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Abstract
Soil and water are two important basic ecosystems for the survival of different organisms. The excessive microplastic pollut-
ants in soil have been directly discharged into the terrestrial ecosystems. Microplastic pollutants (MPs) constitute a ubiquitous 
global menace due to their durability, flexibility, and tough nature. MPs posed threat to the sustainability of the ecosystem 
due to their small size and easy transportation via ecological series resulting in the accumulation of MPs in aquatic and 
terrestrial ecosystems. After being emitted into the terrestrial ecosystem, the MPs might be aged by oxidative degeneration 
(photo/thermal), reprecipitation (bioturbation), and hetero-accumulation. The mechanism of adsorption, degradation, and 
breakdown of MPs into unaffected plastic debris is accomplished by using several biological, physical, and chemical strate-
gies. This review presents the importance of ecosystems, occurrence and sources of MPs, its toxicity, and the alteration in 
the ecology of the ecosystems. The inhibitory impact of MPs on the ecosystems also documents to unveil the ecological 
hazards of MPs. Further research is required to study the immobilization and recovery efficiency of MPs on a larger scale.
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Introduction

Microplastics (MPs) are solid, synthetic plastic particles that 
are insoluble in water. They are irregular in form and range in 
size from 1 μm to 5 mm (Frias and Nash 2019). Food and water 
have been shown to contain microplastics in the natural environ-
ment. Additionally, they are found in human faeces (Mintenig 
et al. 2019; Schwabl et al. 2019). Globally, the production of 
plastic was more than 426 MMT (million metric tons) including 
resins (359 MT), and synthetic fibers (67 MT), according to the 
PlasticsEurope and The Fiber Year, respectively. The production 
of plastic is likely to increase in the future to sustain the living 
standards of the world’s population. Though, approx. 85% of 
these plastics products are not reprocessed and flow into the eco-
systems. Small MPs (< 5 mm) have turned out to be an immense 
problem illustrating universal alarm as they adsorb contaminants 
or other organic substances on their surface. MPs could also be 
consumed and amassed in the food chain by biota resulting in 
direct exposure of MPs-contaminated ecosystems to humans and 
threatening worldwide biodiversity.

Terrestrial soil serves as a significant microplastics 
reservoir (Rillig 2020). After being introduced into the 
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soil, microplastics have the potential to remain there and 
accumulate, ultimately having an impact on the devel-
opment, reproduction, and overall biodiversity of soil 
organisms (Chae and An 2018; de Souza Machado et al. 
2018a). The MPs caused a deleterious impact on the ter-
restrial ecosystem at a physical, cellular, and molecular 
level. MPs affected the soil aeration and porosity, alter 
microbial populations, and may result in reduced soil 
fertility, which can affect agricultural seed germination 
and seedling growth. Soil acts as a sink for MPs and 
also enables its transport from one site to groundwater 
systems through numerous methods such as agricultural 
practices, soil erosion, surface runoff, and waterlogging 
further disturbing the groundwater levels and complete 
aquatic system (Nizzetto et al. 2016a; Rillig et al. 2017a; 
He et al. 2018a; Wong et al. 2020; Yao et al. 2020). The 
variation in the MP characteristics in terms of shape, size, 
type, charge, specificity, density, surface chemistry, and 
many other environmental attributes have been notified to 
directly impact their transport as well as the distribution 
within soils (Zhang et al. 2019). Moreover, the horizon-
tal transfer of microplastics within the soil is impacted 
by various soil activities, microbiota, and soil physico-
chemical properties such as soil aggregates and soil pores 
(Rillig et al. 2017b; Chae and An 2018). Wu et al. (2020) 
depicted the behavioral transport of polystyrene micro-
spheres in three categories of soils and observed that MPs 
declined with the presence of higher soil minerals such 
as Fe/Al oxides. This is mainly attributed to electrostatic 
interactions among negatively charged MPs and positively 
charged oxides present in the soil. The hetero-aggregates 
formed with soil mineral particles and organic matter also 
induce the transport of MPs.

In aquatic ecosystems, microplastics are reported to be 
present as suspended sediments in the water column, in 
sediments, or floating on water surfaces, majorly synthetic 
plastics that contaminate the aquatic environment include 
low- and high-density polyethylene (PE), polystyrene (PS), 
polyethylene terephthalate (PET), polypropylene (PP), and 
polyvinyl chloride (PVC) (da Costa et al. 2016). The direct 
ingestion of nanosized and microplastic particles results in 
physical damage to feeding structures, the digestive tract, 
and concerned organs (Harmon et al. 2018).

Ubiquitous and highly resistant nature of microplastics 
(MPs) makes them difficult to eliminate from the environ-
ment. Almost all the water bodies have been polluted by MPs, 
so to regulate the transport of MPs in water some methods 
should be applied for the degradation of MPs and combat 
the pollution. The rate of MPs degradation depends upon 
the type of polymer produced. Polystyrene (EPS) particles 
are quickly degraded into smaller fragments by mechanical 
abrasion but polyethylene (PE) and polypropylene (PP) are 
not completely degraded by this process (Song et al. 2017). In 

