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Abstract
Co3O4 nanoparticles (NPs) were formed using hydrothermal synthesis method and various surfactants to study the effect of 
changing surface morphology on catalytic and antibacterial activities. FT-IR, TEM, SEM, BET, XRD, and XPS analyses 
were performed to characterize the NPs. It was observed that as the morphology of  Co3O4 changes, it creates differences 
in the reduction efficiency of organic dyes and p-nitrophenol (p-NP), which are toxic to living organisms and widely used 
in industry. The reaction rate constants (Kapp) for  Co3O4-urea,  Co3O4-ed, and  Co3O4-NaOH in the reduction of p-NP were 
found to be 1.86 ×  10−2  s−1, 1.83 ×  10−2  s−1, and 2.4 ×  10−3  s−1, respectively. In the presence of  Co3O4-urea catalyst from 
the prepared nanoparticles, 99.29% conversion to p-aminophenol (p-AP) was observed, while in the presence of the same 
catalyst, 98.06% of methylene blue (MB) was removed within 1 h. The antibacterial activity of  Co3O4 particles was com-
pared with five standard antibiotics for both gram-positive and gram-negative bacteria. The results obtained indicate that 
the antimicrobial activity of the synthesized  Co3O4 particles has a remarkable inhibitory effect on the growth of various 
pathogenic microorganisms. The current work could be an innovative and beneficial search for both biomedical and waste-
water treatment applications.
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Introduction

Nitroaromatic compounds and/or organic dyes are sub-
stances that have toxic properties for humans, animals, 
and plants but are widely used in industry (Muhammad 
et  al. 2019; Najafabadi et  al. 2022; Nava et  al. 2022). 
Their removal is essential for the protection of the health 
of living organisms and can be achieved through adsorp-
tion, advanced oxidation processes, chemical reduction, 
and aerobic biodegradation (Fast et al. 2017). Chemical 

reduction is an important and inexpensive method for the 
extraction of nitroaromatics and azo dyes by converting 
hydrogen into relatively low-toxicity products that can 
be easily degraded in nature (Li et al. 2021a, b; Rahman 
and Jonnalagadda 2008). High surface area activated car-
bon, and microalgae have been used as catalysts by many 
researchers to achieve high degradation performance 
towards organic pollutants (Mohd Hanafi et al. 2022; Jasri 
et al. 2023; Abdulhameed et al. 2022; Nadhirah Long Tam-
jid Farki NNA 2023). Razali et al. synthesized high sur-
face area activated carbon (MSMPAC) using mixed fruit 
waste from mango (Mangifera indica) seeds (MS) and 
peels (MP), microwave-induced  ZnCl2 activation and eval-
uated it for the removal of methylene blue (MB) from an 
aqueous medium (Razali et al. 2022). On the other hand, 
most of the metal-based catalysts for this hydrogenation 
reaction of nitroaromatic compounds heavily depend on 
noble metals (Li et al. 2021a, b; Zaera 2017; Kim et al. 
2022). Most of the catalytic reactions in the noble metal 
nanoparticles (NP) take place only on the surface of the 
nitroaromatic compounds, and most of the atoms in the 
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nucleus are catalytically inactive (Seitkalieva et al. 2021; 
Mohanty et al. 2010). However, the process is not finan-
cially friendly, and this reduces its areas of use. For this 
reason, to generate a large percentage of the noble metal 
atoms accessible for catalysis and to reduce their use, 
the internal noble metal atoms must be replaced by non-
noble metals such as iron (Fe), cobalt (Co), and nickel (Ni) 
(Badruzzaman et al. 2020; Karimi et al. 2021; Ryabchuk 
et al. 2018). As an alternative, heterogeneous catalysts pro-
duced using non-precious metals, hydroxides, and oxides 
have gained importance due to their superior attributes 
with substantially more feasible costs compared to noble 
metals (Singh et al. 2017; Kurnaz Yetim et al. 2022; Wang 
et al. 2015; Ozkan 2023; Wen et al. 2018). Making a com-
parison with non-precious metals with higher oxidizing 
properties, and with challenging production procedures, 
oxide metals show similar reaction properties, superior 
chemical stability, and easier production aspects (Zhang 
et al. 2021). For this reason, non-precious metal oxides 
are one of the most commonly used functional materials 
for various catalytic implementations (Naseem et al. 2021; 
Danish et al. 2020; Gebre and Sendeku 2019).

