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Abstract
Carbon emissions are a major concern in China, and transportation is an important part of it. In this paper, data on China’s 
30 provinces’ transport carbon emissions from 2005 to 2019 were selected to construct a spatial autocorrelation model and 
identified the decoupling types, which revealed the relationship between transport carbon emissions and economic develop-
ment. This study suggests a regulation strategy for provincial transport carbon emissions in China based on the contribution 
rates of transport carbon emission variables. According to the findings, transport carbon emissions of China indicated a slow 
rise from 2005 to 2019, the annual growth rate has fluctuated downward, and petroleum products have been the most major 
source. The geographical correlation of transport carbon emissions has gradually improved, and the transport carbon emis-
sion intensity has become more significant. Differences in the transport carbon emission intensity slightly increased, which 
were significantly regionally correlated. There were seven forms of decoupling between yearly provincial transport carbon 
emissions and economic development, with weak decoupling accounting for the largest proportion, 45.24%. Decoupling 
was achieved in 83.33% of the provinces in the period of 2005–2019. As a consequence of factor decomposition, the energy 
intensity, transport intensity, and economic structure played an overall inhibitory role, while the carbon emission intensity, 
economic scale, and population played promoting roles. The economic scale was the most important influencing factor.

Keywords  Transport carbon emissions · Spatiotemporal evolution · Economic decoupling · Contribution rates of 
influencing factors

Introduction

Carbon emissions have become a global concern. The 
Global Energy Review: Carbon Emissions 2021 study from 
the International Energy Agency (IEA) showed that global 
carbon emissions from energy combustion and industrial 
processes firmly recovered in 2021, increasing 6% annually 
to 36.3 billion tons (Chen et al. 2023), Transportation was 
responsible for 22–25% of global carbon emissions (Bhat 
and Ordóñez Garcia 2021; Demircan Cakar et al. 2021; 
Heidari et al. 2022; Oladunni et al. 2022; Zhu et al. 2021) 
and 29% of energy consumption (Sardar et al. 2022; Xu 
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Highlights   
• China’s transport carbon emissions indicated a slow rise from 
2005 to 2019; the annual growth rate of carbon emissions has 
fluctuated downward.
• The geographical correlation of transport carbon emissions has 
gradually improved, and the transport carbon emission intensity 
has become more significant.
• There were seven decoupling types between the annual 
provincial transportation carbon emissions and economic 
development in China, with weak decoupling accounting for the 
largest proportion.
• Economic scale was the main driving factor of traffic carbon 
emissions.
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et al. 2021). According to the 2016 Paris Climate Agree-
ment, which was signed by the world’s top carbon emitter, 
China, peak carbon emissions would be reached by 2030. 
According to the China Statistical Yearbook, the energy con-
sumption of the transport sector was 413.09 million tons of 
standard coal in 2020, and China’s total energy consumption 
was 4983.14 million tons of standard coal, with the trans-
port sector accounting for about 8.29%. In 2020, the GDP 
of the transportation industry was 4156.17 billion yuan, and 
China’s total GDP was 101,598.62 billion yuan. The trans-
portation sector accounts for only 4.09%. An important area 
for study is increasing the economic effectiveness of carbon 
emissions. It is important to study the relationship between 
transport carbon emissions and the economy, and analyze 
the factors influencing provincial transportation in China to 
reduce emissions of transportation. Transport carbon emis-
sions are impacted by transportation logistics, China’s pro-
vincial transportation links are becoming increasingly close, 
but the economic development levels vary significantly, and 
the economic benefits of transport carbon emissions also 
differ; coordinated regional development is essential for 
lowering carbon emissions and improving the transporta-
tion economy. Studying the spatiotemporal evolution and 
economic effectiveness of transportation-related greenhouse 
gas emissions in China is beneficial for developing emission-
reduction strategies to reduce energy consumption, increase 
the effectiveness of regional transportation-related emis-
sions, and achieve sustainable economic growth.

“Top-down” and “bottom-up” research methodologies 
are frequently utilized to measure carbon emissions, while 
“bottom-up” approaches use data such as vehicle type, 
driving distance, unit fuel consumption, and corresponding 
carbon emission factor data to calculate carbon emissions; 
“top-down” strategies rely on converting energy use. The 
Bayesian structural equation model (BSEM) focuses on raw 
observations and relies less on asymptotic theory, making it 
better suited for obtaining reliable results (Lu et al. 2020). 
The approach of ecological network input–output interval 
fuzzy linear programming (EIFP) is used to investigate the 
transfers of transportation CO2 emissions (Zhu et al. 2021). 
In research addressing zero-carbon urban policy, a unique 
version of the best–worst method (BWM) may effectively 
handle expert preferences when comparing paired criteria 
(Pamucar et al. 2021). Some scholars have used support 
vector machine (SVM), and cross-validation models or 
effectively constructed gradient boosting regression (GBR) 
models combined with social and economic characteristics, 
resulting in prediction effects with greater significance (Li 
et al. 2022). The DNE21 model (dynamic new earth 21 
plus) (Akimoto et al. 2022) can be used to assess climate 
change mitigation measures for energy system cost control. 
Studying the consequences of demographic and economic 
variables on carbon emissions involves using the STIRPAT 

model (the stochastic influences by regression on population, 
affluence, and technology) (Oladunni et al. 2022; Sardar 
et al. 2022). LEAP (long-range energy alternative planning 
system) model is built on scenarios for policy creation and 
represents energy consumption and environmental factors 
and is suitable for analyzing and evaluating implementation 
effects (Zhao et al. 2021). The autoregressive distributed 
lag (ARDL) method works well for relatively small samples 
(Solaymani 2022). The system dynamics model is a com-
plex open-parameter structure that is used to analyze car-
bon dioxide emission concentrations (Heidari et al. 2022); 
the model of LMDI (logarithmic mean divisia index) (Ma 
et al. 2020; Meng and Li 2020; Nnadiri et al. 2021; Wang 
et al. 2020a, 2020c) is a typical technique for examining 
the variables that affect carbon emissions. This model is 
simple to explain and widely used and is not limited by zero 
values or residual values; in addition, the results are eas-
ily understood (Huang and Ling 2021; Meng and Li 2020; 
Wang et al. 2018; Zhang et al. 2022). The Tapio decou-
pling model is widely employed to evaluate the relationship 
between the energy efficiency of the economy and carbon 
emissions (Chen et al. 2020; Ma et al. 2020; Wang et al. 
2020a, 2020c). For the analysis of spatial correlations and 
clustering intensities, several researchers have used the 
Moran’s index (Wang et al. 2020b; Cao et al. 2019; Yaacob 
et al. 2020) and geographic weighted regression (GWR) to 
examine the geographical associations between the same 
variable and several locations, increasing the simulation’s 
degree of fit in comparison to the linear regression model 
(Kilian et al. 2022; Xu et al. 2021).