biological methods, the potential organisms are introduced to 
degrade and eliminate the MPs in the aquatic ecosystems. In 
a majority of experiments, certain microbial populations are 
implemented to neutralize these MPs (Harrison et al. 2011). 
These microbes are capable to disintegrate the complex MPs 
polymers into monomeric constituents. Aerobic microbe’s 
degradation actions result in water and CO2 while anaerobic 
forms result in water, CO2, H2S, and methane as byproducts 
(Chandra and Singh 2020). The immobilization and degra-
dation of MPs in terrestrial ecosystems was done by using 
biological, coagulation, agglomeration, and nanomaterials. 
Corona et al. (2020) evaluated the potential of mushroom 
coral isolated from Magoodhoo, Maldives, to minimize the 
pollutants associated with bio-fueled plastics and are found to 
eliminate 97% of the particles of nearly 200–1000 μm in size 
in the laboratory environment. Also, scientists are working on 
the isolation and identification of multiple microorganisms 
associated with MPs hydrolyzing enzymes, mostly the depol-
ymerases which are effective in the breakdown of MPs are 
yet to be identified (Wei and Zimmermann 2017). Whereas, 
other methods adopted by Sturm et al. (2020), follow the 
step systematic processes of adsorption, agglomeration, 
and finally filtration was implemented to remove MPs. This 
method undergoes the application of alkyl trichloro silanes 
(linear and branched) which efficiently remove the MPs like 
polypropylene, low and high density- polyethylene, etc. Also, 
the carbon nanotubes with magnetic potentials show 100% 
efficiency in removing certain microplastics under marine 
ecosystems. These tubes effectively adsorb materials like 
PET, polyamide, and PE and these tubes are recyclable.

Microplastic sources, pathways, and their 
fate

Multiple sources are accountable for the discharge of 
microplastics into the environment. Included among 
these sources are individuals, transportation, and indus-
tries. Sources of microplastics are listed in detail in 
Table 1. When released, microplastics enter the ocean 
via direct discharge or river transport systems. After 
release, they accumulate, degrade, and move through 
the environment, eventually entering the human body by 
ingestion, inhalation, and skin contact (Prata et al. 2020). 
Microplastics are introduced into the environment in two 
distinct forms: primary and secondary. The origins of 
these major and secondary forms are listed in Table 2.

Air

After being expelled from the atmosphere, these micro-
plastics settle in sediment or soil, where they may pose 
a threat to human lung health (Chen et al. 2020). Table 1 
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lists the sources of microplastics in the atmosphere. It 
has been observed that the concentration of microplas-
tics in indoor air is greater than that in outside air (Dris 
et al. 2017). It has been noticed that the concentration of 
outdoor microplastics differs in different locations of the 
world (Cai et al. 2017). In outdoor conditions, the fate 
of microplastics relies on wind direction and speed, pre-
cipitation, vertical pollutant concentration gradient, and 
temperature (Prata 2018).

Soil

Soil is an extremely important microplastics reservoir. 
It has been observed that once these microplastics are 
introduced into the soil, they persist and accumulate, 
thereby inhibiting the growth and reproduction of soil-
dwelling microorganisms. Consequently, they impact the 
biodiversity of these microbes (Rillig 2012; Chae and 
An. 2018). These microplastics also act as pollution car-
riers, damaging the soil environment (He et al. 2018b). 
According to research conducted by Wang et al. 2020a, 
microplastics in the soil also originate from fertilizers 
and contaminated irrigation water. Additionally, micro-
plastics have been found in agricultural, suburban, urban, 
coastal, and floodplain soils (Liu et al. 2018).

Freshwater and ocean water

Microplastics that remain in sludge or are not filtered out 
during sewage treatment are discharged into freshwater 
(Horton et al. 2017a). As freshwater provides humans with 
drinking water, humans can directly inhale microplastics 
from freshwater (Novotna et al. 2019). According to find-
ings by Fischer et al. (2016), the transmission of microplas-
tics is dependent on wind, water body size, particle density, 
and current. Additionally, water retention time, urbaniza-
tion, closeness to urban centers, proximity to a dense human 
population, sewage spills, and waste management influence 
the occurrence of microplastics in water systems (Horton 
et al. 2017b). After entering waterbodies, microplastics cre-
ate biofilms through the colonization of algae, bacteria, and 
fungi, which are then consumed by fish, so altering their fate 
in freshwater (Hoellein et al. 2014).

It has been observed that wastewater treatment plants 
directly or indirectly contribute to plastic pollution in the 
ocean (Sun et al. 2019). In the ocean, the fate of micro-
plastics is governed by phytodegradation, biodegradation 
(external influences), and microplastic characteristics (Li 
et al. 2016). Microplastics degrade completely in more than 
50 years. Michels et al. (2018) reported that when microplas-
tics enter the ocean, they create biofilm which, within 7 to 
14 days, is turned into a plastic surface. The altered buoyant 

Table 1   Sources of microplastics in different spheres of the atmosphere

S. no. Sphere Sources References

1. Air Synthetic textiles, urban dust, erosion of synthetic rubber tires, industrial emission, build-
ing material, particle resuspension, plastic fragments from house furniture, traffic parti-
cles, landfills, tumble dryer exhaust, waste incineration, sewage sludge used as fertilizer 
and synthetic particles used in horticulture

Dris et al. 2017; Dris et al. 2016

2. Freshwater Primary microplastics are released from industries in the form of plastic resin powder, 
microbeads present in personal care products, pellet spillage from air blasting machines 
and material from plastic producing products.

