the muscle, liver, and gills were 
variable. The liver presented a higher affinity for the accu-
mulation of AND, EES, P4, and E2 than the muscle. The 
trophic level of fish species played an important role in 
the distribution of EDCs in various tissues. According to 
the results of the Spearman correlation analysis, the influ-
ence of total weight and length on the bioaccumulation 
of EDCs in different fish species was relatively small. In 
addition, the risk assessment showed that S. asotus from 
East Dongting Lake should be eaten in moderation by 
local residents.
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Table 3   EDIs and ADIs of the muscle in three different fish species 
from East Dongting Lake

EDC EDI (μg/BWkg/day) ADI (μg/
BWkg/
day)C. idella C. auratus S. asotus

Progestins
P4 0.0071 / 0.0024 30
MP / 0.0016 0.0007 /
LNG 0.0053 0.0018 0.0239 /
NET 0.0051 0.0004 0.0034 /
Androgens
TES 0.0007 0.0005 0.0010 2
AND 0.0006 0.0006 0.0011 /
MT 0.0057 0.0005 0.0011 /
19-NT 0.0012 0.0011 0.0040 /
ST / 0.0005 / /
Estrogens
E2 / 0.0014 / 0.05
DES / 0.0008 0.0007 /
DIE 0.0007 / 0.0003 /
EE2 / / 0.0747 /
HEX / 0.0008 / /
Phenols
BPA 0.0020 0.0037 0.0018 5
4-NP 0.0004 / / /
4-t-OP 0.0011 0.0021 0.0013 /
Total EDI (μg/

BWkg/day)
0.0299 0.0158 0.1164 /
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