Researchers have been looked at the variables affect-
ing traffic-related carbon emissions. The economic scale 
and the macroeconomic and policy guidance significantly 
impact transport carbon emissions (Cao et al. 2019; Huang 
and Ling 2021; Oladunni et al. 2022), and studies have 
shown that the biggest influences on greenhouse gas emis-
sions are growth in the population and the economy (Ola-
dunni et al. 2022). The industry structure (Meng and Li 
2020), energy intensity (Wang et al. 2020c, 2022, 2018), 
sociocultural system, economic development (Aminzade-
gan et al. 2022), and public support (Long et al. 2021) 
all impact transport carbon emissions (Xu et al. 2021). 
Transport services and communications technologies 
also directly impact carbon emissions and are increased 
by internet use (Kwakwa et al. 2022). Reasonably formu-
lating policies and carbon trading prices are the primary 
directions of carbon emissions studies (Fleschutz et al. 
2021). Different modes of passenger transport and the 
reasonable development planning of public transport sys-
tems have regulating effects on transport carbon emissions 
(Sardar et al. 2022; Noussan et al. 2022; Dujmović et al. 
2022; Veludo et al. 2021). The shared travel mode (Tik-
oudis et al. 2021) and highway transportation proportion 
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(Wimbadi et al. 2021) can lower carbon emissions asso-
ciated with transportation (Dujmović et al. 2022). The 
promotion of low-emissions vehicle (LEV) and bus rapid 
transit (BRT) systems can aid in the switch to low-carbon 
urban transportation (Wimbadi et al. 2021). The system’s 
energy structure has a significant impact on carbon emis-
sions, and the primary source of carbon emissions related 
to transportation is fossil fuels (Kwakwa et al. 2022; Zhu 
et al. 2021). The electrification of transportation networks 
is the greatest way to reduce carbon emissions from fuel 
and gasoline (Akimoto et al. 2022; Bhat and Ordóñez 
Garcia 2021), and the electricity demand is predicted to 
nearly double by 2050 (Potrč et al. 2022). The efficiency of 
transportation’s carbon emissions is increased by the intro-
duction of new technology (Demircan Cakar et al. 2021; 
Lu et al. 2020; Umar et al. 2020); energy hydrogen–based 
synthetic fuels and bioenergy can be used as alternatives 
to fossil fuels, and carbon dioxide removal (CDR) technol-
ogy can offset carbon dioxide emissions (Akimoto et al. 
2022). Some scholars have looked at the impact of elec-
tricity-dependent energy carriers (Gustafsson et al. 2021); 
however, electric bus batteries also cause differences in 
average carbon emissions by region (McGrath et al. 2022). 
New anti-fouling coating technologies can save fuel (Far-
kas et al. 2021); machine learning algorithms are used to 
forecast the effectiveness and demand of carbon emissions 
associated with transportation. (Ağbulut 2022, Ghahram-
ani and Pilla 2021, Li et al. 2022), and deep learning (DL) 
models have predicted that Turkey’s transportation sec-
tor’s energy demand and carbon emissions will rise by 3.4 
times over the next decade (Ağbulut 2022).

Research on transport carbon emissions have focused 
mainly on statistical analyses and have explored emissions 
only from the national or provincial perspective (Kilian et al. 
2022; Nnadiri et al. 2021; Pani et al. 2021); specifically, 
most analyses of transport carbon emissions in China have 
been performed in provinces such as Guangdong (Zhao et al. 
2021), Shanghai (Zhu et al. 2022), and Zhejiang (Liu et al. 
2023), while less research has explored spatial factors and 
regional transportation drivers. On the other hand, there is 
the absence of analyses of the economic efficiency of trans-
port carbon emissions in China. In this paper, the study’s 
research focus is the transportation-related carbon emis-
sions of 30 Chinese provinces from 2005 to 2019. First, we 
develop a model to calculate transport carbon emissions in 
order to analyze spatiotemporal shifts in transport carbon 
emissions and the intensity of transportation carbon emis-
sions in China’s province. Second, we analyze the spatial 
pattern evolution trend of transport carbon emissions in 
China. Finally, we identify the decoupling types of transport 
carbon emissions and economic development and reveal the 
relationship between transport carbon emissions intensity 
and economic development.

Methods

Sources of data

The data for 30 Chinese provinces from 2005 to 2019 were 
used to this study. The China Statistical Yearbook’s traffic 
data classifications were used to classify the carbon emis-
sions of transportation in this study, which include the trans-
portation, storage, postal, and telecommunications service 
sectors. According to Industrial classification for national 
economic activities (UNSD:2006, International standard 
industrial classification of all economic activities, NEQ), 
the transportation, storage, postal, and telecommunications 
service sectors include railway transport, road transport, 
water transport, air transport, pipeline transport, multimodal 
transport, transport agency industry, loading, unloading, 
warehousing industry, and postal industry. In this study, the 
carbon content per unit fuel C (T/TJ), carbon oxidation rate 
R (%), and the electric carbon emission factor EF are derived 
from the Guidelines for the Compilation of Provincial 
Greenhouse Gas Inventories (Trial). Fossil fuel consump-
tion, electricity consumption, and average low calorific value 
of energy ALC (kJ/kg) are all from the China Energy Source 
Statistical Yearbook. GDP data, population data, and freight 
turnover data are from the China Statistical Yearbook. Pro-
duction of electricity, coal, coke, crude oil, gasoline, kero-
sene, diesel, fuel oil, and liquefied petroleum gas are used 
as calculation standards when calculating transport carbon 
emissions, as these products cover approximately 90% of 
transport carbon emissions. The nine fossil energy sources 
and power metrics described above are chosen for this work. 
Electricity does not directly produce carbon emissions but 
primarily from the energy that thermal power plants con-
sume (Demircan Cakar et al. 2021; Lian et al. 2020). Each 
province’s transportation-related carbon emission data was 
computed based on the method for calculating carbon emis-
sions. The calculated carbon emission results were compared 
with the Carbon Emission Accounts and Datasets (CEADs) 
in China, and the calculated data were basically consist-
ent (except for the carbon emission energy consumption of 
power production not included in CEADs), thus verifying 
the validity of the calculated data.

Carbon emission and carbon emission intensity 
measurement of transportation

The Intergovernmental Panel on Climate Change’s (IPCC) 
fundamental formula for accounting for carbon states that 
greenhouse gas (GHG) emissions are equal to the product 
of the activity data (AD) and the emission factor (EF). The 
main equation is expressed as follows (Wang et al. 2022):
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where CT represents carbon emissions (104 t), ECi repre-
sents the Class-i primary energy consumption, EFi repre-
sents the coefficient of the Class-i primary energy, and 44/12 
represents the molecular weight ratio of CO2. The following 
formula can be created from the previously mentioned one 
(Liu et al. 2022):

Transportation-related carbon emissions are calculated as 
the total carbon emissions from fossil energy use and elec-
tricity production. The letter i stands for the several kinds 
of fossil fuels; ALC (kJ/kg) stands for average low calorific 
value, while FC (kg CO2/kg) stands for the carbon emis-
sion coefficient. R stands for carbon rate (%), C (T/TJ) is 
for carbon content, EC for electric consumption (kWh); and 
EF represents the electric carbon emission factor (kg CO2/
kWh).

The carbon emission intensity in this study is defined as 
the carbon emissions per unit of energy used and the carbon 
emissions’ energy efficiency. The letter i stands for the 30 
provinces; CI stands for the carbon emission intensity, C for 
those emissions (104 t), and E for overall energy used for 
transportation (104 t) (Li et al. 2023).

In order to examine the features of the transport carbon 
intensity distribution across 30 Chinese provinces, the Theil 
model is employed. The change coefficient of the regional 
transportation sector’s carbon emission intensity is meas-
ured by CVt . The regional province I’s logarithmic deviation 
average of the transportation sector’s carbon emission inten-
sity is designated as GE0 . The Thiel indicator for region-i 
transportation carbon emission intensity is called GE1 (Wang 
et al. 2020a):

(1)CT =

9
∑

i=1

ECi × EFi ×
44

12

(2)CT =

9
∑

i=1

FCi × ALCi × Ci × Ri ×
44

12
+ ECi × EFi

(3)CIi =
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where yi is the transport carbon emission intensity, y is the 
average transport carbon emission intensity, and n is the 
number of provinces.

Tapio decoupling model

The link between transportation-related carbon emissions 
and local economic growth is measured by the Tapio decou-
pling index model. The main models are expressed as fol-
lows (Wang et al. 2020a):

where e refers to the decoupling coefficient. Traffic GDP in 
target year t, transport carbon emissions in target year t, and 
carbon emissions in base year 0 are represented by GDPt , 
CO2

t and CO2
0 , respectively. GDP0 is the transportation 

sector’s production value in the base year. The difference 
between the transport sector’s overall production from base 
year 0 to goal year t is Δ GDP, while the difference between 
the sector’s total carbon emissions from target year t to base 
year 0 is Δ CO2. The growth rate of total carbon emissions is 
represented by %CO2, while the growth rate of the transpor-
tation sector’s total output value is represented by %GDP.