Secondary microplastics are released from breakdown of larger plastic debris

Horton et al. 2017b
Fischer et al. 2016

3. Soil Debris in sewage sludge, microplastic fibers, compost fertilizers, fragmentation of plastic 
items, plastic waste in landfills, weathering, breakdown of plastic films on farmland, 
atmospheric deposition, littering, wastewater irrigation and surface runoff

Blaesing and Amelung 2018; 
Rochman 2018

4. Ocean Indirectly from atmospheric transport, beach littering, and rivers.
Directly from shipping, fishing activities and aquaculture
Also released from cosmetics, air-blasting media, pellets, water treatment plants, tourism, 

marine industry and leisure

GESAMP 2016
Chatterjee 2017
Sun et al. 2019
Cole et al. 2011

Table 2   Sources of primary and 
secondary microplastics

Type of microplastics Sources References

Primary microplastics Facial cleansers, cosmetics, vectors for drugs, 
air-blasting media, virgin plastic manufactur-
ing pellets

Auta et al. 2017

Secondary microplastics Breaking of larger particles into smaller frag-
ments by physical, chemical, and biological 
methods

Sundt et al. 2014
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density of polymers causes the transfer of microplastics to 
deeper water and soil.

Uptake of MPs

MPs are being introduced into water bodies and soil on a 
large scale through different sources as mentioned above. 
As these MPs are non-biodegradable, they make entry into 
the living systems in their vicinity through various processes 
such as absorption, adsorption, ingestion, etc. many research 
studies supported the uptake of MPs by aquatic animals 
through their respiratory organs, i.e., gills (Siegfried et al. 
2016). The transfer of food and energy as a result of linked 
food chains in the ecosystem further results in the bio-mag-
nification of these toxic pollutants within the bodies of living 
organisms at higher trophic levels (Gigault et al. 2016). The 
plants have been reported to absorb these tiny MPs through 
their roots from the soil as well as from the microbes with 
which they interact during their vegetative and reproductive 
growth. Also, the adsorption or entry of MPs within any 
living component is inversely linked with the size of the 
former. The larger the size of MPs will be adsorbed with dif-
ficulty in comparison to the small-sized ones (Eriksen et al. 
2013; Corcoran et al. 2015). Hence, with different modes of 
movement through different sources, MPs get accumulated 
within both terrestrial and aquatic biota (Rillig et al. 2017b; 
Rodriguez-Seijo et al. 2018; Wang et al. 2019a).

Inhalation is one of the routes of microplastic exposure 
for humans. Ingestion and cutaneous contact are yet other 
sources of human exposure. The effects of microplastic 
exposure on humans are reported in Table 3 (Prata et al. 
2020). Microplastics have been detected in the human diet, 

including seafood, sea salt, sugar, honey, beer, and drinking 
water (Smith et al. 2018; Kim et al. 2018; Liebezeit and 
Liebezeit 2013, 2014 and Mintenig et al. 2019). The res-
piratory tract is thought to be a major pathway for expo-
sure to microplastics. Reports indicate that humans can 
inhale approximately 272 particles per day from indoor air 
(Vianello et al. 2019). After the respiratory system, skin 
contact is the second mode of exposure and is regarded 
as less significant (Prata et al. 2020). According to Sykes 
et al. (2014), microplastics (size less than 100 nm) can pass 
through human skin. Microplastics penetrate human tissues 
via endocytosis and paracellular absorption. It depends on 
microplastics’ surface functionalization, size, protein corona 
formation, surface charge, and hydrophobicity (Wright and 
Kelly 2017).

Toxicity of MP pollutants

The process of plastic deterioration is extremely sluggish, 
and it might take more than 50 years for the plastic mate-
rial to completely degrade (Müller et al. 2001) which fur-
ther enhanced its toxicity. Direct toxicity of microplastics is 
caused by the ingestion of microplastics by terrestrial and 
aquatic creatures. In various aquatic species, direct ingestion 
of microplastics induces inflammation through the destruc-
tion of their filtering mechanisms (von Moos et al. 2012; 
Anbumani and Kakkar 2018; Wang et al. 2020b), damages 
the feeding apparatus, digestive tract, lower assimilation 
capacity, reduced swimming velocity and resistance time 
(Barboza et al. 2018; Meng et al. 2020), disrupts reproduc-
tion cycle, and enters the food chain (Barboza et al. 2018a). 
In addition to this, microplastics aggregate on the surface 

Table 3   Uptake and effect of 
microplastics on soil microbes, 
plants, and humans

S. no. Category Effects References

1 Soil microbes -Destroy filter mechanism of marine biota and thereby 
cause inflammation.

-Algae feeding is disrupted.
-Fertility is decreased.
-Mortality of copepods is increased.
-Abrasion
-Ulcers
-Liquid stores are reduced

von Moos et al. 2012
Cole et al. 2019
Rillig et al. 2019

2 Plants -Affects growth
-Affects biomass
-Inhibits weight and number of grains

Zhu et al. 2019
Kumar et al. 2020

3 Humans - Generate reactive oxygen species
-Activate antioxidant-related enzymes
-Increase glutathione S-transferase activity
-Activate mitogen-activated protein kinase signalling
-Neurotoxicity
-Reduce digestion of lipids
-Inhibits activity of digestive enzymes
-Impacts cell health and immune system

Alomar et al. 2017
Jeong et al. 2017
Yu et al. 2018
Tan et al. 2020
Browne et al. 2008
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of algal cells interrupting gaseous exchange and photosyn-
thesis. In higher plants, microplastic blocks photosynthetic 
processes, minerals, nutrients, water uptakes and starts vari-
ous other growth-inhibitory processes.