The transition of cobalt oxide is of significant impor-
tance thanks to its electrical, optical, and magnetic proper-
ties (Prakash et al. 2022; Anuma et al. 2021; Ambika et al. 
2019). Cobalt possesses  Co4+,  Co3+, and  Co2+ oxidation 
steps. For this reason, it exists in the forms of cobalt (II) 
oxide (CoO), cobalt (III) oxide  (Co2O3), and cobalt (II, III) 
oxide  (Co3O4). The  Co3O4 phase is the most commonly seen 
of these forms.  Co3O4 is highly stable in terms of chemi-
cal activity and possesses rich redox reactivity in numer-
ous reactions (Liu et al. 2022; Xu et al. 2022; Cheng et al. 
2021). Size, shape, surface area, crystallinity, defects, and 
surface oxidation state are the important parameters that 
affect the catalytic activity of  Co3O4. In previous studies, 
various approaches were adopted including size and pore 
modulation, ion doping, surface defect generation, and sup-
port-induced interactions to modify mass transfer and elec-
tron transfer that increase the catalytic activities of  Co3O4 
nanoparticles in chemical reduction reactions (Zhang et al. 
2017; Mogudi et al. 2016).

In the last 10 years, inorganic nanoparticles (NPs) with 
unique physical, chemical, and biological properties have 
become of particular importance against bacterial infections 
(Khan et al. 2019; Jeevanandam et al. 2018). In general, 
organic antimicrobial agents have lower stability, especially 
at high temperatures or pressures, and can be seriously harm-
ful and/or toxic. On the other hand, inorganic materials with 
antibacterial properties including inorganic metal oxides are 
rigid and ductile. Their superior properties over organic anti-
microbial agents include stability, rigidness, and chemical 
stability over a longer time (Pugazhendhi et al. 2021). In 
addition, metal oxide NPs replace the most frequently used 

silver oxides, which due to their toxicity have adverse effects 
on humans and the surrounding environment (Kavitha et al. 
2017).

Various  Co3O4 with different morphologies have been 
reported in the literature. These have shown various cata-
lytic performances based on their surface area, surfactant 
species, reducibility, and morphology (Chiu et al. 2020; Din 
et al. 2021; Xu et al. 2022). Therefore, it will be necessary 
to investigate  Co3O4 with various morphologies, especially 
nanostructures, to offer insights towards optimizing  Co3O4 
design to investigate the morphology-based catalytic reactiv-
ity and antimicrobial effect of  Co3O4 catalysts. Therefore, 
the aim of this work is to investigate  Co3O4 catalysts with 
various nanostructured morphologies for p-NP reduction.

In this study,  Co3O4 structures with three different mor-
phologies were obtained by using the hydrothermal synthe-
sis method (Kurnaz Yetim 2021). The effect of the mor-
phology of the  Co3O4 NPs produced on the catalytic and 
antimicrobial properties against pathogenic strains (Gram 
( −) and Gram ( +) bacteria and yeast) were examined (see 
Fig. 1).

Materials and methods

Spectral data measurements

A Rigaku MiniFlex 600 X-ray diffractometer equipped 
with a Ni-filtered Cu Kα source was utilized to determine 
the X-ray diffraction (XRD) patterns over a scan range of 
10° < 2θ < 90°. The infrared spectrum was recorded using a 
Jasco FT-IR-6700 spectrometer, and the wavelength range 
was between 400 and 4000  cm−1. In addition, scanning elec-
tron microscopy (SEM) was utilized to examine the surface 
morphology of the  Co3O4 structures. Energy dispersive 
x-ray spectroscopy (EDX) was adopted for the determination 
of the elemental composition of the  Co3O4 structures. A FEI 
Quanta 400F model device was utilized for the SEM–EDX 
analyses. Brunauer–Emmett–Teller (BET) analysis was per-
formed to examine the surface area of the nanostructures. 
Quantachrome-Nova Touch  LX4 instrument was used for 
this purpose.

