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Abstract
The development of effective photocatalytic materials is essential for removing emerging pollutants from aqueous media, 
such as the hormone 17β-estradiol (E2). In this study, a novel photocatalyst based on niobium pentoxide  (Nb2O5) functional-
ized with nickel (Ni) and copper (Cu) was synthesized for E2 removal. The NiCu/Nb2O5 photocatalyst was prepared using a 
facile wet impregnation method and characterized by various techniques. The incorporation of Ni and Cu into  Nb2O5 reduced 
the band gap energy from 3.3 to 2.8 eV, enabling efficient utilization of visible light. Moreover, NiCu/Nb2O5 exhibited the 
highest E2 removal efficiency (82%) under UV-A-assisted conditions at a concentration of 1.5 g  L−1. The reaction kinetics 
were found to follow a second-order model with a rate constant of k = 0.0020 L  g−1  min−1, and a plausible reaction mecha-
nism was proposed. Through the study of radical elimination, it was proven that the radical oxidation reaction mechanism 
predominated in the reaction. The results of the toxicity assays, combined with the TOC parameter, demonstrated the efficacy 
of photocatalytic degradation in reducing E2. These findings demonstrate the great potential of the NiCu/Nb2O5 photocatalyst 
for removing persistent pollutants.

Keywords Photocatalytic activity · Band gap energy · Photoluminescence · Emerging pollutants · Reduction toxicity · 
Wastewater treatment

Introduction

The contamination of aquatic matrices by emerging pollut-
ants is a critical and urgent issue, given the ability of these 
compounds to persist in the environment and their poten-
tial for negative impacts on ecosystems (Parida et al. 2021; 
Majumder and Gupta 2021; Nippes et al. 2022b). Further-
more, among the emerging pollutants, there are compounds 
known as endocrine disruptors (EDs), a class of substances 
capable of significantly impacting human health, increasing 
the risk of cancer, and causing disorders in the immune and 
nervous systems, even at low concentrations (Segner 2006; 
Orozco-Hernández et al. 2019).

Among the EDs, estrogenic steroids are highly dangerous, 
given the adverse effects they can cause in environmental 
ecosystems (Du et al. 2020). 17β-Estradiol (E2) is particu-
larly concerning, as it is recognized as the most potent estro-
gen and has been widely detected in various aquatic matrices 
(Yu et al. 2019). E2 is a natural estrogen primarily used 
in hormone replacement therapy and birth control (Omar 
et al. 2016) and is primarily introduced into environmental 
waters through animal and human urine (Kabir et al. 2015; 
Orozco-Hernández et al. 2019). Some effects of this estro-
gen have been reported in the literature, such as increased 
cancer risk and deformities in humans, reproductive organ 
modifications, and sex alteration in fish (Purdom et al. 1994; 
Qing et al. 2022). The difficulty of conventional treatment 
processes in removing compounds like E2 highlights the 
need for alternative water treatment technologies that can 
complement traditional methods and eliminate this threat 
from effluents (Majumder and Gupta 2020).

In this context, we highlight the process of heteroge-
neous photocatalysis, a promising and environmentally 
friendly water treatment technology, due to its ease of 
use and ability to mineralize various water contaminants 
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into non-hazardous compounds (Yin et al. 2010; Arora 
et al. 2022). This process employs semiconductors (such 
as  BiVO4,  CeO2,  Fe2O3,  MnO2,  TiO2, ZnO, and  Nb2O5) 
as fine solids or nanostructures (Boughelout et al. 2020). 
 Nb2O5 is one of these semiconductors, which is a transi-
tion metal oxide of the n-type with a band gap energy 
value (Eg) of approximately 3.0–3.4 eV, making it an 
attractive candidate for photocatalysis (Su et al. 2021). 
Due to its good chemical stability, non-toxicity, and com-
mercial availability (Yan et al. 2014),  Nb2O5 finds exten-
sive use in photocatalysis (Hu and Liu 2015; Souza et al. 
2016; Goswami et al. 2022; Ücker et al. 2022a, 2023a, 
b; Yang et al. 2022; Lenzi et al. 2022; de Almeida et al. 
2022; Liu et al. 2023). Additionally, Brazil is one of the 
main producers of niobium, making Nb2O5 a valuable 
material for use in water treatment applications (Nowak 
and Ziolek 1999).

