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Abstract
The “double carbon” goal has proposed new “green” requirements for China's low-carbon economic development, and green 
technology innovation (GTI) has become an important way to coordinate economic and sustainable development. The study 
explores the spatial-temporal evolution of carbon emission intensity (CEI) of Chinese prefecture-level cities, analyses the 
nonlinear impact of GTI on the CEI by constructing a panel quantile model, and draws the following conclusions. First, CEI 
shows a decreasing trend from 2006 to 2019 and a spatial distribution pattern of “high in the north and low in the south, 
high in the west and low in the east”. Second, GTI significantly reduces CEI, and as the quantile point increases, the carbon 
reduction effect of GTI is characterized by a U-shaped change, decreasing first and then increasing. Overall, GTI has a sig-
nificantly more profound inhibiting effect on high CEI regions than on low CEI regions. Third, there is spatial heterogeneity 
in the impact of GTI on CEI across the four major regions and diverse policy contexts. The study proposes countermeasures 
for low-carbon development in terms of tapping the potential of GTI, strengthening its regional synergy, and applying locally 
appropriate measures, to gain the great practical significance for achieving the double carbon target.

Keywords Green technology innovation · Carbon emission intensity · Panel quantile model · Kernel density · The Gini 
coefficient · The Thiel index · The STIRPAT model

Introduction

As the world's second-largest economy, China is facing 
serious environmental problems while transforming and 
upgrading its economic structure. According to the Interna-
tional Energy Agency (IEA) statistics, China is the world's 
largest emitter of carbon dioxide, with 10081.34 Mt emit-
ted in 2020. The Carbon Accounting Database (CEADs) 
divides China's carbon emissions into two stages, rapid 
growth and slow growth, using 2013 as the cut-off point, 
with the growth rate declining significantly after 2013. In 
the face of the increasingly challenging environmental state, 
the Chinese government has proposed carbon peaking and 
carbon neutrality goals in an initiative to contribute to the 
world's carbon reduction efforts. Considering the Bulletin 

of the State of Eco-Environment in China 2021, 121 out 
of 339 cities at the prefecture level and above would have 
exceeded the ambient air quality standard, a decrease of 3.5 
percentage points compared to 2020, leading to an urgency 
to resolve the problem of urban carbon emission reduction. 
Due to the inertia of economic development and the tra-
ditional energy consumption structure, China is character-
ized by the “high energy consumption, high emissions and 
high pollution” approach to economic development (Zhang 
and Liu 2022) and the traditional coal-based fossil energy 
consumption structure (Xu and Lin 2019). China's carbon 
emissions have been among the highest in the world (Wang 
et al. 2016a), making the task of carbon emission reduction 
a daunting effort.

Green technology innovation (GTI) is an important way 
to alleviate environmental pressure (Zhu et al. 2020) and 
is an inevitable choice for China's economy to achieve 
high-quality development in the new era. The Action Plan 
for Achieving Carbon Peaks by 2030 explicitly proposes 
to promote green and low-carbon technological innova-
tion and to advance carbon peaks in an orderly manner. 
The achievement of the double carbon target relies on the 
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two main routes of “carbon reduction” and “carbon sink”. 
“Carbon reduction” is particularly important given that 
“carbon sink” has relatively fixed resources and a time 
lag. GTI is an important pathway for carbon reduction. 
This pathway combines new energy development, recy-
cling technology, carbon capture, utilization and storage 
(CCUS), etc., to promote low-carbon industrial devel-
opment and the harmonious coexistence of humans and 
nature. The number of green patent applications in China 
increased from 19793 in 2006 to 425652 in 2019, with an 
average annual growth rate of 26.6%. GTI has gradually 
become a core driving force in promoting high-quality 
economic and social development. During the transition 
period of the industrial structure and energy consumption 
structure, GTI has become the key to achieving economic 
growth and sustainable development with the premise of 
ensuring national economic output and economic effi-
ciency (Li and Lin 2017; Wang et al. 2016b).