Logarithmic mean deviation index (LMDI)

Carbon emissions from transportation are broken down 
using the LMDI decomposition method. The main formula 
is expressed as follows (Zhang et al. 2022):

The letter i stands for the 30 provinces, where C equals 
the sum of transportation-related carbon emissions, E equals 
the energy consumption, T is the volume of freight turnover 
(104 t), Gt equals the GDP value of the transportation sector 
(104 CNY), G equals the gross national product (104 CNY), 
P equals the population (104), and the equation can be fur-
ther manipulated as follows (Zhang et al. 2022):

This article defines the following parameters: carbon emis-
sion intensity (CI) represents the carbon emissions per unit 
of energy consumption; energy intensity (EI) represents the 
energy consumption per unit of freight turnover; transport 
intensity (TI) represents the freight turnover volume per unit 
of economic in transportation; economic structure (EC) repre-
sents the proportion of economic in transportation to the total 

(7)

e =
%CO2
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=
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economic output value; economic scale (GC) represents the 
gross economic product per unit of population; population (P) 
represents the total population value (Zhang et al. 2022). The 
following equation is thus obtained:

where Ct and C0 stand for the transport carbon emission 
values for the target year t and base year 0, respectively, 
and ΔC represents the change in transport carbon emission 
between the two years, and the other values represent the 
impact values for the target year t and base year 0 (Li et al. 
2023; Wang et al. 2020c).

Geospatial weighted model (GWR)

where (ui, vi) is the ith sample point’s location (such as its 
latitude and longitude), and βK (ui, vi) is the kth regression 
parameter, and εi is the random error of the ith sample point. 
The Gauss function method is a continuous, monotonically 
decreasing function between wij and dij; this function can 
overcome the discontinuity of the above spatial weight func-
tion (Wang et al. 2018). It has the following function form:

(10)
Ct
i
− C0

i
= ΔCi = ΔCIi + ΔEIi + ΔTIi + ΔECi + ΔGi + ΔPi

(11)ΔCIi =
Ct
i
− C0

i

��Ct
i
− ��C0

i

× ��
CIt

i

CI0
i

(12)ΔEIi =
Ct
i
− C0

i

��Ct
i
− ��C0

i

× ��
EIt

i

EI0
i

(13)ΔTIi =
Ct
i
− C0

i

��Ct
i
− ��C0

i

× ��
TIt

i

TI0
i

(14)ΔECi =
Ct
i
− C0

i

��Ct
i
− ��C0

i

× ��
ECt

i

EC0

i

(15)ΔGCi =
Ct
i
− C0

i

��Ct
i
− ��C0

i

× ��
GCt

i

GC0

i

(16)ΔPi =
Ct
i
− C0

i

��Ct
i
− ��C0

i

× ��
Pt
i

P0

i

(17)yi = �0
(

ui, vi
)

+

p
∑

k=1

�k
(

ui, vi
)

xjk + �ii = 1, 2,… , n
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The continuous monotonically declining function 
between data point Wij and dij is represented by comparing 
the distance between data point j and regression point i, dij , 
using the aforementioned equation:

where �̂L is the theta maximum likelihood estimation.

where AICc stands for the “corrected” AIC estimate, n 
denotes the size of the sample point, �̂  denotes the error 
term estimation standard deviation, and tr (S) denotes the 
trace of the bandwidth-dependent S matrix of the GWR. 
AIC is beneficial for evaluating whether the GWR model 
simulates data better than the OLS model.

Results

Spatiotemporal evolution of provincial transport 
carbon emissions and the carbon emission intensity 
in China

Spatiotemporal evolution of provincial transport carbon 
emissions in China

The carbon emissions from transportation in 30 Chinese 
provinces from 2005 to 2019 were computed by this study. 
The average carbon emissions of 30 provinces from 2005 
to 2019 showed an overall rising trend but decreased in 
2013, as seen in Fig. 1. From 2005 to 2019, the total carbon 
emissions from transportation rose from 39,025.93 (104 t) 

(19)AIC = −2ln
(

�̂L, x
)

+ 2q

(20)AICc = 2nln
(

�̂
)

+ nln(2�) + n
n + tr(S)

n − 2 − tr(S)

Fig. 1   Transport carbon emissions and increase rate of year

111463Environmental Science and Pollution Research (2023) 30:111459–111480



1 3

to 89,718.57 (104 t), and the average province carbon emis-
sions grew with an average annual growth rate of 9.28% 
from 1300.86 (104 t) in 2005 to 2990.62 (104 t) in 2019. 
The growth rate of carbon emissions exhibited a pattern of 
changing downward, even though carbon emissions grew 
during the research period, carbon emissions from transpor-
tation increased annually at a pace that varied from 10.39% 
in 2005–2006 to 3.32% in 2018–2019. From 2008 to 2009, 
2012 to 2013, and 2017 to 2018, the annual growth rate 
declined significantly. Depending on the five-year periodic 
calculation, the total carbon emissions during 2015–2019 
increased by 74.80% compared to those during 2005–2009, 
while the average yearly growth rate of transportation-
related carbon emissions fell by 59.19%. This demonstrates 
how China succeeded in reducing emissions and conserving 
energy. Due to the effects of the 2008 financial crisis on the 
transportation sector, the pace of increase in transportation-
related carbon emissions has decreased. The economy as a 
whole slowed down in 2012–2013, while the pace of growth 
in transportation-related carbon emissions was − 3.70%. 
After 2017, energy-saving and emissions-reduction efforts 
stepped up, and the growth rate of transport carbon emis-
sions from 2017 to 2019 fell to 2.83%.

The transportation sector’s carbon emissions were influ-
enced by changes in energy consumption and overall carbon 
emissions from all energy sources between 2005 and 2019. 
In China’s transportation, petroleum products were the larg-
est source of carbon emissions, with gasoline, kerosene, die-
sel, fuel oil, and other petroleum products accounting for a 
sizable share of carbon emissions. As seen in Fig. 2, diesel 
and gasoline produced the highest transport carbon emis-
sions, accounting for 42.23% and 19.68% of the total. Over 
time, the energy structure of transport carbon emissions 
changed. The proportion of carbon emissions from coal and 
petroleum products decreased from 5.96% and 82.81% in 
2005 to 1.80% and 76.47% in 2019, and the proportion of 
carbon emissions from diesel and gasoline also decreased, 
dropping from 41.40% and 25.54% in 2005 to 38.03% and 
18.70% in 2019. The carbon emissions from electricity pro-
duction increased from 4238.65 (104 t) in 2005 to 17,006.78 
(104 t) in 2019, transport carbon emissions climbed from 
10.86% in 2005 to 18.96% in 2019, while natural gas trans-
port carbon emissions increased from 142.73 (104 t) in 2005 
to 2490.53 (104 t) in 2019, the contribution of this factor 
increased from 0.37% in 2005 to 2.78% in 2019, indicating 
that the transport sector was implementing technological 
innovations during this time, and the growth of transpor-
tation energy was moving in the direction of new energy 
sources like electricity and gas.

The 30 provinces’ levels of transport carbon emissions 
vary significantly. Guangdong, Shandong, Shanghai, Liaon-
ing, and Jiangsu are among the top five, with yearly aver-
age carbon emissions of 5954.50 (104 t), 5106.85 (104 t), 

4450.74 (104 t), 3676.36 (104 t), and 3613.95 (104 t); Tian-
jin, Gansu, Hainan, Ningxia, and Qinghai are in the bottom 
five, with average annual carbon emissions of 1120.11 (104 
t), 1094.01 (104 t), 560.21 (104 t), 369.21 (104 t), and 294.40 
(104 t). The average annual carbon emissions of Guangdong 
were 20.23 times that of Qinghai. The provinces with the top 
five average annual growth rates were Qinghai (37.08%), 
Anhui (21.61%), Fujian (17.50%), Guizhou (17.14%), and 
Jiangxi (14.89%). Shanghai (6.71%), Liaoning (5.24%), 
Inner Mongolia (4.53%), Shandong (4.38%), and Ningxia 
(3.96%) were among the five regions with the lowest average 
annual growth rates, as seen in Fig. 3. Provinces with large 
traditional transport carbon emissions, such as Shandong 
and Liaoning, have implemented relevant policies for indus-
trial adjustment and achieved remarkable results. Qinghai, 
which has low carbon emissions, is developing transporta-
tion, with a high growth rate.