Given the potential for photocatalytic application,  Nb2O5 
can still have its photocatalytic activity enhanced through 
the use of modification techniques such as functionalization 
(Lin et al. 2011; Furukawa et al. 2012; Peng et al. 2021; 
Xia et al. 2022), heterojunctions (Yan et al. 2014; da Silva 
et al. 2017; Sacco et al. 2020), and addition of transition 
metals (such as Ag, Fe, Cu, Ni, Pt, Au, etc.) (Vivek et al. 
2022). Additionally, recently, it has been discovered that 
bimetallic nanostructures in semiconductors are effective in 
various catalytic processes, due to the synergistic effect of 
combining two metals (Riaz et al. 2020; Vivek et al. 2022; 
Nippes et al. 2022a). In particular, bimetallic copper and 
nickel catalysts have been reported as an efficient method 
to increase reaction efficiency, including in heterogeneous 
photocatalysis (Riaz et al. 2020). However, further studies 
are needed to understand the effects of this methodology 
and its application in the development of Ni and Cu bime-
tallic catalysts incorporated into  Nb2O5 that are efficient 
in removing EDs such as E2. It is important to note that 
we did not find any literature reports on the photocatalytic 
degradation of the 17β-estradiol molecule using  Nb2O5, 
either in its pure form or functionalized form.

Therefore, the objective of this study was to evaluate 
the degradation of the estrogen E2 using the semiconduc-
tor  Nb2O5 in its raw form and also to explore the design 
of a bimetallic copper and nickel (Cu: Ni) catalyst sup-
ported on  Nb2O5, establishing a relationship between the 
physicochemical properties of this new photocatalyst and 
its photocatalytic performance in the degradation of E2 in 
an aqueous medium, in a UV-A irradiation-assisted photo-
catalytic system. The efficiency of the photocatalytic pro-
cess was also evaluated in terms of effluent toxicity, using 
two bioindicators (Artemia salina and Lactuca sativa), 
which provide highly relevant results from a toxicologi-
cal perspective.

Materials and methods

Materials

For the synthesis of the material, nickel nitrate 
( N i ( NO 3) 2· 6 H 2O ,  9 7 % )  a n d  c o p p e r  n i t r a t e 
(Cu(NO3)2·3H2O, 98%), both obtained from Sigma-
Aldrich, were used along with niobic acid (HY-340) pro-
vided by Brazilian Company of Metallurgy and Mining 
(BCMM). The HY-340 was calcined to obtain niobium 
(V) oxide  (Nb2O5). For toxicity tests, sodium chloride 
(NaCl, 99%) and potassium dichromate  (K2Cr2O7, 99%) 
from Synth were used. Lactuca sativa seeds and Artemia 
salina cysts were obtained from an agricultural supplier. 
For scavengers tests, the reagents ethylenediaminetet-
raacetic acid (EDTA, 99%), isopropanol ((CH3)2CHOH, 
99.9%), and potassium iodide (KI, 99%), all obtained from 
Sigma-Aldrich, were used. Laboratory-grade water (LGW, 
18 MΩ) was prepared using a Millipore purification sys-
tem. The synthetic hormone 17β-estradiol (> 98%) was 
obtained from Sigma-Aldrich, and Table 1 present its main 
characteristics.

Methods

Synthesis

The catalyst used in this study was NiCu/Nb2O5 contain-
ing 1% Cu and 5% Ni by mass, which were determined by 
preliminary tests. The catalyst was prepared through a wet 
impregnation method by adding copper and nickel nitrates 
to niobium pentoxide. The resulting precursor was dried at 
100 °C for 24 h and then calcined at 500 °C for 4 h, yield-
ing a brown solid material.