Influenced by economic development status, GTI has a 
greater influence on carbon productivity in high-income 
economies (Du and Li 2019), highlighting the vital role 
of economic development in GTI for carbon reduction. 
In addition, research continues to demonstrate that envi-
ronmental regulation, carbon, and trading green finance 
are also crucial drivers of GTI to reduce  CO2 emissions 
(Chang et al. 2023; Huang et al. 2023; Zhang et al. 2022). 
Integrating GTI resources, bringing into play the spillo-
ver effects, and empowering cities to develop green, have 
become an important path to promote the achievement of 
the dual carbon goal.

While national strategic plans like the Action Plan 
to Reach Carbon Peaks by 2030 continue to clarify the 
importance of technological innovation in China's car-
bon emission reduction, is the carbon emission reduction 
effect of GTI consistent across different economic and 
social conditions and within different scales of geographi-
cal units? What is the relationship between GTI and CEI 
under spatial heterogeneity? What is the impact of GTI 
on CEI? Can it really contribute to the dual carbon initia-
tives? The investigation of the effects of GTI on CEI at the 
prefecture-level city scale provides theoretical support for 
technology-led carbon peaking and carbon neutral actions 
and is of great practical significance for carbon reduction 
actions.

This paper is structured as follows. Section 2 outlines 
the literature review. Section 3 presents the mechanism 
analysis. Section  4 describes the research methodol-
ogy and data sources. Section 5 and Section 6 report the 
study's results, including the time-spatial evolution analy-
sis, panel quantile model results and heterogeneity results 
across four regions and various institutional conditions. 
Section 7 introduces the conclusion and implications.

Literature review

Carbon emission intensity (CEI) is one of the representa-
tive indicators for measuring regional carbon emissions 
(Zhao et al. 2012; Wang and Zheng 2021), and it is better 
indicator at revealing the ability to carry out sustainable 
economic and environmental development (Amri 2018). 
Current intensely researched areas on CEI focus on the 
following three aspects. First, various regional scales and 
types of CEI studies should be conducted (Bi and Zeng 
2019; Zeng et al. 2022). Focusing on regional research 
scales such as provincial (Wang and Zheng 2021), urban 
agglomerations (Yu et  al. 2022a) and specific regions 
(Wang and Zhu 2016) involves research areas such as agri-
cultural carbon emissions (Pang et al. 2020; Zhong et al. 
2022), industrial carbon emissions (Yu et al. 2018), and 
transportation carbon emissions (Chang and Lai 2013). 
Second, research is conducted on the spatial differences 
and spatial-temporal evolution of CEI. The spatial varia-
tion and spatial correlation of CEI are measured using the 
Thiel index, coefficient of variation, and Moran’s I (Wang 
et al. 2020; Wu et al. 2021), the Markov transfer matrix 
(Wen and Huang 2019; Wang and Zhu 2016) and the ker-
nel density estimation method (Ke et al. 2022) are used to 
reveal the spatial and temporal evolution characteristics 
of CEI. Third, scholars analyse and study the factors that 
influence CEI. The STIRPAT model, IPAT model, LMDI 
model, and the spatial econometric model are mainly 
used to study the influence of economic growth (Zhang 
et al. 2014; Sun et al. 2021), industrial structure (Lin and 
Zhu 2017), foreign investment (Cai et al. 2021; Wang and 
Wang 2021), and population density (Song et al. 2020; Yu 
et al. 2022; Wen and Huang 2019; Pan et al. 2022) on CEI 
(Wu et al. 2021; Wang et al. 2015).

In contrast to traditional technological innovation, GTI 
emphasizes the reduction in undesired outputs like carbon 
emissions and environmental pollution in the economic 
production process. Based on this, most scholars con-
sider technological innovations in improving energy use 
efficiency, reducing pollutant emissions, and developing 
new energy sources as GTI (Yu et al. 2022c). In recent 
years, scholars have conducted various studies on GTI. 
One study involving a discussion of the factors influencing 
GTI, with the relationship between environmental regula-
tion and GTI being further researched (Zhang et al. 2020). 
In addition, the influence of aspects such as green finance 
(Ren et al. 2020), the digital economy (Dong et al. 2022b), 
and economic development (Wang et al. 2021) on GTI has 
been deeply explored. Second, research on the efficiency 
of GTI is carried out mainly from the perspective of the 
green technology innovation efficiency evaluation and the 
relevant influencing factors. For example, Dong et al. used 
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the superefficiency SBM-DEA model to evaluate the effi-
ciency of GTI in the Central Plains urban agglomeration 
and used the spatial Durbin model to measure the impact 
of economic development on GTI (Dong et al. 2022c). 
Third, there is research on the effect of GTI. Most scholars 
discuss the important role of GTI in accelerating low-car-
bon transition (Xu et al. 2022a), promoting new urbaniza-
tion construction (Xu et al. 2022b), promoting pollution 
and carbon reduction (Xia 2022), and suppressing the 
ecological footprint (You et al. 2022) around economic 
effects, social effects, and ecological effects.