In 2005, 2010, 2015, and 2019, the spatial pattern of 
China’s transport carbon emissions changed significantly, 
as seen in Fig. 4. In 2005, the highest carbon emissions were 
in Guangdong, Shandong, and Shanghai, with carbon emis-
sions of 3980.21 (104 t), 3632.45 (104 t), and 2943.05(104 
t). The higher carbon emissions were in Liaoning, Hubei, 
Jiangsu, Hebei, and Zhejiang. Transport carbon emissions 
showed spatial aggregation; the eastern region had a high 
concentration of carbon emissions, which progressively 
dropped as they moved westward. In 2010, the carbon emis-
sion growth rate of Hebei decreased and that of Inner Mon-
golia was up to 106.59% compared to 2005. In 2015, Guang-
dong, Shandong, Shanghai, Jiangsu, and Liaoning all saw an 
increase in their transport-related carbon emissions, forming 

Fig. 2   Proportion of transport carbon emissions per energy source
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spatial aggregation with Zhejiang, Hubei, Henan, Hunan, 
Beijing, Inner Mongolia, and Hebei, and North China, East 
China, and Central China all have quite large carbon emis-
sions. In 2019, the growth rates of carbon emissions in Inner 
Mongolia slowed down, while that in Sichuan increased sig-
nificantly, reaching 3486.06 (104 t). East and Central China 
are still concentrated regions with high carbon emissions. 
From 2005 to 2019, the classification of carbon emissions 
in Inner Mongolia and Shaanxi decreased and the growth 
rates of carbon emissions in Jiangsu, Anhui, Henan, Hunan, 
and Sichuan were relatively high. The growth rate of carbon 
emissions in North China slowed over time.

Spatiotemporal evolution of the carbon emission intensity 
of provincial transportation in China

Since the energy consumption of each province differs, 
carbon emissions cannot objectively describe the carbon 
emission efficiency of transportation. The carbon emission Fig. 3   Transport carbon emissions of provinces in China

Fig. 4   Spatial distribution of transport carbon emissions in 2005, 2010, 2015 and 2019
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intensity in this study is defined as the carbon emissions 
per unit of energy used and the carbon emissions’ energy 
efficiency. Figures 5, 6 indicate the annual average transpor-
tation carbon emission intensity value and growth rate from 
2005 to 2019. Although China’s total transport carbon emis-
sion intensity remains steady, there is a significant variation 
between its regions. The average transport carbon emission 
intensities of the 30 provinces in 2005, 2010, 2015, and 2019 
were 2.33, 2.32, 2.35, and 2.40. The growth rate showed 
slight fluctuations and decreased in 2009, 2012, 2014, and 
2018. Hebei, Shanxi, Gansu, Tianjin, and Shaanxi have the 
highest average carbon emission intensity levels, while the 
lowest are Guangxi, Guangdong, Xinjiang, Chongqing, 
and Hainan. The largest declines in average carbon emis-
sion intensity occurred in Chongqing (− 4.22%), Ningxia 
(− 5.69%), Shanxi (− 7.51%), Guizhou (− 9.87%), and 
Jilin (− 11.14%) from 2005 to 2019. The highest growth 
rates were in Tianjin (28.56%), Hebei (17.29%), Shandong 
(17.06%), Inner Mongolia (12.75%), and Zhejiang (11.62%).

With the exception of North China, Fig. 7 demonstrates 
that the global transportation sector’s overall carbon emis-
sion intensity was steady, with most of the values staying 
between 2.1 and 2.5. North, East, Central, South, and North-
west China all increased from 2005 to 2019, with North 
China of the highest growth rate at 10.76%. In Northeast 
China and Southwest China, the decreases were 2.78% 
and 3.52%. Southwest China’s carbon emission intensity 
was lowest between 2017 and 2019, whereas it declined in 
Northeast China and Central China, with the largest decrease 
of 5.06% in Central China. North China has a much higher 
than average carbon emission intensity for transportation, 
as this region mainly relies on energy production and has a 
high transportation integration degree and a large demand 
for road freight transport, leading to the high transporta-
tion level of carbon emission intensity. The economic 

development of North China is good, and energy conser-
vation and emission reductions should be strengthened. A 
number of energy-saving and emission-reduction programs 
have recently been implemented in East China. Jiangsu, 
Shanghai, Zhejiang, and other provinces introduced dozens 
of “dual carbon”–related policies in recent years. In South-
west and Northeast China, transport carbon emission inten-
sity showed a downward trend, decreasing from 2.29 and 
2.44 in 2005 to 2.21 and 2.38 in 2019. The average value of 
Southwest China and South China showed flat trends, with 
similar development trends, and the overall carbon inten-
sity in these regions was lower than that in other regions. 

Fig. 5   Transport carbon emission intensity and increase rate of year

Fig. 6   Average transport carbon emission intensity of provinces in 
China

Fig. 7   Carbon emission intensity of regional transportation in China
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In Northwest and East China, the traffic carbon intensity 
remained stable but increased. The intensity of carbon emis-
sions in Northeast and Central China fluctuated in a “W” 
pattern, with a large fluctuation range. From 2007 to 2008 
and 2013 to 2017, there were clear changes in the transpor-
tation sector’s carbon emission intensity, and increased sig-
nificantly compared to other regions, indicating that energy-
saving measures for transport carbon emissions should be 
strengthened continuously in Northeast and Central China.

Spatial correlation analysis of the spatial pattern 
of transport carbon emissions and the carbon 
emission intensity in China

Analysis of the spatial correlation of transport carbon 
emissions

Analysis of spatial correlations reflects the spatial correla-
tions of carbon emissions across regions and carbon emis-
sions’ spatial aggregation features (Wang et al. 2020b). In 
this study, the spatial autocorrelation analysis of transport 
carbon emissions was conducted using global Moran’s I. The 

results showed that from 2005 to 2019, despite being posi-
tive, the Moran index of all transportation-related carbon 
emissions failed to pass the significance test at the 5% level. 
The spatial association steadily got stronger as time went 
on. There was a significant regional association between the 
intensity of transportation’s carbon emissions from 2005 to 
2019. Each province’s carbon emission intensity had a sub-
stantial spatial association, and the significance level was 
greater than 99%. Due to the significant relationship between 
the spatial distribution of the transportation economy’s 
development level, the emission intensity of provinces in 
China were affected by geographical factors.

A global space cannot reflect the aggregation charac-
teristics between provinces. On this basis, Anselin local 
Moran’s I is used to analyze the spatial aggregation char-
acteristics of transport carbon emissions. The regional pat-
tern of transport carbon emissions changes, as depicted in 
Fig. 8, and the transport links between different provinces 
are usually negatively correlated with distance. Regional 
traffic development differences are obvious. In the spatial 
clustering analysis of transportation carbon emissions, high-
high cluster indicates that provincial transportation has been 

Fig. 8   Spatial autocorrelation of transport carbon emissions in 2005, 2010, 2015, and 2019
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strengthened, forming a high level of regional transportation 
carbon emissions; high-low cluster refers to the provinces 
with high carbon emission levels adjacent to the provinces 
with low-carbon emission levels, which are mainly found in 
localized economic centers; low–high cluster refers to the 
provinces with low carbon emissions adjacent to the prov-
inces with high carbon emissions, which are often mani-
fested in the peripheral regions with high carbon emissions; 
and low-low cluster refers to the concentrated distribution 
of low-carbon emission provinces, generally in regions with 
a lower level of economic development. According to the 
spatial analysis, in 2005, 2010, 2015, and 2019, the propor-
tions of “high-high cluster” were 6.67%, 6.67%, 6.67%, and 
13.33%, mainly in Jiangsu and Zhejiang provinces. In 2019, 
Shanghai and Fujian also showed the clustering type. The 
proportion of the “low-low cluster” was most significant, at 
16.67%, 13.33%, 16.67%, and 6.67% in Xinjiang, Qinghai, 
and Gansu in Northwest China. The generation of spatial 
aggregation indicates that the regional traffic performance 
increases and that spatial adjacency enhances transporta-
tion, reduces transportation costs, and forms an aggregated 
distribution of transport carbon emissions. Overall, traffic 

emissions have relatively low spatial correlations, and clus-
tering is not significant.