Characterization

The catalysts were characterized by textural analysis using 
nitrogen gas  (N2) physisorption studies (Quantachrome, 
model NOVA-1200). The morphology of the materials 
was observed by scanning electron microscopy (SEM) 
(Shimadzu SS-550 software, Superscan SS-550), atomic 
force microscopy (AFM) conducted on an atomic force 
microscope (Shimadzu SPM-9700) in the threading mode 
using a Silicon-Pt/Ir coated tip (spring constant of 0.5–9.5 
N/m and at a frequency of 45–115 Hz), and transmission 
electron microscopy (TEM) using a JEOL transmission 
electron microscope, model JEM-1400. X-ray fluores-
cence spectroscopy (XRF) was performed on a Rigaku 
ZSX Primus II equipment using oxide standards. Atomic 
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absorption (AA) was performed on a Thermo Scientific 
iCE3000 to determine the metal composition.

The structural properties of the catalysts were analyzed 
by an X-ray diffractometer Shimadzu (model XRD-6000, 
2Ө range 2 to 95°, CoKα radiation, with speed 2°/min, volt-
age 40 kV, and current 50 mA) and Fourier transform infra-
red spectroscopy (FTIR) on a Bruker Spectrometer (model 
Vertex 70 v, resolution 4  cm−1, 128 scans, spectral range 
4000–400  cm−1).

The optical properties of the photocatalysts were exam-
ined using photoacoustic spectroscopy, performed on a spec-
troscopy module operated with 21 Hz frequency modulation 
in the range 200 to 800 nm, and normalized with ultra-pure 
carbon spectrum. The band gap energy was calculated using 
Tauc’s direct method. Photoluminescence spectrometer was 
performed on a PerkinElmer luminescence spectrometer, 
LS-50B, in the spectral region of 350 to 600 nm.

Reactional tests

The reaction system used in the experiments was isolated 
from the external environment by an aluminum metal box, 
equipped with two side fans for cooling (Fig. 1). The sys-
tem consists of a batch-operated beaker equipped with a 
magnetic stirrer and five UV-A tubular lamps. The lamps 
measure 26 mm × 450 mm with a power of 45 W, providing 
a light intensity of 0.064 W  m−2. Each test used an initial 
concentration (C0) of 10 mg  L−1 of E2 in 250 mL of solu-
tion, with the photocatalyst mass ranging from 1 to 2 g  L−1. 
The reactions were carried out at room temperature and 
at the natural pH of the solution. Samples were collected 
at specific time intervals (0, 15, 30, 60, 90, 120, 150, and 
180 min) using a plastic syringe connected to a hose and 
passed through 0.22-μm Millipore membranes supported by 

stainless steel. The efficiency of E2 removal by adsorption 
(absence of light) and by photolysis (absence of catalyst) 
was also evaluated. The main active species of the pho-
tocatalytic reaction and degradation process were investi-
gated by adding radical scavengers such as 1 mM EDTA 
 (h+ scavenger), 10 mM isopropanol ( HO⋅ scavenger), and 
10 mM potassium iodide ( HO⋅ and  h+ scavenger) during 
the photocatalytic reaction experiments (Upreti et al. 2016). 
The residual E2 concentration in the treated solutions was 
quantified via HPLC (Shimadzu HPLC, 10A VP) using a 
C18 column (250 × 4.6 mm, 5 μm, Hichrom) (Isecke et al. 
2018). An isocratic mobile phase composed of a mixture of 
acetonitrile/water 80: 20 (v/v) at a flow rate of 1.0 mL  min−1 
was used. The UV detector was set at 210 and 280 nm. Prior 
to the analysis, a calibration curve was generated using E2 

Table 1  Properties of 
17β-estradiol (E2) Molecular formula C18H24O2

CAS number 50-28-2

Molecular Weight 272.39 g mol-1

Chemical Structure

Ionization constant (pKa) 10.4

Solubility 13 mg L-1 (20°C)

λ max 280 nm

Fig. 1  Reaction module for photocatalytic tests with NiCu/Nb2O5 for 
E2 degradation in aqueous media
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solutions with known concentrations (1–15 mg  L−1). The 
retention time for E2 was approximately 3.75 min. Analysis 
of the treated effluent generated after treatment included 
quantification of total organic carbon (TOC) following the 
methodology described in standard methods (APHA 1999). 
TOC was determined using a Shimadzu TOCL analyzer, 
and all analyses were performed in triplicate.