As the resource and environmental effects of GTI con-
tinue to be highlighted, the relationship between it and CEI 
has become a research topic of high interest. GTI broadly 
impacts CEI through the rebound effect, environmental spill-
over effect, lock-in effect, and compliance cost effect (Sun 
2022). Based on this, the current relationship between GTI 
and CEI is mainly manifested in the following aspects. First, 
GTI achieves the goal of carbon emission reduction through 
measures such as improving energy use efficiency and devel-
oping alternative energy sources. For example, Zhou et al. 
argued that the drive for technological progress is an impor-
tant means to reduce carbon emissions (Zhou et al. 2018; 
Dong et al. 2022a). Jiao et al. used the STIRPAT model 
to find that GTI has a significant inhibitory effect on CEI 
(Jiao et al. 2020). Yu et al. used the mediating effect model 
to find that GTI and carbon emission trading pilot policies 
in 281 prefecture-level cities in China jointly reduced CEI 
(Yu and Luo 2022). Ding et al. used a spatial econometric 
model to analyse the inhibitory effects of economic devel-
opment, technological innovation, and foreign investment 
on CEI in the Yangtze River Basin provinces (Ding et al. 
2019). Behera further demonstrated that in 18 emerging 
countries, GTI did not show a monotonic reduction in carbon 
emissions in the short and long term but rather a U-shaped 
relationship (Behera et al. 2023). Second, GTI stimulates 
further improvements in labour productivity while improv-
ing energy use efficiency and saving production costs for 
enterprises, expanding the economic scale of these enter-
prises, increasing energy demand and increasing carbon 
emissions. Hao et al. used dynamic threshold panel regres-
sion to find that the interaction of international technology 
spillover and intellectual property protection significantly 
increased carbon emissions in eastern and central China 
(Hao et al. 2021). Zheng et al. used the DEA-Malmquist 
method to suggest that technological progress increases CEI 
(Zheng et al. 2022). Third, the relationship between GTI and 
carbon emissions is uncertain due to the rebound effect. This 
is evidenced by the study of Chen et al. who found a nonlin-
ear inverted U-shaped relationship between GTI and carbon 
emissions in China's provincial areas, with GTI reaching a 
certain level before it suppresses carbon emissions (Chen 

et al. 2023), Liang et al. found a U-shaped relationship 
between GTI and carbon emissions in the logistics industry 
(Liang et al. 2022).

Generally, current studies have ignored the regional spa-
tial variability of the carbon emission reduction effect of GTI 
and instead concentrated on the overall study of GTI at the 
macro scale. The following are some of this paper's signifi-
cant contributions. Firstly, China has a sizable geographical 
area, and because location factors have a substantial impact 
on regional disparities, GTI and CEI levels are spatially 
non-homogeneous. From the standpoint of geographical 
non-homogeneity, the study ingeniously investigates the 
carbon emission reduction effect of GTI at the prefecture-
level city size. Secondly, as there is no uniform conclusion 
on the connection between GTI and CEI, the study expands 
on its investigation of the nonlinear relationship between 
GTI and CEI in the four major regions of eastern, central, 
western, and northeastern China. It also examines whether 
GTI exhibits monotonic reduction in cities with various CEI 
in the four major regions. It considers whether the empirical 
findings from emerging economies are equally applicable in 
China? Thirdly, considering China's unique institutions, the 
panel quantile model is further combined with institutional 
factors like marketization level and environmental regula-
tions to deepen the regional variability of the carbon emis-
sion reduction effect of institutional factors. Exploring the 
carbon reduction effect of GTI under the condition of spatial 
heterogeneity is vital for precise carbon reduction and pro-
moting the laddering of carbon peaking in various regions.