A significant spatial association exists between transport 
carbon emission intensity, reflecting the viability of spatial 
analysis of regional energy efficiency and carbon emissions, 
as shown in Fig. 9. For carbon emission intensity, high-high 
cluster indicates the clustering of provinces with high car-
bon emission intensity values but low-energy utilization, 
high-low cluster indicates that provinces with high carbon 
emission intensity are neighboring provinces with low car-
bon emission intensity; low–high aggregation indicates that 
provinces with low-carbon emission intensity are surrounded 
by provinces with high carbon emission intensity; and low-
low cluster represents the provinces with low carbon emis-
sion intensity values and high carbon emission energy effi-
ciency have created a scale effect. In 2005 and 2010, the 
high concentrations were located mainly in Beijing, Tianjin, 
Shanxi, Ningxia, and Shaanxi, accounting for 13.33% and 
20%. The low concentrations were placed in Fujian, Jiangxi, 
Guangdong, Guangxi, and Hainan, accounting for 20% and 
26.67% in 2005 and 2010. In 2015, Inner Mongolia, Jilin, 
Hebei, Beijing, Tianjin, Shanxi, and Shandong showed high 

Fig. 9   Spatial autocorrelation of transport carbon emission intensity in 2005, 2010, 2015, and 2019
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aggregation, and low aggregation expanded to Chongqing. 
In 2019, high carbon emission intensity regions were con-
centrated in Beijing, Tianjin, Hebei, Shanxi, Inner Mongo-
lia, and Shandong, accounting for 20%, while low regions 
were still concentrated in Fujian, Jiangxi, Hunan, Guizhou, 
Guangdong, Guangxi, and Hainan. In general, the efficiency 
of converting energy into carbon emission intensity is low 
in some parts of North China; targeted energy conserva-
tion and emission reduction initiatives are required since 
transportation is a major factor in the economic growth of 
these areas. The economic development of Northeast China 
depends on energy development and industrial production, 
and efficiency improvement is not significant. Although 
North China’s general economic level is high and transporta-
tion clearly produces a lot of carbon emissions, the country’s 
energy consumption efficiency is not very high. More energy 
conservation and emission reduction efforts are needed. 
Southwest and South China have mainly low aggregation, 
indicating that the energy efficiency ratio is relatively ideal 
and that the development of regional transportation energy 
conservation and emission reduction should be strengthened 
continuously. In South China, the establishment of a green 
transportation system build the foundation for the efficient 
transport of carbon. Southwest China is rich in hydropower 
resources, and tourism promotes the development of low-
energy transportation.

Differences in transport carbon emission intensity 
among provinces

The Theil index is an important tool used to analyze differ-
ences in the regional income level to measure the relation-
ship between intergroup gaps and the total gap (Wang et al. 
2020a, c). The standard deviation and logarithmic deviation 
mean of transport carbon emission intensity in 30 provinces 
from 2005 to 2019 were calculated to quantitatively describe 
the distribution features of the intensity of transportation-
related carbon emissions in 30 Chinese provinces. The 
standard deviation reflects the dispersion degree of transport 
carbon emissions. The larger GE0 and GE1 are, the larger 
CVt is. The intensity of transport carbon emissions tended 
to stabilize, but the difference increased, which showed an 
overall fluctuating trend. As shown in Fig. 10, the GE1, GE0, 
and CVt values of the transport carbon emission intensity 
in 30 provinces of China increased from 0.003, 0.003, and 
0.082 in 2005 to 0.005, 0.005, and 0.102 in 2019, indicating 
that the differences of transport carbon emission intensity in 
China were increasing. CVt showed a fluctuating trend, with 
significant fluctuations from 2013 to 2019. GE0 and GE1 
showed stable trends, increasing slightly in 2007 and 2018. 
The differentiation of the overall carbon emission intensity 
was stable at a low value, and the differences between the 
developments of transport sectors in provinces were small. 

The average correlation coefficient of the regional carbon 
emission intensity decreased significantly, indicating a cor-
relation among regions. In Northwest and North China, there 
were also significant variations in transportation-related car-
bon emissions and energy efficiency. The low level of GVt 
in Southwest China shows that the level of carbon emission 
intensity in this region was relatively balanced, the regional 
energy efficiency was at a reasonable stage of development, 
and the regional development differences were relatively 
small.

Decoupling of economic development 
and provincial transport carbon emissions in China

To evaluate the economic effect of carbon emissions and 
formulate emissions-reducing measures in line with regional 
development, to explain the connection between province 
transportation-related carbon emissions and local economic 
growth, we utilized a subject index. There are eight catego-
ries of Tapio decoupling models (Wang et al. 2020a): (1) 
Expansion negative decoupling, e > 1.2: the carbon emission 
growth rate of transportation is higher than that of GDP, 
the level of economic efficiency is not high. (2) Recessive 
decoupling, e > 1.2: the carbon emissions of transporta-
tion is reduced faster than GDP, suggesting a slowdown in 
the economy. (3) Weak decoupling: the GDP growth rate 
of transportation is higher than that of carbon emissions, 
0 < e < 0.8: economic development is becoming more energy 
efficient. (4) Weak negative decoupling, 0 < e < 0.8: the GDP 
of transportation is reduced faster than carbon emissions; 
economic growth is weakened. (5) Strong decoupling, e < 0, 
is the best economic model since it results in an increase in 
transportation GDP with a drop in carbon emissions. (6) 
Strong negative decoupling (e < 0) results in an increase in 

Fig. 10   Change of correlation coefficient of transport carbon emis-
sion intensity in China
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transport carbon emissions with a drop in GDP, indicating a 
state of strong decline. (7) Recessive coupling, 0.8 < e < 1.2: 
GDP and carbon emission growth in transportation are simi-
lar, regarding the state of the economy and carbon emis-
sions. (8) Expansion coupling, 0.8 < e < 1.2: the reduction 
in carbon emissions from transportation is similar to GDP 
and shows that there is a high association between GDP and 
carbon emissions.

We estimate the yearly decoupling of transportation-
related carbon emissions in 30 provinces in this article. 
The results showed seven decoupling types. Weak decou-
pling accounted for the largest proportion of 45.24%; this 
was followed by expansion negative decoupling at 20.71%, 
recessive coupling at 13.33%, strong decoupling at 11.43%, 
strong negative decoupling at 6.67%, weak negative decou-
pling at 1.67%, and recessive decoupling at 0.95%. The pro-
portion of weak decoupling was high, indicating that the 
economic development energy efficiency improved. From 
2005 to 2006, both the transport carbon emission level and 
transportation industry GDP increased, and most provinces 
showed weak decoupling. Expansion negative decoupling 
occurred in Beijing, Shanxi, Heilongjiang, Jiangxi, and 

other provinces, indicating that the economic development 
of these provinces was inefficient expansion. In 2018–2019, 
transport carbon emissions and the GDP increased in most 
provinces. Zhejiang, Anhui, Henan, and Guangxi showed 
strong decoupling, which was an ideal economic develop-
ment state. The strong negative decoupling observed in Jilin 
and Qinghai indicated that the economic energy efficiency 
in these provinces was low, and the economic development 
of the provinces needs to transform into energy savings and 
high efficiency. The number of strong negative decoupling 
regions decreased, while the number of decouple regions 
increased, and the decoupling elastic gaps between differ-
ent regions were narrowing. Figure 11 shows the decou-
pling states during the 5-year period and the full observa-
tion period. The entire research region oscillates between 
expansion negative decoupling, weak decoupling and reces-
sive coupling between 2005 and 2009. From 2010 to 2014, 
four coupling types were experienced, including expan-
sion negative decoupling, strong decoupling, weak decou-
pling, and recessive coupling. Among them, the number of 
provinces with expansion negative decoupling decreased, 
with strong decoupling increased. From 2015 to 2019, the 

Fig. 11   Economic decoupling types of 5-year periodic transport Carbon emissions
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decoupling types increased, with expansion negative decou-
pling accounting for 23.33% and weak decoupling account-
ing for 43.33%. Most provinces have realized the economic 
decoupling. In general, from 2005 to 2019, 83.33% of prov-
inces realized weak decoupling; only Beijing, Qinghai, and 
Heilongjiang experienced expansion negative decoupling; 
and Jiangxi and Fujian experienced recessive coupling. The 
decoupling elasticity gaps of 30 provinces in China were 
narrowing, and transport carbon emissions tended to cor-
respond to low-carbon economies.