The fact that microplastics cause indirect toxicity could 
not be ignored either as these toxicities are much more 
dangerous and complicated as compared to the direct toxic 
effects. During the production of plastics goods integration 
of chemical additives is very frequent such as such as bis-
phenol A (BPA) and bis (2-ethylhexyl) phthalate, acid scav-
engers, antistatic agents, antioxidants, flame retardants, plas-
ticizers, lubricants, pigments, and thermal stabilizers that 
possibly resulting in combined toxicity. These additives are 
actually added to increase the performance of plastic materi-
als (Hahladakis et al. 2018). Additional research has shown 
that many plastic-related monomers, oligomers, and other 
chemicals (for example, di-n-octyl phthalate, di (2-ethyl-
hexyl) phthalate, polybrominated diphenyl ethers, and tetra-
bromobisphenol A) show adverse effects in humans through 
various exposure routes, such as through food, air, and water 
(Wang et al. 2021). Microplastics have been shown to be 
capable of absorbing heavy metals such as cadmium, zinc, 
nickel, and lead (Brennecke et al. 2016). As a result, micro-
plastics are now thought of as potential vectors for these co-
existing pollutants (Zhao et al. 2020), which raises the haz-
ards associated with them. For example, it has been said that 
combining organic pollutants (like phenanthrene, 4,4'-DDT, 
and PBDEs) with microplastics could make them more bio-
available along food chains, which means they could end 
up in the human body (Zhao et al. 2020; Wang et al. 2021).

Impact of MPs on the terrestrial ecosystem

Terrestrial soil serves as a significant microplastics reservoir 
(Rillig 2020). After being introduced into the soil, micro-
plastics have the potential to remain there and accumulate, 
ultimately having an impact on the development, reproduc-
tion, and overall biodiversity of soil organisms (Chae and An 
2018; de Souza Machado et al. 2018b). In addition, micro-
plastics can serve as vehicles for the transmission of differ-
ent contaminants to soil biota, causing damage to the soil 
ecosystem (He et al. 2018a). According to the findings of a 
study carried out by Liu and colleagues, microplastics can 
live not only in the topsoil but also in the deeper subsurface 
soils (Liu et al. 2018). Microplastics have the potential to 
alter the characteristics of soil as well as its biophysical envi-
ronment, which may influence the microbiological activity 
in soil (Wang et al. 2021). The most common way for soil 
microplastics to get into deep soil and even groundwater 
is through leaching (Rillig et al. 2020). Furthermore, soil 
organisms (such as earthworms) have a significant role in 
determining the accumulation and destiny of microplastics 
in soil, either by ingesting or excreting them (Wang et al. 

2021). Soil organisms may help transfer microplastics across 
strata (from shallow to deep soil, or vice versa). A recent 
study showed that terrestrial plants can take in nano-size 
plastics (55 5 nm and 71 6 nm) depending on their surface 
charge (Sun et al. 2020). Therefore, remains of plastic, both 
large and little, have a deleterious impact on the vegeta-
tive and reproductive stages, interrupt nutrients, minerals, 
water uptake, reduce photosynthesis of the plant, alter soil 
microbial community, and root symbionts. Moreover, it also 
causes cellular and molecular alterations inside the bodies of 
terrestrial organisms (also shown in the Fig. 1).

MP inhibitory effects on higher plants

Microplastics cause direct toxicity mainly by limiting plant 
performance and development by reducing nutrients, miner-
als, water uptake, blocking photosynthesis, damaging cel-
lular organelles, and suppressing various genes involved in 
the growth of plants (detailed experimental reports shown 
in Table 4). Whereas indirect toxicity is caused due to the 
weak bond between the additives and the basic polymers, as 
the additives were easily leached and released, causing toxic 
effects to the organism. Such as microplastic additive lea-
chate from shoe soles hindered the photosynthesisin Vigna 
radiata (Lee et al. 2022). Similar to this lactic acid, the deg-
radation products of polylactic acid (PLA) cause an adverse 
effect on Lolium perenneshoot length (Rozman et al. 2021). 
Polycarbonate (PC) granulate was also reported to inhibit 
Lepidium sativum seed germination by 60% compared to 
the control (Pfugmacher et al. 2021). Another investigatory 
report also shows that polystyrene (PS) microspheres are 
transported from roots to leaves, where PS microspheres 
decompose and produce benzene which causes a disruption 
in chlorophyll and sugar metabolism (Li et al. 2020). Micro-
plastics may indirectly affect plant development by altering 
soil parameters, soil microorganisms and by affecting other 
pollutant bioavailability (Li et al. 2022).

MP impact on soil rhizosphere

MPs have been found to modulate the contents of dis-
solved organic C, N, and P present within the soil thereby 
affecting its physicochemical properties (Dai et al. 2021; 
Liu et al. 2017; Machado et al. 2018b). In addition to 
this, the water holding capacity, microbial activity, and 
bulk density of soil particles are also adversely affected 
by major occurring MPs such as polystyrene and pol-
yethylene (Dai et al. 2021; Machado et al. 2019). An 
increase in the contents of humic and fulvric acid in 
soils was reported as a result of MPs incidence making 
them fertility boosters (Wang et al. 2020c; Wong et al. 
2020; Zhang and Zhang 2020). These dynamics in soil 
porosity and moisture caused by MPs pollution affect 
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the process of gaseous exchange between the soil and 
the microbes flourishing in the rhizospheric zone (Zhou 
et al. 2020; Rillig et al. 2019; Lu et al. 2020; Imran et al. 
2019). Soil microbes which are the foremost component 
of the rhizospheric soil get incorporated with significant 
amounts of MPs, owing to their small size and highly 
adsorbent nature (Horton et  al. 2017a; Huerta et  al. 
2016). In addition to these, the persistence of MPs within 
soil may lead to the aging of MPs making them active 
sites for the adsorption of other pollutants within soil 
especially the heavy metals and organic matter (Nizzetto 
et al. 2016b).