Kinetics study

To choose the best model that describes the best result 
obtained by this study, a mathematical method was pro-
posed in which the reaction order was varied: zero order, 
½ order, first order, and second order, according to Eq. 1, 
where n is the respective reaction order. The fitting of the 
models to the experimental data was performed by the 
numerical method in MATLAB® software, starting from 
the differential equation below. The differential equation 
was solved using the 4th-order Runge–Kutta.

Catalyst reuse

The NiCu/Nb2O5 photocatalyst was evaluated for its regen-
eration and subsequent reuse in new E2 degradation cycles. 
After each execution, the photocatalyst was removed from the 
reaction vessel by filtration and then washed thoroughly with 
deionized water and finally dried in an 80 °C oven overnight. 
Atomic absorption (AA) was performed on a Thermo Scien-
tific iCE3000 to evaluate the metal lixiviation.

(1)
dC

A

dt
= −kCn

A

Toxicity test

Toxicity tests were conducted to determine the optimal deg-
radation condition using Artemia salina and Lactuca sativa 
(lettuce), a species of microcrustacean and plant, respec-
tively. These bioindicators possess fundamental characteris-
tics to respond to environmental changes, even at low levels 
of contaminant concentration (Silveira et al. 2017).

The methodologies employed were based on the germi-
nation of Lactuca sativa seeds to calculate the relative ger-
mination rate (RGR) and the relative root length rate (RLR) 
and on the hatching of Artemia salina cysts to determine 
the lethal concentration  (LC50) after exposure to the treated 
effluent. Guidelines for these methodologies can be found 
in the work of Nippes et al. (2021b).

Results and discussion

NiCu/Nb2O5 characterization

Figure 2a shows the diffractograms of both the  Nb2O5 sup-
port and the NiCu/Nb2O5 catalyst. The diffractogram of 
 Nb2O5 (PDF #27–1003) indicated an orthorhombic crys-
tal structure. Wet impregnation did not alter the structure 
of the support, as the same  Nb2O5 peaks were observed 
in the matrix. However, incorporation of the metals led to 
the formation of dispersed oxides on the surface. The cata-
lyst displayed diffraction peaks for NiO (PDF #73–1523) 
which exhibited a cubic crystalline structure at 43.1° and 
62.8°. Copper diffraction peaks were not detected due to 
its low content in the catalyst, as previously reported in the 
literature (Dancini-Pontes et al. 2015; Da Silva et al. 2016). 
Nonetheless, the presence of copper can be identified in the 

Fig. 2  Diffractograms (a) and infrared spectroscopy profiles (b) of the  Nb2O5 and NiCu/Nb2O5 samples
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X-ray fluorescence and atomic absorption analyses presented 
in Table 2, which show the chemical composition of the 
samples.

Figure 2b shows the Fourier transform infrared spec-
troscopy (FTIR) analysis profiles of the support and cata-
lyst. The samples showed very similar spectra, both in 
frequency and intensity. Both analyses point out bands 
around 560  cm−1 and 870  cm−1 characteristics of  Nb2O5 
of orthorhombic structure (Graça et al. 2013; Ramanjaneya 
Reddy and Chennakesavulu 2014), as observed in the X-ray 
diffractograms.

The support and the catalyst showed bands around 1630 
 cm−1 and 3400  cm−1, characteristic of the OH functional 
group (De Oliveira-Cantão et al. 2010), being the intensity 
of the bands in the catalyst lower, indicating the elimination 
of part of the OH functional groups from the surface by the 
incorporation of copper and nickel.

Textural analysis results were obtained from  N2 adsorp-
tion/desorption isotherms and are presented in Table 3 and 
Fig. 3. Comparing the support and the catalyst, it can be seen 
that impregnation results in a decrease in the specific area 
compared to that of the support, possibly due to the accom-
modation of oxides in internal regions to the pores, which 
justifies the reduction of pore volume (Furtado et al. 2011; 
Da Silva et al. 2016; Chan et al. 2017). Despite this, both 
remained as mesoporous material.

It is observed in the isotherms that the impregnation of 
the copper and nickel oxides did not significantly alter the 
adsorption isotherms. The isotherms are of type IV, and the 
hysteresis is of type H2, indicating that the pore shapes are 
poorly defined (Steele 1983).