Synthesis of the Co3O4 structures

The synthesis of  Co3O4-urea,  Co3O4-ed, and  Co3O4-NaOH 
structures was carried out following the procedure in the pre-
vious research (Kurnaz Yetim 2021). In Fig. 2, the synthesis 
scheme of  Co3O4 nanoparticles is presented.

Co3O4-urea was prepared by dissolving 1.45  g of 
Co(NO3)2·6H2O and 1.5 g CO(NH2)2 in 40 mL of water 
under stirring for 30 min, and a homogeneous solution 
was obtained. The resulting mixture was placed into a 
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Teflon-lined stainless steel autoclave with a capacity of 
50 mL, autoclaved in an oven at 150 °C for 4 h. The precipi-
tate was rinsed with distilled water and ethanol and dried 

at 80 °C for 24 h. Finally, the product was left to anneal at 
450 °C in the air for 2 h under ambient conditions at a rate 
of 10 °C/min.

Fig. 1  Schematic representation of the catalysis reaction mechanism and antimicrobial properties of  Co3O4 nanoparticles

Fig. 2  Synthesis scheme of  Co3O4 nanoparticles obtained using different surfactants
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To obtain  Co3O4-ed, 1.45 g of Co(NO3)2·6H2O was dis-
solved in 25 mL of water and then 0.5 mL of ethylenedi-
amine was added. The pH was adjusted to 12 using 2 M of 
NaOH. The solution was stirred for 30 min, and the mixture 
was transferred to a 50-mL capacity Teflon-lined stain-
less steel autoclave. The solution in the autoclave was then 
placed in an oven and autoclaved 150 °C for 12 h. The solu-
tion was cooled to room temperature, and the precipitate was 
rinsed with distilled water and ethanol, and then left to dry 
at 60 °C for 12 h. Finally, the product was left to anneal at 
350 °C in the air for 2 h at a rate of 10 °C/min.

To obtain  Co3O4-NaOH, 5.82 g of Co(NO3)2·6H2O and 
0.2 g of sodium hydroxide were dissolved in deionized water 
(10 mL) under vigorous stirring for 10 min. The solution 
was then transferred in a Teflon-lined stainless steel auto-
clave of 50 mL capacity and autoclaved at 150 °C for 6 h. 
The solution was cooled to room temperature, and the pre-
cipitate was rinsed with distilled water and ethanol, and then 
left to dry at 60 °C for 10 h. Finally, the product was left to 
anneal at 500 °C in the air for 3 h at a rate of 10 °C/min.

Reduction of p‑NP and MB

Catalysis studies were conducted by observing the conver-
sion of p-NP molecules into p-AP molecules by  Co3O4 NM-
based catalysis. In this procedure,  NaBH4 was utilized as the 
hydrogen source. Accordingly, approximately 3-mg  Co3O4 
flower-like particles were placed into a 3-mL solution con-
taining 0.1 mM of p-NP and 0.3 mL of 0.2 M  NaBH4. The 
concentration of the p-NP and p-AP was examined utilizing 
a spectrophotometric method (Kurnaz Yetim and Hasanoğlu 
Ozkan 2021).

To realize a reduction study, approximately 3 mg of 
 Co3O4 NPs was placed in 4 mL of a 7.5 mg/L MB aqueous 
solution, then 0.3 mL of fresh  NaBH4 aqueous solution was 
added. The resulting mixture was then examined by measur-
ing the absorbance of the solution at 664-nm wavelength at 
different periods to examine the concentration of the remain-
ing MB solution (Erdogan 2020).

Analysis of the antimicrobial potential of Co3O4 NPs

Detection of antimicrobial activity

The antibacterial activity of  Co3O4 NPs was tested against 
the six Gram-negative bacteria (Salmonella typhi, Escheri-
chia coli, Enterobacter aerogenes sp., Klebsiella pneumo-
niae, Proteus vulgaris, and Pseudomonas aeruginosa), five 
Gram-positive bacteria (Staphylococcus aureus, Staphylo-
coccus epidermis, Micrococcus luteus, Bacillus cereus, and 
Listeria monocytogenes), and one yeast (Candida albicans) 
by the Agar well diffusion assay method. The NPs were 
kept dry at room temperature and dissolved (100 µg/mL and 