MP influence on terrestrial organisms

The MPs get accumulated in biotic components of an 
ecosystem from the soil via plants thereby affecting the 
organisms at different trophic levels to varying extents 
depending upon the quantity that is being transferred in 
the food web. The very minimal concentration of these 
MPs is excreted by these organisms while most of the 
accumulated MPs gets retained within their body and 

pose serious threats to biological and metabolic pro-
cesses within the organism owing to its indigestible 
nature (Nizzetto et al. 2016c; Futter et al. 2016). Some 
of the harmful effects reported in living organisms due 
to MP uptake are infertility, blockage of the respiratory 
and digestive tract, and increased mortality (Dris et al. 
2016). Another lot of deteriorating symptoms reported 
in plants as a result of MP accumulation includes poor 
seed germination, water uptake, root growth, and gase-
ous exchange limiting the primary metabolic process of 
photosynthesis (Vickers. 2017; Alam et al. 2018; Balestri 
et al. 2019). Similarly, the adsorption of MPs over the 
microbial surfaces leads to biofilm formation altering the 
species composition of microbial communities in the soil 
(Dussud et al. 2018; Wang et al. 2017; Jiang et al. 2018). 
In human beings, the noxious effects of MPs have been 
reported such as poor reproductive health, skin ailments, 
decreased immunity, cancer, etc. (Barboza et al. 2018; 
Peixoto et al. 2019; Schwabl et al. 2019). However, these 
aspects of MP pollution remain controversial sometimes; 
hence detailed studies on their persistence and affection 
need to be carried out.

Fig. 1   Terrestrial and aquatic ecosystems are affected by the release of MPs (microplastics) into the environment
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Table 4   Inhibitory effects of microplastics on higher plants

S. no. Microplastic type Plant part affected Inhibitory effects of microplastics on 
higher plants

References

Morphological levels inhibitory effects of microplastics
1 Polystyrene (PS) Leaves Foliar exposure to PS directly 

reduced lettuce yield output by 
blocking photosynthetic processes

Lian et al. 2021a b

2 Polystyrene (PS) Roots Affect the uptake and transport of 
nutrients, water, and mineral ele-
ments (e.g., K and Fe) by roots, or 
influence the distribution and reuse 
of mineral elements in plants

Jiang et al. 2019; Urbina et al. 2020; 
Wu et al. 2021; Xu et al. 2021; Li 
et al. 2020

3 Massive microplastics Roots Collect on plant roots. As a result, 
microplastics, particularly those 
with rough surfaces and sharp 
edges, may mechanically injure 
plant roots, limiting root activity 
and impeding root development

Gao et al. 2021; Rozman et al. 2021

4 Polystyrene (PS) and polytetrafuoro-
ethylene (PTFE) microplastics

Roots Induce mechanical damage to rice 
roots that results in the production 
of reactive oxygen species (ROS)

Dong et al. 2020

5 Remains of plastic, both large and 
little

Wheat plants deleterious impact on the vegetative, 
reproductive stages of the wheat 
plant

Qi et al. 2018

6 Polystyrene (PS) Seed Able to build up inside the pores of 
seed capsules thus intake of water 
by the pores will be inhibited, 
which will in turn affect the germi-
nation rate of plant seeds

Bosker et al. 2019

Cytotoxic inhibitory effects of microplastics
7 Polystyrene (PS) particle sizes 

smaller than 3.0 μm
Leaf cells Microplastic particles gather in leaf 

vessels and can block cell junctions 
or cell wall pores

Sun et al. 2021

8 Polystyrene (PS) Plant cells Impact on protein synthesis-related 
gene expression thus significant 
decrease in the amount of soluble 
protein in the Utricularia vulgaris

Yu et al. 2020

Molecular level inhibitory effects of microplastics
9 Polystyrene (PS) Arabidopsis 

thaliana whole 
plantlet

Decreased Arabidopsis thaliana's 
resistance to disease by turning 
down the expression of disease-
resistance genes

Sun et al. 2020

10 Polystyrene (PS) Root PS had a negative effect on the 
expression of genes involved in the 
activation of antioxidant enzyme 
activity thus, decreased the antioxi-
dant enzyme activity in rice roots

Zhang et al. 2021

11 Polystyrene (PS) Grain Suppressed the expression of genes 
encoding proteins involved in the 
tricarboxylic acid cycle in the rice 
grains

Wu et al. 2022a

12 Polystyrene (PS) Rice plant Prevent the creation of lignin and 
jasmonic acid through altering the 
gene expressions of Oryza sativa

Zhou et al. 2021a
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Impact of MPs on the aquatic ecosystems

The literature serves as a source of many recent reports that 
highlight the devastating effect of these MPs on the biota 
of aquatic ecosystems. Ingestion of polyamide fibers by 
amphipod Gammarus fossarum suffered reduced assimila-
tion efficiency (Blarer and Burkhardt-Holm 2016). Inter-
estingly, altered fish behavior on revelation to polystyrene 
nanoparticles was documented by Mattsson et al. (2015). 
His observations included alterations in brain morphology, 
reduced feeding rates, and disruption in cellular processes. 
Apart from the direct impacts of MPs, the metals that adhere 
to their surfaces also increase the toxicity levels (Turner and 
Holmes 2015; Wang et al. 2017). An experimental setup was 
used by Brennecke et al. (2016) to demonstrate and study 
the release of heavy metals such as Cu and Zn from the anti-
fouling paint that got adsorbed to virgin polystyrene beads 
and polyvinyl chloride fragments in water. Further, we have 
discussed the effect of MPs in alerting microbial populations 
and triggering altered gene expressions. Figure 2 represents 
the diagrammatically injurious effects of MPs on the sustain-
ability of aquatic flora and fauna.