Considering the proportion of nickel and copper in the 
oxides observed in the XRF analysis, the mass content of 
nickel is 4.87%, and copper is 0.95%, close to the values 
obtained by atomic absorption. Thus, the results show that 
the impregnation of the metals of the active phase to the 
supports was quite satisfactory, considering the proximity 
between the theoretical and real values.

The morphology of the materials was observed through 
scanning electron microscopy (SEM) and atomic force 

microscopy (AFM), and the result is presented in Fig. 4a 
and b. Both images showed a heterogeneous surface formed 
by irregular particles, with some agglomerates but similar 
structures. This same configuration is observed in the MFA 
images for the samples, with a similar tendency for agglom-
eration of the particles. The result confirms that the incor-
poration of the metals did not result in significant changes 
in the morphology of  Nb2O5.

Figure 4c and d show the TEM images and particle dis-
tribution of  Nb2O5 and NiCu/Nb2O5. Both samples showed 
similar morphology, confirming no changes in the support 
structure occurred after impregnation. A clustering of round-
shaped particles with different contrasts is also observed in 
the catalyst sample. The particles observed in the support 
range of 10 to 70 nm with an average size of 40 nm, while 
the catalyst is in size range of 10 to 60 nm with an aver-
age size of 31 nm. This reduction in average particle size 
suggests that incorporating the metals may suppress the 
aggregation of the  Nb2O5 particles. This effect may provide 
greater availability of the active sites for OH radical genera-
tion and enhance the photocatalysis process.

Figure 5a shows the direct Tauc plotting method for the 
photoacoustic spectra of the  Nb2O5 and NiCu/Nb2O5 pho-
tocatalysts, along with the obtained band gap values for 
each catalyst in eV. The value found for the pure  Nb2O5 
was 3.3 eV, a value consistent with what is expected for 

Table 2  Chemical composition of catalysts by XRF and AA tech-
niques

FRX AA

Samples Component Mass content (%) Component Mass 
content 
(%)

Support Nb2O5 99.99 - -
Catalysts Nb2O5 92.61 - -

NiO 6.20 Ni 4.90
CuO 1.19 Cu 0.95

Table 3  Textural analysis by  N2 adsorption/desorption

Sample Specific area BET 
 (m2  g−1)

Pore volume 
 (cm3  g−1)

Average 
pore radius 
(Å)

Nb2O5 77.2 0.167 45.5
NiCu/Nb2O5 44.7 0.146 24.1

Fig. 3  N2 adsorption/desorption isotherms of the samples
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this material (Silva et al. 2020). However, the band gap 
value was reduced to 2.8 eV for the modified photocata-
lyst, extending its photon absorption spectrum to the visible 
region (> 400 nm). This effect results from the addition of 
nickel and copper, which can improve the absorption ability 
of optical radiation and reduce the photocatalyst gap due to 
the synergistic effect of combining the two metals (Jin and 
Zhang 2020; Vivek et al. 2022).

The presence of the metals also caused optical changes in 
the material, as can be observed in the photoluminescence 
(PL) spectrum, shown in Fig. 5b. For the pure  Nb2O5, it was 
visualized that a more robust and intense emission peak pre-
sent in the UV region at 382 nm is due to the emission peak 
of  Nb2O5. On the other hand, for the bimetallic material, it 
was noticed that a reduction in the intensity of the spectrum 
indicates that the addition of Ni and Cu inhibits the charge 

Fig. 4  SEM at × 10,000 magnification and MFA of (a)  Nb2O5 and (b) NiCu/Nb2O5 and MET of (c)  Nb2O5 and (d) NiCu/Nb2O5 and respective 
particle size distributions

Fig. 5  Photoacoustic (a) and photoluminescence (b) spectra of  Nb2O5 and NiCu/Nb2O5 photocatalysts
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recombination process, which favors the performance of the 
photocatalyst, improving the photocatalysis process (Nippes 
et al. 2021a; Ücker et al. 2022b). Furthermore, a shift of the 
main emission peak to the more extended wavelength region 
was also detected, reinforcing the possible activation of the 
photocatalyst in the near visible region.