200 µg/mL) in DMSO. DMSO was utilized as the solvent for 
the compound and the control. It was determined that DMSO 
had no antimicrobial activity against any of the pathogenic 
microorganisms. A 1% (v/v) 24-h broth culture (pathogenic 
bacteria and yeast) containing  106 cfu/mL was placed on a 
sterile plate. Mueller–Hinton Agar (MHA) (15 mL) at 45 °C 
was poured into Petri dishes and left to cool and solidify. 
Then, 6-mm-diameter wells were carefully drilled utilizing 
a sterile cork drill and filled with the synthesized NPs and 
incubated for 24 h at 37 °C (Ogutcu et al. 2017). At the 
end of incubation, the average of the two wells was utilized 
to calculate the growth inhibition zone of each pathogenic 
bacteria and yeast (to compare the degree of inhibition, bac-
teria and yeast were tested for resistance to four antibiotics 
(kanamycin, ampicillin, amoxicillin, and sulfamethoxazole) 
and one anticandidal (nystatin) (Anar et al. 2016).

Results and discussion

Characterization of Co3O4 NPs

FT-IR, XRD, and XPS analyses of  Co3O4 NPs are given 
in the Supporting Information (Kurnaz Yetim 2021). The 
SEM images of the  Co3O4 samples prepared using different 
ligands are given in Fig. 3. The figure shows the morpho-
logical and structural properties of the  Co3O4 structures.

Figure 3(a) presents the  Co3O4-urea in the nanosheet 
form. The expanded figure shown in Fig. 3(d) was prepared 
to identify the well-assembled multi-layered microplates in 
porous form. Figure 3 (b) shows the  Co3O4-ed sample. This 
sample was in a clover leaf-like form; the accumulation of 
small clover-like formations can be seen. The size of the clo-
ver-like formations was in the range of 500–1000 nm. SEM 
images of  Co3O4-NaOH sample are shown in Fig. 3(e) and 
(f). SEM images of  Co3O4-NaOH show that the structure 
is in the form of nanospheres. The size distribution of the 
nanospheres was narrow, and the average size was approxi-
mately 700 nm.

The surface properties of  Co3O4 catalysts were 
investigated by  N2 gas adsorption–desorption method 
at 77  K. Surface areas were calculated according to 
Brunauer–Emmett–Teller (BET) method, and pore volume 
distribution was calculated according to Barrett-Joyner-
Halenda (BJH) method using adsorption analysis, and 
isotherms are presented in Fig. 4. When the  N2 adsorp-
tion–desorption isotherms of metal oxides were examined, 
the characteristic of mesoporous materials containing hyster-
esis loop suggested that the isotherms classified as type IV 
according to IUPAC. The specific surface area of the sam-
ples was calculated by BET method and found to be 146.185 
 m2/g, 106.506  m2/g, and 31.0885  m2/g for  Co3O4-urea, 
 Co3O4-ed, and  Co3O4-NaOH, respectively. The average 
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pore diameter of the produced Co3O4 NPs was found to 
be 3.48978 nm, 3.6477 nm, and 2.5318 nm for  Co3O4-urea, 
 Co3O4-ed, and  Co3O4-NaOH, respectively. The measured 
surface areas of  Co3O4 nanoflowers were in line with the 
results reported in previous studies, which were 34.61  m2/g 
and 51.2  m2/g (Zhang et al. 2008; Sun et al. 2013). When 
compared with the literature data, it is seen that  Co3O4 struc-
tures have a very large surface area. When the rate constants 
for the reduction reaction of p-NP are examined, it can be 
said that the surface areas of the catalysts used are parallel 
to the reaction rate.