Alters microbial population

Aquatic microbial populations (phytoplankton, zooplankton, 
algae) are of prime importance for aquatic ecosystems not 
only due to their autotrophic capabilities, oxygen releasing 
nature but also because they are primary producers sup-
porting the entire food chain. The theory was proposed 
and experimentally tested by Bhattacharya et al. (2010). 
His team exposed Chlorella and Scenedesmus to positively 

charged plastic nanoparticles, they observed a decline in 
photosynthetic activity after these particles adhered to the 
cell surfaces. Zhang et al. (2017) also tested the above-pro-
posed theory by exposing Skeletonema costatum to polyvinyl 
chloride microspheres and reported the deleterious effect 
of MPs on photosynthetic efficiency, chlorophyll content, 
and growth. Many laboratory toxicities studies were con-
ducted to assess the effects of microplastics on algal strains. 
After the application of Polyethyleneimine PS nanoparticles 
(0.1–1.0 mg/L for 72 h) on Pseudokirchneriella subcapitata, 
its growth got constrained (Casado et al. 2013).

Stimulates the gene exchange

Microplastic biofilms are referred to as hot spots of horizon-
tal gene transfer (HGT). These sites have high cell densi-
ties resulting in increased interaction levels among the cells 
(Aminov 2011; Sezonov et al. 2007). The studies conducted 
by Arias-Andres et al. (2018) describe the impact of micro-
plastics on the ecology of aquatic ecosystems, bacterial evo-
lution, and growing hazards to environmental and human 
health. They observed that the bacterial population associ-
ated with microplastics has a greater frequency of plasmid 
transfer in comparison to free-living bacterial strains. In 
addition, they reported that enhanced gene exchange occurs 
in phylogenetically diverse bacterial communities that 
were grown on polycarbonate filters. Furthermore, it was 
observed by Grossart et al. (2003) that under conditions of 
high dissolved organic carbon, plasmid transfer frequencies 
increase. Hence, microplastics have an impact on the evolu-
tion of aquatic bacteria finally leading to neglected hazards 
for human health (Fig. 3).

Fig. 2   Microplastic toxicity on terrestrial ecosystem
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Mechanism of environmental degradation 
of MPs

The degradation of MPs can be divided into four basic 
processes mechanical, chemical, and biological. Firstly, 
macroplastic/synthetic polymer chains are converted into 
shorter molecular units, i.e., oligomers, dimers, monomers 
MPs, and then finally degraded into inorganic components 
(Eubeler et al. 2009).

Mechanical methods

MPs are degraded mechanically by abrasion in which solid 
particles come in contact with various natural (sediments, 
debris) and manmade (transportation vehicles, barriers) 
substances in the terrestrial and aqueous environment 
(Klein et al. 2018). Small rounded grains with surface 
textures of grooves and conchoidal cracks produced by 
abrasion are similar to quartz grains of natural sediments 
(Corcoran 2022). It was also reported that polymer deg-
radation was increased by mechanical pressure as a bot-
tle with sand containing plastic pieces was continuously 
rotating for 24 h and the weight of plastic was decreased 
to 14% indicatingthe abrasion process degrade the polymer 
(Kalogerakis et al. 2017). Due to wind, wave action, and 
tidal currents beaches are considered a favorable place for 
MPs degradation. It was studied that PE microbeads used 
in facials were found in wastewater and then subjected to 
shear stress through stirring, pumping, etc. These shear 
stress forces converted PE microplastic into nanoplastic 
particles (Enfrin et al. 2020).

Chemical degradation

The chemical breakdown of MPs depends on the type of 
polymer, medium used, chemical composition, and deposi-
tion of a particular type of sediment (Gewert et al. 2015; 
Brandon et al. 2016; Song et al. 2017). MPs absorb a greater 
amount of UV radiation on beaches as compared to parti-
cles hidden under benthic sediments. Chains with smaller 
molecular units are generated when MPs are photodegraded 
through exposure to UV radiation and oxygen. But the C-C 
bonds of PE, PP, and polyvinyl chloride (PVC) do not break 
completely through photooxidation and require some addi-
tives for degradation in comparison to polymer polyethylene 
terephthalate (PET) (Chamas et al. 2020). After the photo-
degradation of C-H bonds in PE and PP, the free radicals 
react with oxygen which leads to the formation of inert prod-
ucts with a low molecular weight of these polymers (Gewert 
et al. 2015). The generated polymers are then disposed off 
or mechanical abrasion/biological degradation. The chlo-
rination process is also used to degrade MPs by which old 
bonds are broken and new ones introduce between chlorine 
and hydrogen. Big-sized particles of MPs are formed by 
adding salts of Fe and Al or other coagulants through the 
processes of agglomeration or flocculation for degradation. 
One of the advanced oxidation processes for the degrada-
tion of contaminated particles is photocatalysis as this green 
technology uses immeasurable solar energy for the oxidation 
of microplastics. This process is based on the photocatalytic 
properties of certain materials such as TiO2 which have been 
used to transform solar energy into chemical energy to oxi-
dize/reduce pollutants in hydrogen or hydrocarbons. Upon 
the absorption of UV light, high energy electrons from the 

Fig. 3   Deleterious effects of MPs on the aquatic ecosystems
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valence band are transferred to the conduction band on the 
TiO2 surface, and then holes are produced in the valence 
band, therefore both the holes and electrons react with OH., 
O2, or H2O to generate reactive oxygen species (ROS). These 
ROS then involved in the process of microplastic degrada-
tion (Nakata and Fujishima 2012).