Reactional tests

Figure 6 shows the results obtained for the photocatalytic 
tests. To begin with, it is essential to evaluate the contribu-
tion of the photolysis and adsorption processes in removing 
E2. In percentage, photolysis was responsible for 9% of E2 
removal, while adsorption reached values close to 14 and 
20% for  Nb2O5 and NiCu/Nb2O5, respectively. The result 
confirms that the addition of catalyst plus radiation is neces-
sary to degrade the E2 hormone effectively.

With the catalysts activated with UV-A radiation, it was 
observed that pure  Nb2O5 could remove approximately 33% 
of E2. On the other hand, the catalyst modified with Ni and 
Cu at the same mass concentration reached 43% degrada-
tion. This proves that the functionalization of  Nb2O5 with 
the metals efficiently improved the photocatalytic activity, 
evidenced by the reduction of its band gap energy, which 
allowed its activation at wavelengths in the UV-A region.

Comparing the catalyst loadings employed (g  L−1), it is 
evident that the increase from 1.0 to 1.5 g  L−1 causes an 
increase in E2 degradation (82%) due to the greater avail-
ability of active sites for the photocatalytic reaction. How-
ever, the increase to 2.0 g  L−1 reduces the catalytic activity. 
This indicates interference in the amount of catalyst applied 
due to the excess turbidity of many particles in the aqueous 
medium. This hinders the insertion of radiation into the sys-
tem. With the result, we conclude that 1.5 g  L−1 is the most 
appropriate concentration for the system.

The behavior observed in the photocatalytic reaction 
was proven mathematically by the kinetic study. The values 
of the speed constant (k) and the fit (R2) are presented in 
Table 4. The model that best fitted the data was the second-
order model (n = 2). This indicates that the initial speed of 
micropollutant consumption is higher in the first minutes of 
the reaction (Fig. 7). Over time, the changes in compound 
concentration are less significant, indicating some resistance, 

Fig. 6  Results of the E2 hormone removal tests in aqueous media through adsorption, photolysis (a), and photocatalysis (b)

Table 4  Kinetic fitting results using numerical interaction method

Reaction k (L  g−1  min−1) R2

Nb2O5 (1.0 g  L−1) 0.00034 0.84
NiCu/Nb2O5 (1.0 g  L−1) 0.00077 0.96
NiCu/Nb2O5 (1.5 g  L−1) 0.00200 0.99
NiCu/Nb2O5 (2.0 g  L−1) 0.00046 0.97

Fig. 7  Kinetic fit for second-order model of the NiCu/Nb2O5 reaction 
test
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either in the production of hydroxyl radicals or in the access 
of E2 to these radicals. The highest value for k is for the 
reaction with the NiCu/Nb2O5 catalyst at a concentration 
of 1.5 g  L−1.

Experiments with radical scavengers were conducted to 
identify the main active species in the photocatalytic reac-
tion and degradation process of the E2 contaminant. The 
EDTA was used as an  h+ scavenger, isopropanol as an HO⋅ 
scavenger, and potassium iodide (KI) as a scavenger for both 
HO

⋅ and  h+ (Fig. 8). The addition of scavengers followed the 
order of potassium iodide > isopropanol > EDTA > no scav-
enger, over a 180-min reaction with [NiCu/Nb2O5] = 1.5 g 
 L−1 and [E2] = 10 mg  L−1. The iodide ion is a scavenger that 
reacts with both positive holes  (h+) and surface hydroxyl 
radicals ( HO⋅ ) (Martin et al. 1995), whereas isopropanol is 
known to eliminate only surface hydroxyl radicals ( HO⋅ ) 
(Van Doorslaer et al. 2012). Both scavengers reduce the 
number of available oxidizing species on the catalyst’s sur-
face, thereby decreasing the degradation kinetics of E2. The 
addition of EDTA, which acts as an  h+ scavenger (Upreti 
et al. 2016), showed the least effect on the E2 photodegrada-
tion rate, suggesting that surface hydroxyl radicals ( HO⋅ ) act 
as the main oxidizing agents in this photocatalytic process, 
and the radical oxidation reaction mechanism predominates.