The correlation of the provincial decoupling state space is 
significant, and the decoupling types of adjacent regions are 
similar. As seen in Fig. 12, we study the regional decoupling 
state, and the results are as follows: North China presented a 
decoupling state, with strong decoupling in 2012–2013 and 
2015–2016 but strong negative decoupling in 2013–2015 
and 2017–2018, indicating significant fluctuations in the 
economic efficiency. In 2018–2019, weak negative decou-
pling appeared, indicating that economic efficiency needs 
to be steadily improved. A variety of decoupling states 
appeared in Northeast China, accounting for 71.43%, among 
which weak decoupling states accounted for 50%, indicating 
that the dependence of the transportation GDP on energy 
was reduced. In 2005–2006, 2010–2011, 2013–2014, and 
2018–2019, recessive coupling occurred, accounting for 
28.57%. The decoupling states of East China and South 
China were similar, with the recessive coupling state appear-
ing in only 2 years and the strong negative decoupling state 
appearing in one year; in addition, the energy demand of the 
transportation economy was low. The reason for this may be 
that East China and South China are economically devel-
oped, attach high importance to reducing carbon emissions, 
and introduce several regional emission reduction policies. 
There were a variety of negative decoupling states in central 
China, among which the proportion of expansion negative 

decoupling was 28.57%, transport carbon emissions per-
sisted in fluctuating terms of economic effectiveness, and 
economic energy efficiency need to be constantly increased. 
The southwest and northwest regions give consideration to 
the growth of the tertiary industry and tourism, with 78.57% 
and 85.71% in the decoupling state. Fluctuations occurred in 
2006–2007, 2013–2014, 2015–2016, and 2017–2018, indi-
cating a state of expansion negative decoupling that may 
have been related to regional economic changes in that year. 
It is proven that regional decoupling is greatly affected by 
the economic environment.

Discussion

Spatial differentiation and contribution rate 
analyses of transport carbon emission factors

Spatiotemporal heterogeneity analysis of transport carbon 
emission factors

The study’s findings demonstrate transport carbon emis-
sions’ spatial agglomeration impact and economic energy 
efficiency are related. Combined with the research literature, 
in this paper, we select carbon emission intensity, energy 
intensity, transport intensity, economic structure, economic 
scale, population, and economic intensity as the influencing 
elements. The data were first standardized, and an OLS lin-
ear regression model was used for factor screening. The find-
ings revealed that the economic structure, economic scale, 
population, and economic intensity of carbon emissions 
were the most significant factors each year, and there was 
no multicollinearity. The R2 values modified in 2005, 2010, 
2015, and 2019 were 0.83, 0.86, 0.84, and 0.89, according 
to the GWR model calculation findings, respectively, and 
with time, the influencing factors of the traffic explanatory 
power gradually enhanced the carbon emissions space, and 
the economy and population were some of the most impor-
tant influencing factors.

As shown in Fig.  13, the economic structure has an 
impact on spatial promotion, and the influence coefficient 
of the carbon emission intensity fluctuated greatly over time. 
From 2010 to 2015, the spatial regression coefficient of the 
economic structure increased, and the coefficient decreased 
in 2019. In 2005, Guangdong, Fujian, Zhejiang, Shanghai, 
Jiangsu, Anhui, and Jiangxi had the highest spatial impact 
coefficients, distributed in East China and South China. In 
2010, Inner Mongolia, Hebei, Beijing, Tianjin, Shandong, 
Jiangsu, Shanghai, and Zhejiang had the highest spatial 
impact coefficients, from North China and East China. 
Liaoning, Jilin, and Heilongjiang in Northeast of China 
showed the highest spatial impact coefficients in 2015. In 
2019, Xinjiang, Qinghai, Guizhou, Yunnan, Guangxi, and 

Fig. 12   Economic decoupling types of regional transportation carbon 
emissions
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Hainan were the most significant regions in Northwest, 
Southwest, and South China. Overall, the spatial influence 
of the economic structure developed from east to west.

Figure 14 demonstrates the influence of the economic 
scale, which is significant in Guangdong, Guangxi, and 
Hainan and gradually strengthens from north to south. From 
2005 to 2019, the per-capita GDP of 30 provinces increased 
by 328.78%, while the carbon emissions from transporta-
tion increased by only 129.89%. The rapid growth of the 
per-capita GDP increased the impact of the economic scale 
from transportation, because transportation is an important 
embodiment of the economic capacity. From 2005 to 2019, 
the economic scale in South China and Southwest China 
showed a strong spatial influence.

The spatial influence of the population is similar to that 
of the economic scale, which had a broad promoting impact 
on transport carbon emissions in all regions. As shown 
in Fig. 15, the effect of the population was weaker in the 
western region and stronger in the eastern region, mainly 
affecting Shandong, Shanghai, Zhejiang and Fujian. East 
China was the largest economy affected by the population, 
while Northwest and Southwest China were less affected. 

The spatial regression coefficient of the population was the 
largest among the influencing factors. In 2005, 2010, 2015, 
and 2019, the average spatial coefficients of the population 
were 0.93, 0.91, 1.02, and 1.02.

The economic intensity reflects the carbon emissions per 
unit of GDP from transportation, and its influence gradually 
increased from west to east. Northeast China was dominated 
by heavy industry, with road and railway transportation as 
the main modes of transportation, and this increased the 
impact of the economic intensity on transport carbon emis-
sions. Figure 16 demonstrates the traffic volumes in the 
southwest and northwest regions were relatively low, and 
the influence of the economic intensity was small.

Contribution rate of transport carbon emission factors

Carbon emission intensity, energy intensity, transport inten-
sity, economic structure, economic scale, and population 
were chosen as the primary decomposition components in 
accordance with the decomposition model. The findings in 
Tables 1 and 2 demonstrate that the aforementioned vari-
ables have diverse effects on changes in transport carbon 

Fig. 13   Spatial distribution of economic structure
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emissions. From 2005 to 2019, the cumulative contributions 
were 3139.16 (104 t), − 14023.10 (104 t), − 21103.40 (104 
t), − 16060.90 (104 t), 91612.70 (104 t), and 7128.23 (104 
t), respectively. The energy intensity, transport intensity, 
and economic structure generally inhibit transport carbon 
emissions, while the carbon emission intensity, economic 
scale, and population generally promote transport carbon 
emissions, with average contribution rates of − 27.40%, − 4
1.23%, − 31.38%, 3.08%, 89.92%, and 7.00%, respectively. 
These results are consistent with related research conclu-
sions (Nnadiri et al. 2021; Solaymani 2022; Zhu et al. 2022).

The carbon emission intensity generally promoted carbon 
emissions with fluctuations, with multiple positive and nega-
tive effects. The contribution of the carbon emission inten-
sity increased significantly from 2016 to 2017, from 292.69 
(104 t) to 1090.55 (104 t). The carbon emission intensity 
had an inhibiting effect on Henan, Guizhou, Jilin, Shanxi, 
Chongqing, Ningxia, and Qinghai, and a promoting effect 
on other regions.

The contribution of the energy intensity increased 
from − 213.16 (104 t) in 2005 to 7563.50 (104 t) in 2019, 
and the contribution of carbon emission suppression 

gradually increased, reducing transport carbon emissions 
by − 14023.10 (104 t) in general, accounting for 27.40% of 
the total contribution of carbon emission suppression from 
2005 to 2019. In 2008 and 2016, the domestic economy 
declined, and the contribution value of the energy intensity 
increased significantly, indicating that the energy inten-
sity is closely related to the economy. In 2018–2019, the 
contribution value of the energy intensity changed from 
inhibiting to promoting, thus proving that the economic 
environment brings fluctuations in energy intensity. The 
energy intensity contributed to carbon emissions mainly 
in Guangdong, Hunan, Tianjin, Zhejiang, Inner Mongolia, 
and Shanghai.