Catalytic activity

Catalytic degradation of p‑NP

The reduction process of p-NP to p-AP involves both elec-
tron transfer and hydrogen transport. It is widely known that 
negative hydride species  (H−) obtained from  BH4

− anions 
present electrons and hydrogen atoms. This study investi-
gated the catalytic activities of synthesized  Co3O4 NPs with 
different morphologies partaking in the process of reducing 
p-NP to p-AP in the presence of  NaBH4. The catalytic activi-
ties of noble metals and metal oxides in this reaction have 
been frequently studied (Najafi and Azizian 2020). However, 
there are very few studies on the effect of morphology on 
catalytic activity in this reduction process (Ye et al. 2021; 

Liu et al. 2021). For all experiments, p-NP and  NaBH4 were 
reacted together with initial concentrations of 0.1 mM and 
0.2 M, respectively. The p-NP bound peak observed at a 
wavelength of 317 nm in the UV–Vis spectra shifted imme-
diately to 400 nm after the addition of the freshly prepared 
 NaBH4 solution. This peak is due to the formation of the 
p-nitrophenolate ion in the alkaline state caused by the addi-
tion of  NaBH4. The simultaneous appearance of a new peak 
around 295 to 300 nm, with the addition of  Co3O4-urea, 
 Co3O4-ed, and  Co3O4-NaOH, resulted in reduced absorp-
tion of the characteristic peak at a wavelength of 400 nm 
that confirmed the formation of p-AP. The time taken to 
complete the conversion varied depending on the morphol-
ogy of the catalyst.

In the absence of the catalyst, conversion of the p-NP 
solution to p-AP takes up to 4 to 5 h. When 3 mg of  Co3O4 
catalyst was added to the medium, it was observed that this 
conversion took place in 4 to 5 min. Therefore, it appears 
that the less efficient electron and hydrogen transfer from 
the  BH4

− species to the aromatic nitro compound without 
a catalyst increases significantly in the presence of metal 
oxides. Table 1 summarizes the activity of metal oxides 
and the variation of the reduction reaction according to the 
amount of catalyst. The reaction rate constants (Kapp) for 
 Co3O4-urea,  Co3O4-ed, and  Co3O4-NaOH in the reduction 
of p-NP were found to be 1.86 ×  10−2  s−1, 1.83 ×  10−2  s−1, 
and 2.4 ×  10−3  s−1, respectively. These results indicate that 

Fig. 3  The SEM images of (a)  Co3O4–urea, (b)  Co3O4-ed, (c)  Co3O4-NaOH and corresponding magnified SEM images (d), (e), and (f)
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Fig. 4  BET analysis and pore 
size distribution of  Co3O4 nano-
structures

Table 1  Reduction results 
of p-NP in the presence of 
 Co3O4 nanoparticles and 
nanocomposites in literature

Catalyst Amount of catalyst Time Kapp Ref

Co3O4-urea 3 mg 270 s 1.86 ×  10−2  s−1 Present study
Co3O4-ed 3 mg 300 s 1.83 ×  10−2  s−1 Present study
Co3O4-NaOH 3 mg 330 s 2.4 ×  10−3  s−1 Present study
Conical-Co3O4
Stacked-Co3O4
Needled-Co3O4
Floral-Co3O4

0.063 mL
(1 mg/mL)

5.64 min
6.87 min
6.28 min
8.24 min

0.6882  min−1

0.4928  min−1

0.6171  min−1

0.4709  min−1

Chiu et al. (2020)

Reduced  Co3O4 0.1 mL (0.071 mg/mL) 7.25 min 1.49  min−1 Chen et al. (2017)
rGO-Co3O4 100 mL (0.5 mg/mL) 60 s - Nafiey et al. (2017)
Co3O4/HNTs 0.1 mg 11 min 0.265  min−1 Zhang et al. (2021)
Co3O4 3 mg 20 min 2.2 ×  10−3  s−1 Hasanoğlu Ozkan et al. (2022)
Co/CoO 3 mg 12 min 0.0404 Din et al. (2021)
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all three catalysts can successfully catalyze the reduction 
reaction (see Fig. 5).

Catalytic degradation of MB

The catalytic degradation of MB was carried out in the 
presence of  Co3O4 NPs. MB absorbs strongly at a wave-
length of 664 nm in the visible region and gives a deep 
blue color upon the addition of aqueous  NaBH4. Time-
dependent UV–Vis spectra of MB reduction are presented 
in Fig. 6a–c. Absorption spectra were recorded every 5 min. 
In the presence of  Co3O4-urea catalyst, 98.06% degrada-
tion of MB was observed within 60 min. Time-dependent 
UV–Vis absorption spectra exhibited that the intensity of 
the absorption peak of the dyes gradually decreased in the 
presence of  Co3O4, disappearing over time. Also, the posi-
tion of the absorption peak did not noticeably vary through-
out the reduction. Furthermore, the degradation kinetics of 
MB by  NaBH4 in the presence of  Co3O4 NPs was examined 
by pseudo-first-order kinetics. Figure 6 d shows the linear 
relationship between ln (Ct/C0) and reaction time. Also, the 
reaction rate constants were calculated from the slopes.