Reaction mechanism

Based on the results obtained in this study and the con-
ducted literature review, the pure  Nb2O5 semiconductor 
is activated under ultraviolet light (Silva et al. 2020). By 
introducing dopant ions into  Nb2O5, the optical properties 
are improved by reducing the band gap value and shifting 
the semiconductor’s activation to the visible region. This 
optical enhancement of the semiconductor ensures a longer 

lifetime for electron–hole pairs, providing greater opportuni-
ties for charge carriers to reach the catalyst surface and inter-
act with dissolved organic compounds (Vasu et al. 2022). 
Additionally, the incorporation of  Cu2+ and  Ni2+ ions into 
the  Nb2O5 network generates an oxygen defect that acts as an 
energy site for dissociating organic pollutants on the catalyst 
surface.

Thus, when visible light is irradiated on the NiCu/Nb2O5 
catalyst, electrons are excited to the conduction band, leav-
ing a hole in the valence band (Eq. 2). These holes in the 
valence band form hydroxyl radicals through the decompo-
sition of water or by reacting with  OH− (Eqs. 3 and 4). The 
electrons transferred to the surface of the conduction band 
react with dissolved oxygen, forming O⋅−

2
 ions (Eq. 5) which 

further react with water to produce HO⋅ radicals. Ultimately, 
both HO⋅ and O⋅−

2
 ions promote the mineralization of the E2 

molecule (Eq. 6), transforming the pollutant into  CO2 and 
 H2O. Figure 9 depicts the suggested possible mechanism for 
the degradation of E2 molecules.

where h+ is the photogenerated hole, e− is the photogen-
erated electron, VB is the valence band, and CB is the con-
duction band.

In most cases, the oxidation of organic pollutants using 
a combination of semiconductors and light involves the 
generation of the hydroxyl radical, which exhibits high oxi-
dation potential (2.80 eV). Generally, the hydroxyl radical 
can oxidize organic compounds through three mechanisms: 
electron transfer, hydrogen abstraction, and electrophilic 
addition (Legrini et al. 1993). Although this article does 
not present the degradation pathways of the pollutant, the 
total organic carbon (TOC) parameter indicated that the 
E2 molecule degraded, forming possible inorganic sub-
stances such as  CO2 and  H2O, resulting in approximately 
81% reduction in organic carbon during the pollutant deg-
radation process.

Table 5 presents the results obtained by other studies on 
the degradation of the hormone 17β-estradiol. The results 
obtained in this work are similar to those of other studies; 
however, in some cases, the performance of the photocata-
lyst is inferior. Nevertheless, it is worth noting that, besides 
achieving a photocatalytic degradation of E2 higher than 
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Fig. 8  Photocatalytic degradation experiments in the presence of var-
ious scavengers



103739Environmental Science and Pollution Research (2023) 30:103731–103742 

1 3

80%, our study observed a significant removal of TOC, 
strongly indicating compound mineralization. Additionally, 
the reduction of E2 toxicity in water, as presented below, 
represents a significant advancement for the application 
of the photocatalysis process using NiCu/Nb2O5. The next 
steps involve studying the reaction variables and proposing 
an optimization to completely degrade E2 with a significant 
reaction kinetics.

Catalyst reuse

At this stage, we investigated the stability of our photocatalyst 
and its application in consecutive reaction cycles. This is a 
highly relevant step to verify the stability and recyclability of 
the produced material, as well as a crucial parameter for the 
techno-economic feasibility of the process. In this case, the 
NiCu/Nb2O5 sample was used for seven consecutive reaction 
cycles in the removal of the hormone E2 from an aqueous 
solution, with the results presented in Fig. 10. The results 
showed that the photocatalytic material exhibited good stabil-
ity, maintaining a removal percentage of approximately 70%. 
Additionally, the resulting solution after the reaction was ana-
lyzed using atomic absorption technique, and no presence of 

the metals incorporated into  Nb2O5 was detected. This con-
firms that the impregnation technique was efficient in fixing 
the metallic species onto the semiconductor, and the photo-
catalyst will not cause pollution of the solution with nickel 
or copper, thus can be safely applied in an aqueous medium.