Biological degradation

In biodegradation, a complex community of microorganisms 
which have the ability to adapt to various environmental 
fluctuations forma biofilm on the surface of organic pollut-
ants including MPs, and change their properties (Muthuku-
mar et al. 2011). After the formation of biofilm, the polymer 
structure is disturbed and bonds are weakened. The weak-
ened bonds are then attacked by extracellular enzymatic 
secretions of microorganisms. At last, the assimilated MPs 
monomers are completely mineralized by cellular enzymes 
into smaller components like CO2, H2O, N2, and biomass 
which are then available as energy sources for microorgan-
isms and then recycle to the atmosphere (Du et al. 2021). 
The extent of biodegradation depends on the surround-
ing ecosystems (terrestrial or aquatic), the structure of the 
polymer (degree of polymerization, branching, chemical 
bonds, crystallinity, and hydrophobicity), and environmen-
tal factors (pH, temperature, moisture) (Klein et al. 2018). 
Microorganisms such as bacteria (Azotobacter sp. and Pseu-
domonas sp.), fungi (Aspergillus sp., Penicillium sp.), and 
actinomycetes (e.g., Amycolatopsis sp., Actinomadura sp.) 
can degrade both synthetic and natural plastics (Bose 2020). 
It has been reported that bacterial strains (Bacillus sp. 27 
and Rhodococcus sp. 36) obtained from mangrove sediment 
degrade the polypropylene MPs efficiently as the weight of 
the polymer was reduced to 7% by Bacillus sp. 27 and 5% by 
Rhodococcus sp. 36, respectively (Auta et al. 2018). Figure 4 
summarizes these three processes of MP degradation.

Immobilization of MPs from terrestrial ecosystem

Polymers like polyethylene (PE), polyvinyl chloride (PVC), 
and polyethylene terephthalate (PET) are the major plastic 
particles found in the terrestrial ecosystem. Irradiated or 
cracked polymers have been degraded under the influence of 
various microorganisms (Miri et al. 2022). It was observed 
that earthworms can increase the degradation of MPs as in 
the gut of earthworms, low molecular polyethylene particle 
size was reduced within four weeks (Lwanga et al. 2018). It 
was also stated that using polymers as carbon sources micro-
algae degrade MPs through the synthesis of some toxins or 
enzymes and biodegradable plastic can be made using pro-
tein and carbohydrate-based polymers by microalgae. The 
growth of algal cells is faster than in higher plants which 
can be enhanced through genetic engineering, so algal-based 
plastics can replace synthetic plastics (Chia et al. 2020).

Immobilization of MPs from aquatic ecosystem

To restrict and eliminate these MPs, advanced approaches 
should be implemented in combating these pollutants 
(Fig. 5). Synthetic textile industries are found to generate 
microfibers of microplastics which are drawn into the sur-
face of waste and act as a pollutant around the globe (Mishra 
and Ahmaruzzaman 2022).

Immobilization of microplastics using biological 
methods

Mangrove-derived Bacillus species such as Bacillus got-
theilli and Bacillus cereus are typically used in minimiz-
ing microplastic polymers like PS, PE, and PP (Auta et al. 
2017). However, some other algae and fungal populations 
are also helpful in minimizing the MPs from the aquatic 
ecosystems. Paco et al. (2017) found that the application 
of Zalerion maritimum, a fungus, has a higher potential to 

Fig. 4   Environmental degrada-
tion processes of microplastics 
(MPs). Abbreviations: PE, 
polyethylene; PP, polypropyl-
ene; PS, polystyrene; PET, 
polyethylene terephthalate; 
PVC, polyvinyl chloride; NPs, 
nanoplastics
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degrade or convert these MPs or polyethylene chemically 
and morphologically. Also, researchers have identified some 
other MPs sinks for aquatic ecosystems, one among such are 
organisms like Tridacna maxima generally known as the Red 
Sea giant clam, some corals, and crustaceans like Euphausia 
superba (Arossa et al. 2019; Corona et al. 2020).

On the other hand, microalgae are gaining much impor-
tance as a biological tool in removing the MPs. Peller et al. 
(2021) found that the macrophytic algae Cladophora is 
efficient in the elimination of microplastics due to their 
high sorption potential as they have a high surface area and 
shows effective associations among algae and microplas-
tics. Whereas on the other hand Wu et al. (2022b) identified 
a green-algae namely Chlorella vulgaris which shows its 
potential in the normalization of the toxic PS-microplastics 
which are however capable of endocrine disruption like Lev-
ofloxacin an antibiotic present in wastewater from aquacul-
ture. Also, the microalgae, Diatoms namely Phaeodactylum 
tricornutum have been employed to remove multiple micro-
plastics ranging from PVC, PE, PET, and PP, etc. (Song 
et al. 2020). However, an edible marine sea-weed, Fucus 
vesiculosus shows effective adsorption of microplastics 
mainly PS-microplastics on their surfaces. Thus, the algae 
show an efficiency of up to 94.6% for the PS microplastics 
as they contain gelatinous compounds like alginates a kind 
of polysaccharide that helps in PS adsorption (Sundbaek 
et al. 2018).