The reaction rate constants (Kapp) for  Co3O4-urea, 
 Co3O4-ed, and  Co3O4-NaOH in the reduction of MB were 
found to be 6.0 ×  10−4  s−1, 2.0 ×  10−4  s−1, and 3.0 ×  10−4  s−1, 
respectively (see Table 2).

Antibacterial activity

The NPs considered showed variable growth activity (11 
to 22 mm) for the pathogenic microorganisms used, and 
the activity mainly differed between moderate to high in 
Fig. 7 which shows images of the antimicrobial effectiv-
ity of  Co3O4 NPs. Furthermore, NPs were more effective 
on Gram-negative bacteria than Gram-positive bacte-
ria. Antimicrobial activity data shown in Table 3 are as 
follows.

Co3O4-urea showed high activity against B. cereus, E. 
coli, and C. albicans. In addition, this compound showed 
the same inhibitory effect as AMC30 (20 mm) for B. 
cereus (Fig. 8). This bacterium is known as an oppor-
tunist pathogen and is associated with food-borne illness 
(Nartop et al. 2019; Nartop et al. 2020a, b).  Co3O4-ed 
showed high inhibitory activity against B. cereus, K. 

Fig. 5  UV–Vis spectra obtained from the p-NP reduction in the presence of a  Co3O4-urea, b  Co3O4-ed, and c  Co3O4-NaOH nanostructures and 
d the rate constants of the reaction
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pneumoniae, and C. albicans (Fig.  8).  Co3O4-NaOH 
exhibited high antimicrobial activity against B. cereus, 
E. coli, and C. albicans. All three NPs showed a greater 
inhibitory effect than AMP10 (11 mm) against Gram-neg-
ative S. typhi  (Co3O4-urea,  Co3O4-ed, and  Co3O4-NaOH, 
respectively: 13 mm, 13 mm, and 14 mm) (Fig. 8). Sal-
monella serovars lead to many different clinical symp-
toms including those related to asymptomatic infections, 
severe typhoid-like syndromes in infants, or some high-
sensitivity animals (Koçoğlu et al. 2021; Nartop et al. 

2020a, b). In addition, all three NPs showed higher inhibi-
tory activity against E. coli than AMP10 (10 mm) and 
AMC30 (14 mm)  (Co3O4-urea,  Co3O4-ed,  Co3O4-NaOH, 
respectively: 17 mm, 16 mm, and 17 mm).  Co3O4-urea 
and  Co3O4-NaOH exhibited high activity against the 
Gram-negative E. aerogenes (Fig.  9). All three NPs 
showed higher activity in C. albicans than the antifungal. 
Examining Table 1, it was observed that the cobalt (II, 
III) oxide  (Co3O4) NPs prepared in this study recorded 
high antimicrobial activity similar to the reference drugs 

Fig. 6  UV–Vis spectra obtained in the catalytic degradation of MB in the presence of  Co3O4-urea (a),  Co3O4-ed (b), and  Co3O4-NaOH (c), and 
the rate constants for the reaction (d)

Table 2  Reduction results of 
MB in the presence of  Co3O4 
nanoparticles and different 
nanocomposites in literature

Catalyst Amount of catalyst Kapp Ref

Co3O4-urea 3 mg 6.0 ×  10−4  s−1 Present study
Co3O4-ed 3 mg 2.0 ×  10−4  s−1 Present study
Co3O4-NaOH 3 mg 3.0 ×  10−4  s−1 Present study
Co3O4/HNTs 0.5 mg 0.155  min−1 Zhang et al. (2021)
AS-AgNPs 0.05 mL 0.7 ×  10−3  s−1 Rajasekar et al. 