Fig. 9  Possible electron transfer 
reaction mechanism

Table 5  Catalytic degradation of E2 with different nanoparticles

Catalyst Experimental conditions Efficiency (%) TOC removal 
(%)

Ref

NiCu/Nb2O5 (1.5 g/L) UV-A; natural pH 82 81 This work
Pth-Al-ZnO (40 mg/ml) UV-A; pH 6.5 96 90 Majumder and Gupta (2020)
MnO2/TNTs (0.1 g/L) Simulated sunlight; pH 5 99 82.6 Du et al. (2018)
ZnO nanorod arrays (1.85 μM) UV-A and blue lights 80 - Liu and Gao (2014)
Ag/TiO2 film 28W black-light; pH 6.5 97 - Lima et al. (2019)

Fig. 10  Recycling tests for the photocatalytic capacity of NiCu/Nb2O5
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Toxicity test

The photocatalytic degradation process can generate sub-
products with concerning toxicity, which must be taken 
into consideration to ensure its effective application. In 
order to evaluate the toxicity of the resulting effluent, we 
used two bioindicators, Lactuca sativa and Artemia salina.

Tests with Lactuca sativa were conducted in triplicate 
using negative control, positive control, untreated syn-
thetic effluent samples, and synthetic effluent samples after 
treatment. The results presented in Table 6 indicate that 
100% relative germination was achieved for the treated 
samples, while for the untreated sample, it was 60%. In 
terms of relative root growth, it was 91% for the treated 
sample and 70% for the untreated sample, demonstrating 
that the application of the photocatalytic process using 
NiCu/Nb2O5 as a catalyst was effective in reducing the 
toxicity of the effluent.

The Artemia salina tests treatment. This is because the 
 LC50 parameter (Table 7), which corresponds also confirmed 
that the toxicity of the solution containing the hormone E2 
was reduced after to the median lethal concentration, showed 
a value greater than 200 mg  L−1 and a mortality rate of 3%. 
Thus, it is possible to assert that the final effluent was non-
toxic after the photocatalytic treatment. These results are of 
utmost importance because, as reported in the literature, the 
estrogen E2 has negative effects on aquatic organisms even at 
low concentrations (Ahmad et al. 2009; Orozco-Hernández 
et al. 2019). Therefore, the development of effective tech-
nologies to reduce the danger of this type of compound in 
water is of fundamental importance.

Conclusion

The NiCu/Nb2O5 photocatalyst was synthesized via the 
wet impregnation method and exhibited irregular shapes 
with a surface area of 44.7  m2  g−1. The synthesis effec-
tively incorporated the metals into the niobium surface, 
as confirmed by atomic absorption and FRX techniques, 
without altering the structure of the support. The diffracto-
grams of the  Nb2O5 support and the NiCu/Nb2O5 catalyst 
revealed the same orthorhombic crystal structure of  Nb2O5, 
with the incorporation of dispersed oxides on the surface. 
The catalyst showed a higher rate of E2 degradation than 
the crude  Nb2O5 under the same reaction conditions, with 
a maximum photocatalytic degradation of 82% for 10 mg 
 L−1 E2 at a catalyst loading of 1.5 g. Incorporating Ni and 
Cu into  Nb2O5 led to an improvement in its photocatalytic 
performance and activation at wavelengths in the visible 
region (< 400 nm). The degradation reaction of E2 followed 
a second-order model. Toxicity tests have demonstrated a 
substantial decrease in the negative effects associated with 
E2. The TOC result corroborates these findings, providing 
evidence for the effectiveness of the NiCu/Nb2O5 catalyst in 
achieving this outcome. Finally, the results obtained in this 
study are crucial for future application of this photocatalytic 
system on a large scale, such as in municipal wastewater 
treatment plants.
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Table 6  Toxicity assessment 
against Lactuca sativa 

Samples Germinated 
seed

Mean root length (cm) Relative seed germi-
nation (%)

Relative 
root length 
(%)

Negative control 0 0 0 0
Positive control 10 2.36 ± 0.20 100 100
Initial effluent 7 1.33 ± 0.15 70 56
Treated effluent 9 2.14 ± 0.25 90 91

Table 7  Toxicity assessment against Artemia salina 

Samples LC50 Concentration 
(mg  L−1)

Mortality (%)

Control 1.45 28.18 100
Effluent non-treated 2.15 141.25 57
Effluent treated -  > 200.00 3
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