The effect of transport intensity played a substantial role 
in fostering carbon emissions in 2008 and 2014, reducing 
transport carbon emissions by 21103.41 (104 t) and account-
ing for 41.23% of the total inhibition contribution from 2005 
to 2019, accounting for a large proportion and indicating 
that the contribution value had a suppressive impact on car-
bon emissions. The transport intensity contributed to car-
bon emissions mainly in Guangdong, Shandong, Yunnan, 
Hunan, and Tianjin.

Fig. 14   Spatial regression coefficient of economic scale

111473Environmental Science and Pollution Research (2023) 30:111459–111480



1 3

The number of years when the economic structure 
inhibited transport carbon emissions was the largest 
among the influencing factors. The overall inhibitory con-
tribution value was − 16060.90 (104 t), and the inhibitory 
contribution rate was 31.38%; increasing the proportion of 
transport GDP would not increase carbon emissions. The 
significance of increasing the economic effectiveness of 
carbon emissions is supported by this conclusion. Yunnan, 
Xinjiang, Henan, Hebei, Anhui, and Shandong’s carbon 
emissions were encouraged by their economic structures, 
although the proportions were not very significant. The 
provinces with strong inhibition were Guangdong, Beijing, 
Fujian, Shanghai, and Sichuan.

With a total contribution rate of 89.92%, per-capita 
GDP significantly contributed to the growth of transport 
carbon emissions, and its change trend was basically con-
sistent with that of carbon emissions. Due to the increasing 
demand for traffic volume, the economic scale and trans-
port carbon emissions continue to increase. Guangdong, 
Shandong, Hubei, Jiangsu, and Shanghai all had average 
annual carbon emissions above 3 million tons, which 

significantly increased the amount of carbon emissions 
from transportation.

The emission contributions of the population decreased 
from 485.49 (104 t) to 282.93 (104 t) from 2005 to 2019, 
with a decrease rate of 41.72%. The consumption potential 
of the population drives the development of urban transpor-
tation; Guangdong Province had the largest contribution of 
the population factor, with an average contribution value of 
126.20 (104 t) of carbon emissions. Guangdong, Shanghai, 
Beijing, Zhejiang, and other provinces with better economic 
development were more attractive to talent, and their large 
populations promoted carbon emissions. Figure 17 demon-
strates the contribution rate of each influencing factor.

Among the contributions of the seven regions, the eco-
nomic scale was the main factor promoting carbon emis-
sions of all the regions. In North China and East China, the 
variables limiting carbon emissions were energy intensity, 
transport intensity, and economic structure, whereas the ones 
boosting carbon emissions were carbon intensity, economic 
scale, and population. Among the inhibiting factors, the 
energy intensity, transport intensity, and economic structure 

Fig. 15   Spatial regression coefficient of population
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Fig. 16   Spatial regression coefficient of economic intensity

Table 1   Average contribution 
of influencing factors from 2005 
to 2019

CI carbon emission intensity, EI energy intensity, TI transport intensity, EC economic structure, GC eco-
nomic scale, P population

Year CI EI TI EC GC P Total

2006  − 41.6747  − 213.156  − 1943.4  − 80.5357 5849.554 485.4895 4056.274
2007 129.7956  − 285.841  − 517.944  − 2287.98 7514.26 562.1318 5114.417
2008  − 112.125  − 6911.91 5024.578  − 2152.79 8147.925 615.5185 4611.194
2009  − 93.181  − 666.365 585.9902  − 2780.79 5537.969 615.3555 3198.976
2010 157.5333  − 4181.57 118.7295  − 1344.93 9694.102 801.4623 5245.325
2011 520.9414  − 3661.68  − 242.462  − 2362.73 10,621.91 742.6581 5618.643
2012 41.60946  − 1476.29  − 1194.27 131.1578 6429.377 591.4674 4523.054
2013 792.2815 891.5737  − 9948.36  − 522.308 5661.905 484.6355  − 2640.27
2014  − 164.851  − 3744.43 3550.225  − 1421.25 5275.974 488.8599 3984.526
2015 157.8327 7229.465  − 8094.7 393.1431 3451.009 314.5834 3451.333
2016 292.6942  − 256.627 359.4276  − 1451.1 4729.829 460.9288 4135.151
2017 1090.551  − 6188.91 1933.046 1055.492 6302.851 391.6184 4584.651
2018 84.10024  − 2120.83  − 863.058  − 1812.4 6349.097 290.594 1927.507
2019 283.647 7563.497  − 9871.2  − 1423.91 6046.897 282.9316 2881.861
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accounted for a similar proportion in East China, but in 
North and Central China, transport intensity is the biggest 
inhibitor. In Northeast China, the energy intensity, trans-
port intensity, economic structure, and population inhibited 
carbon emissions, accounting for 11.26%, 27.85%, 42.93%, 
and 17.96%, respectively. In South China, the main factors 
inhibiting carbon emissions was energy intensity, accounting 
for 76.34%. In the southwest and northwest areas, transport 
intensity and economic structure were the major inhibiting 
influence. The proportions of factors between these two 
regions were similar.

Combined with the contribution rate of 5-year period, 
the development trend of the main influencing factors could 
be seen. In different periods, the carbon intensity, economic 
structure, economic scale, and population contribution rates 
were stable, and energy intensity and transport intensity 
fluctuated greatly. From 2015 to 2019, in the last 5 years, 

the contribution rate of the period was consistent with the 
overall contribution trend, the recent economic structure, 
economic scale, and population contribution rate stabil-
ity, and contributing impacts of carbon emission intensity 
increased. The rate of energy intensity inhibition fell, but 
the rate of transport intensity inhibition rose, indicating that 
the proportion of renewable energy gradually increased and 
that the energy-saving measures of freight transport need to 
be strengthened, as Fig. 18 shows.

Transport carbon emission regulation approach

Based on the spatiotemporal characteristics of transportation 
carbon emissions and the types of economic decoupling and 
the influencing factors of provinces in China, this paper sug-
gests to strengthen the macroeconomic policy regulation and 
control, realize the integration and coordinated development 

Table 2   Average contribution 
of influencing factors in each 
province from 2005 to 2019

CI carbon emission intensity, EI energy intensity, TI transport intensity, EC economic structure, GC eco-
nomic scale, P population

Province CI EI TI EC GC P

Beijing 0.18  852.04 −627.87  −1962.48 3248.81 761.38
Tianjin  287.44  2081.42  −2862.61  −10.18 970.25 261.74
Hebei 416.46 −1079.48  −853.89  353.41 2636.12 195.48
Shanxi −89.81  −831.25  458.80  −710.26 2722.98 66.68
Inner Mongolia 345.52  −1644.69  −545.91 −660.98 3355.66 −3.57
Liaoning 87.80  − 879.30  − 352.11  − 557.99 3570.39 10.62
Jilin − 90.10   − 352.35  57.75  − 74.53 1327.91  − 151.56
Heilongjiang 48.40  917.57 − 482.73   − 565.08 1579.62  − 360.08
Shanghai 93.62 − 1546.94  − 480.28  − 1597.13 5206.90 1089.63
Jiangsu  44.47   − 51.29 − 695.96  − 1261.47 5213.90 371.33
Zhejiang 341.12  − 1682.77  − 140.44  − 696.38 3397.06 686.09
Anhui  86.18 38.37  − 1480.02 304.50 2949.61 19.60
Fujian 29.37   − 952.64  1298.59  − 1620.83 3083.68 289.36
Jiangxi 43.86  140.45  − 358.12  − 470.75 2033.77 45.18
Shandong 864.46  − 1024.19  − 4281.86  39.68 6179.16 449.81
Henan − 155.40 102.36  − 1820.48 405.72 3706.50 158.26
Hubei  76.83 − 1473.95  − 1620.59  − 156.75 5680.83 125.02
Hunan 107.17 2461.12  − 2956.29  − 953.68 3725.47 92.79
Guangdong  291.56  − 8276.14  5002.81  − 2102.26 7236.22 1766.76
Guangxi 18.88  − 508.99  − 320.98  − 467.58 2444.89 119.45
Hainan  20.87  − 284.53 − 88.41  − 240.66 871.51 107.29
Chongqing − 28.24 − 719.07  14.10   − 690.94 2553.91 199.08
Sichuan  80.22 − 28.94  − 462.68  − 1406.59 3986.96 55.81
Guizhou − 110.50 823.69   − 1143.40 − 919.13 2565.74 92.58
Yunnan 8.87  375.94  − 3049.18  712.94 3639.00 102.15
Shaanxi 183.68  − 1081.80  − 655.86  − 783.73 3331.17 129.69
Gansu 62.91  − 91.51  − 277.84  − 384.02 1497.56  − 20.74
Qinghai − 9.43  327.13   − 256.27  − 36.55 384.65  22.58
Ningxia  − 18.22  − 99.11 − 173.05  − 199.39 569.28  68.64
Xinjiang 100.99 465.79  − 1948.62  652.16 1943.15  377.18
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of regional transportation resources, optimize the structure 
of transportation and energy, and vigorously develop the 
transportation technology, and make accurate suggestions 
on carbon emission reduction.