(2021)
Fe3O4/GO/Ag 0.01 mL 0.2891  min−1 He et al. (2022)
PDOP-FF 1.5 mg 1.4 ×  10−3  s−1 Erdogan (2020)
Co/CoO 3 mg 0.042  min−1 Din et al. (2021)
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used and could be helpful as antimicrobial agents. From 
the result obtained, it was concluded that these NPs were 
more effective in Gram( −) than in Gram( +) bacteria. 
The possible reason for this might be the presence of an 

external impermeable membrane, a fine peptidoglycan 
monolayer, and the presence of periplasmic cavity and 
cell wall composition in Gram( −) bacteria (Graham et al. 
2021).

C. albicans E. aoregenes L.monocytogenes

E. coli M. luteus
1[Co3O4-urea]
2[Co3O4-ed]

3[Co3O4-NaOH]

Fig. 7  Antimicrobial activity (inhibition zone [mm]) of  Co3O4 NPs in Gram( −) and Gram( +) bacteria and yeast

Table 3  Antimicrobial activity of NPs and standard reagents (diameter of zone of inhibition in mm)

N not tried, H high activity, I intermediate activity, L low activity.
*Standard reagents: SXT25 (sulfamethoxazole); AMP10 (ampicillin); NYS100 (nystatin); K30 (kanamycin); AMC30 (amoxicillin);

NPs and mean values of zone diameter(mm) Standard antibiotics

Microorganisms Co3O4-urea Co3O4-ed Co3O4-NaOH AMP  10* SXT 25 AMC 30 K 30 NYS 100

Gr ( +) M. luteus 15 I 15 I 14 I 22 21 25 23 N
S. epidermis - - - 26 25 27 25 N
S. aureus - - 14 I 30 24 30 25 N
B. cereus 20 H 18 H 19 H 23 25 20 28 N
L. monocytogenes 13 I 16 I 15 I 28 25 30 26 N

Gr ( −) P. aeruginosa - - - 8 18 15 14 N
K. pneumonia 11 L 18 H 11 L 21 20 21 23 N
E. aerogenes 17 H 16 I 17 H 21 19 20 24 N
S. typhi 13 I 13 I 14 I 11 17 19 20 N
E. coli 17 H 16 I 17 H 10 18 14 25 N
P. vulgaris - 11 L 12 I 17 19 20 21 N

Fungi C. albicans 21 H 21 H 22 H N N N N 20
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Conclusions

In this study, three  Co3O4 catalysts with different nano-
structured morphologies were produced and their catalytic 
activities on the reduction of p-NP to p-AP, and on the deg-
radation of MB, were compared. In addition, the effect of 
morphology on antibacterial properties was investigated. 
As the  Co3O4 structures exhibited quite different morpholo-
gies, their physical and chemical properties varied greatly, 
thus exhibiting different catalytic activities and antimicro-
bial properties. In general,  Co3O4 structures showed much 
higher catalytic activities than many metal oxides (such as 
NiO,  Fe3O4, ZnO) for p-NP reduction as they have a high 
surface area and porous nanostructures.  Co3O4-urea appeared 
to be the most advantageous for p-NP reduction and com-
pleted the reduction of p-NP with k = 1.86 ×  10−2  s−1 in 270 s. 

 Co3O4-urea had a larger surface area, resulting in superior 
catalytic activity. Likewise,  Co3O4 structures showed supe-
rior performance in the catalytic degradation of MB. In the 
presence of  Co3O4-urea catalyst, 98.06% degradation of MB 
was observed within 60 min. Noble metals are frequently 
used in such reduction reactions. It shows that  Co3O4 struc-
tures have great potential as non-noble catalysts for practical 
applications, and they are certainly promising for the reduc-
tion of p-NP and MB.

It was determined that  Co3O4 NPs showed antibacterial 
and antifungal activities at moderate to good levels against 
both Gram ( +) bacteria, Gram ( −) bacteria, and yeast. 
 Co3O4-urea showed high activity against B. cereus, E. coli, 
and C. albicans. In addition, this compound showed the 
same inhibitory effect as AMC30 (20 mm) for B. cereus. It 
was concluded that these NPs could definitely compete with 
or even yield better results from commercial antibiotics used 
in the treatment of microbial infections. For this reason, it 
is thought that these nanoparticles can be used as a good 
antimicrobial agent against pathogenic microorganisms or 
as an additive in antimicrobial products.
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