Immobilization of microplastics using 
nanomaterials

Nanomaterials are another breakthrough in the research 
field and are kept in use over conventional methods, such as 
microalgae and sponges. Mishra and Ahmaruzzaman (2022) 

have employed certain iron nanoparticles with hydrophobic, 
cost-effective, and large surface areas. These nanomateri-
als are having the ability to interact with microplastics and 
mediate their removal through ferromagnetic properties with 
a high potential to act against polymeric microplastics such 
as PP, PVC, PE, PS, PU, and PET. They have an efficiency 
of 93% in seawater whereas show 84% of its efficiency to 
remove PP, PVC, PS, PU, PE, etc. Another nano-catalyst 
cesium oxide (CeO2) shows excellent adsorption of micro-
plastics which mainly depends on the large surface area, its 
oxidation state as well the sorption capacity of the micro-
plastics (Ho et al. 2021). Zinc oxide nanorods are applicable 
in removing low-density PE microplastics (Tofa et al. 2019). 
Au-doped Ni-TiO2-based micromotors are developed and 
are well used to eliminate microplastics by using certain UV 
light irradiations for wastewater treatments. But due to low 
selectivity, this particular technique is not of much use for 
wastewater treatments (Wang et al. 2019b). However, Yuan 
et al. (2020) have developed graphene oxide-based adsor-
bents having three-dimensional structures that are much 
more effective against PS microplastics. The π-π bonding 
between the C- atoms in reduced graphene oxide and the 
benzene in PS are important to mediate the effective adsorp-
tions of the pollutants. Also, researchers have developed cer-
tain nanomaterials like magnetic-nano- Fe3O4 to eliminate 
marine contaminating magnetized MPs (Shi et al. 2022).

Immobilization of microplastics using coagulation 
and agglomeration

These effective methods are employed to deal with the 
enlarged MPs in aquatic ecosystems. The contaminants 
are captured by the Fe and Al salt-based catalysts through 
ligand-based interactions. Arzia-Tarazona et al. (2019) 

Fig. 5   The general mechanism adopted for the immobilization of microplastics (MPs) from the aquatic ecosystem
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demonstrated the elimination of certain PE microplastics 
by employing the Fe and Al-based salt catalysts through 
ultrafiltration and coagulation mechanisms. In different 
studies, the Al3+ ions were found to be more effective 
with respect to Fe3+ ions to eliminate the MPs. However, 
an alteration in the pH of the solution did not change the 
activities of the Al coagulation with a size of 0.5 mm MP 
particles, whereas an increase in pH impacts and limits the 
elimination of MPs below 0.5 mm in diameter. However, 
Zhou et al. (2021b) have developed a method that utilizes 
ferric chloride and polyaluminum chloride as coagulants 
to treat the MPs from the wastewater. These +vely charged 
coagulants are made to interact with the -vely charged 
microplastics and other pollutants which finally get set-
tled at the surfaces via gravity. Furthermore, the sedi-
ments were collected and the supernatants were allowed 
to undergo mechanisms like filtration and drying. Finally, 
the characterizations of the MPs’ flocs were done. On the 
other hand, Akarsu et al. (2021) implemented electroco-
agulation techniques to eliminate the PE -microplastics 
from the reactors containing sludge which are mainly used 
in wastewater treatments and are thought to be more cost 
and energy efficient. The researchers emphasized the factor 
stabilization of suspended microplastics through effective 
van der Waals forces in action under electrocoagulation 
techniques (Akbal and Camci 2011). This technique is 
found to be 90% efficient to trap microplastics suspended 
on surfaces.

Conclusion

MPs are found to have high persistence and a very slow bio-
degradable nature. They pose direct physical and nutritional 
complications post ingestion, also the presence of plasticiz-
ers associated with these MPs often aggravates the toxicity. 
Also, if these plastic pieces get smaller, i.e., nanosized, they 
have more surface area, which means they can absorb more 
chemicals and change chemically on the outside, which 
could make them more dangerous and gain scientific atten-
tion. However, the recent studies accompanying MP trans-
port through bioturbation in regard to various soil fauna 
may not reflect real-world conditions due to the fact that 
experimentation is being conducted using model organisms 
in laboratory conditions. Therefore, the transport pathway 
of MPs in diverse organisms and their impact on the entire 
soil ecosystem is considered in the near future research. 
There is an urgent need of investigating the behavior and 
mechanism of microplastic degradation in terrestrial and 
aquatic ecosystems because it will not be feasible to evalu-
ate the risk of MPs to human health and the environment.

Future perspectives

The microplastic pollution in the environment and its long-
standing effects are less implicit. The reported documentation 
of MPs in the aquatic ecosystem should address the abundance 
of polymers like PE, PET, PE, PP, and PS. It is important to 
examine their fate in the environment. There is a knowledge 
gap in understanding the exact nature and long-term effects of 
MPs on both ecosystems. Competent and reliable ecosystem 
models should be developed to evaluate the fate of free-floating 
and plummeting MP waste in aquatic systems. The mecha-
nism of migration and degradation of MPs into other products 
is still unclear for which the generalized approach should be 
developed. There is doubt about the volume, configuration, and 
diversity of MPs penetrating the environment because there is 
no quantified data about the release rate of MPs either acci-
dentally or purposely. However, MP litter and its accidental 
discharge is considered as one of the utmost uncertainties for 
discharge predictions. This review documented to understand 
the subtleties and effects of MPs as a pollutant, especially in a 
terrestrial and aquatic ecosystems context. There is a need of 
extensive study to determine how MPs in wastewater leached 
out in the cropland and hence enter the food chain of the 
ecosystem. MP effects on the formation of biofilms and the 
expansion of infective microbes mainly with potable sources 
of water need to be discovered. Field research on the environ-
mental effects of MPs presently remains at the level of species 
which demands research at the level of ecosystem also. More 
investigations are needed to study the direct MP impressions 
on the ecosystems’ food chain flow and distribution. It is nec-
essary to follow and relate existing crumbled data to advance 
the knowledge gap about impacts of MPs on various processes 
like sequestration of carbon, nutrient cycling, etc. This study 
reviewed some research extents associated with MP impacts 
and degradation that further needs an urgent advancement to 
understand the possible environmental risks and offers some 
references to recover and control the MP management system 
into the environment.
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