Strengthening macro‑scale controls and optimizing 
the economic efficiency

Macro-policy regulation is crucial since economic growth 
is the key factor determining transportation-related carbon 
emissions. A balance between carbon emission restrictions 
and economic development should be considered in an 
economic expansion (Inkinen and Hämäläinen 2020). The 

economic scale is significant variables encouraging carbon 
emissions, while the economic structure is the main factor 
blocking carbon emissions, only by optimizing the economic 
energy efficiency and realizing the decoupling of the car-
bon emission economy can we gradually complete China’s 
economic model change and advance superior economic 
and social development. First, we should improve the urban 
transport structure, transform the mode of transport, opti-
mize the transport planning, strengthen the transport and 
traffic efficiency, increase the proportion of long-distance 
rail transport and bus rapid transit, and reduce the use of 
aircraft and private cars and other inefficient means of car-
rying passengers (Noussan et al. 2022) to comprehensively 
improve the economic efficiency of transport. Second, the 
average marginal emission reduction cost of transportation 
should be reduced; we should rely on low-carbon standard 
systems and economic demonstration zones, establish the 
provincial development priority framework (Pamucar et al. 
2021), and encourage the regional and staged implementa-
tion of China’s effective and low-carbon economic develop-
ment model.

Improving the energy structure and developing new 
technical forces in the transportation

The International Energy Agency (IEA) published the 
Roadmap for Carbon Neutrality in China’s Energy System 
in September 2021, emphasized that the primary forces 
behind China’s emission reductions come from improving 
energy efficiency, expanding renewable energy, and reduc-
ing coal use. Adjusting the energy structure, reducing the 

Fig. 17   Contribution rate of each influencing factor

Fig. 18   Contribution rate of each influencing factor in 5-year period
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consumption of fuels such as fuel oil and diesel, and increas-
ing the utilization rate of renewable energy sources are 
important ways to reduce transport carbon emissions. First, 
we will help upgrade the industrial structure; minimize the 
energy-intensive, polluting, and high-emission industries; 
and strengthen the use of solar energy, geothermal energy, 
bioenergy, electricity, and hydrogen-based synthetic fuels. 
Second, we should encourage technological innovation, 
accelerate the introduction of innovative technology, and 
improve energy efficiency, vigorously develop new energy 
transportation, and gradually transition to low-carbon trans-
portation development.

Achieving low‑carbon transportation development 
through regional cooperation

Low-carbon transport systems require regional cooperation, 
close logistical links with surrounding cities, enhanced eco-
nomic exchanges and demand cooperation, the optimization 
of the transport structure, and the formulation of regional 
development policies. North China and East China had high 
economic efficiencies, but the energy carbon emission con-
version rates still needed to be strengthened in these areas. 
We should continue strengthening the technical force, 
increase the transportation sector’s GDP output’s energy 
efficiency, and boost the energy utilization rate. Reducing 
carbon emissions in Central China is significantly impacted 
by the transport intensity. Therefore, efficient freight trans-
port should be developed to increase the proportion of the 
transport GDP. In Northeast China, the economic structure 
and transport intensity inhibit carbon emissions, the freight 
routes and industrial structure should be improved, and 
the transportation economy should be enhanced. In South 
China, energy intensity is the main inhibiting factor; poli-
cies should focus on strengthening the low-carbon energy 
mode. In Southwest and Northwest China, improving the 
transport intensity and economic structure can effectively 
curb carbon emissions; Northwest China has great potential 
for solar energy and onshore wind energy resources and suf-
ficient available land; these resources can be used to realize 
the local consumption of clean energy through industrial 
transformation. The southwest region is rich in natural gas 
reserves; consequently, we need to improve infrastructure 
building and modify this region’s energy consumption 
structure.

Conclusions

Measuring and analyzing the spatiotemporal characteristics 
and economic energy efficiency of carbon emissions from 
transportation are important for formulating effective poli-
cies for energy conservation and emission reduction. Based 

on China’s provincial carbon emission data from 2005 to 
2019, this paper systematically analyzes spatiotempo-
ral characteristics and regional differences, and proposes 
regional synergistic development as an effective way to 
improve China’s transportation energy and economic effi-
ciency. The main conclusions are as follows:

China’s provincial carbon emissions indicated a slow 
rise from 2005 to 2019; the annual growth rate has fluc-
tuated downward. Petroleum products have been the most 
major source, clean energy sources including electricity and 
natural gas climbed in percentage. The levels of transport 
carbon emissions among the 30 provinces varied signifi-
cantly. Guangdong, Shanghai, and other areas in East and 
South China show higher carbon emissions, while Lower 
carbon emissions from transportation in northwest regions 
such as Ningxia and Qinghai. Qinghai, Anhui, and Fujian 
provinces had higher carbon emissions growth rates, while 
Inner Mongolia, Shandong, and Ningxia had lower growth 
rates. The total carbon emissions from transportation have 
a strong correlation with provincial economic development, 
while the carbon emission intensity is not. Carbon emis-
sions from transportation show a trend of “eastern > west-
ern,” and carbon emission intensity shows a trend of 
“northern > central > southern.”

A positive spatial correlation was seen for transport car-
bon emissions. The geographical correlation of transport 
carbon emissions has gradually improved, and the transport 
carbon emission intensity was more significant. High-high 
clusters of transport carbon emission were manifested in the 
east, while low-low clusters were in the west. Jiangsu and 
Zhejiang were the sites of the high-high clusters, while low-
low clusters were found in Xinjiang, Qinghai, and Gansu. 
High-high clusters of carbon emission intensity manifested 
mainly in the north of Hebei, Beijing, Tianjin, and Shanxi, 
while low-low clusters were found in the south of Fujian, 
Jiangxi, Hunan, Guizhou, Guangdong, Guangxi, Hainan, 
and Yunnan.

Differences of the transport carbon emission intensity 
slightly increased, that were significantly regionally corre-
lated. There were seven forms of decoupling between yearly 
provincial transport carbon emissions and economic devel-
opment, 83.33% of provinces realized decoupling, with weak 
decoupling accounting for the largest proportion, 45.24%. 
During 2005–2019, the number of regions experiencing 
expansion coupling and expansion negative decoupling 
decreased, while the number of decoupled regions increased 
and the decoupling elasticity gaps between different regions 
narrowed, and the GDP of transportation’s reliance on 
energy decreased.

The energy intensity, transport intensity, and economic 
structure played an overall inhibitory role, while the carbon 
emission intensity, economic scale, and population played 
promoting roles. Economic scale was the most important 
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influencing factor, with a total contribution rate of 89.92%. 
The energy intensity, transport intensity, and economic 
structure were the key deterrents to carbon emissions in 
North and East China. The main factors inhibiting carbon 
emissions in Northeast and Central China were the trans-
port intensity and economic structure. The main inhibitor 
of carbon emissions in South China was energy intensity. In 
Southwest and Northwest China, the main factors inhibit-
ing carbon emissions were energy intensity, transportation 
intensity, and economic structure.
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