Based on the above background, this study explores the 
spatial and temporal evolution characteristics of CEI by 
using kernel density estimation, the Gini coefficient and 
the Thiel index in 264 prefecture-level cities and studies the 
spatial heterogeneity of GTI on CEI in different regions by 
using a panel quantile model. Furthermore, the study pro-
vides targeted policy suggestions in terms of tapping the 
potential of GTI, strengthening the synergy of regional GTI, 
and tailoring policies to local conditions, with a view to 
providing lessons for achieving regional synergy in emission 
reduction and dual carbon targets.

Mechanism analysis

The complex mechanism of the influence of GTI on CEI is 
shown in Figure 1 and can be summarized into two reali-
zation paths, energy structure and industrial structure, two 
mechanisms of action, spillover effect and rebound effect, 
and two forms of influence, direct and indirect. From the 
perspective of the realization path, the vigorous implemen-
tation of national new energy policies and green financial 
policies, on the one hand, provides policy support and 
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financial guarantees for low carbon development, boosts 
the development and utilization of alternative clean energy 
and renewable energy such as nuclear power, hydropower, 
wind power, geothermal energy and tidal energy, reduces the 
consumption of traditional fossil energy such as coal and oil, 
optimizes the energy allocation structure and reduces carbon 
emissions. On the other hand, it promotes the development 
of low-carbon technologies such as carbon capture and stor-
age technology, new materials and circular economy, elimi-
nates backwards production capacity in key industries and 
key areas, helps advance, rationalize and clean the industrial 
structure, and helps achieve carbon emission reduction. In 
terms of the mechanism of action, under the influence of 
government environmental regulation and market-based 
instruments such as the carbon emission trading market, the 
Porter hypothesis has to some extent stimulated the improve-
ment of GTI capacity in high-carbon emission industries, 
realized interindustry, interregional and international shar-
ing of talents, resources and information through technology 
spillover effects, relied on big data, the digital economy and 
green finance, and promoted industries to achieve digital, 
green and clean production. This will change the low-end 
locking status of industries, promote the reasonable con-
centration and flow of capital, technology, population and 
other factors, and promote the advanced industrial structure 
while improving energy utilization efficiency and achieving 
carbon emission reduction. As GTI further develops, the 
production costs of enterprises keeps decreasing, the price of 
products keeps falling, the market demand further expands, 
and enterprises expand the scale of production and consume 
more energy in pursuit of profits, at which time the rebound 
effect of GTI becomes prominent (Cheng et al. 2023), the 
energy demand brought by GTI becomes greater than the 

energy savings, and the CEI starts rising. In terms of influ-
ence forms, GTI can directly or indirectly affect carbon 
emissions through industrial structure upgrading, industrial 
transfer, energy use, international exchange and cooperation, 
urbanization and agglomeration, and environmental regula-
tion, causing changes in CEI.

Methods and data

Methods

Gini coefficient and Thiel index

The Gini coefficient is usually used to portray the regional 
development disparity of geographical items, and it takes 
values in the range of [0,1]. The larger the Gini coefficient 
is, the greater the degree of regional differences in CEI, the 
smaller the Gini coefficient is, the smaller the degree of 
regional differences in CEI.

G represents the Gini coefficient of CEI; m represents the 
number of study samples; Xi represents the CEI of prefec-
ture−level city i; ux represents the average value of CEI; i 
represents the ranking according to the size of CEI.

The Thiel index is introduced to measure the regional 
balance of CEI, whereby the range of the index is [-1,1], 
and when the absolute value of the Thiel index is closer to 
1, it indicates that the balance of CEI between regions is 
lower, whereas the smaller the Thiel index is, that is, if the 

(1)G =

(

2

n
∑

i=1

i ⋅ Xi

)

∕
(

m2
⋅ ux

)

− (m + 1)∕m

Fig. 1  The GTI and CEI impact 
mechanism map
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absolute value is closer to 0, it indicates that the balance of 
CEI between regions is higher.

T denotes the Thiel index of CEI; n denotes the number 
of study samples; yi denotes the CEI of prefecture−level city 
i; y denotes the average value of CEI.

Spatial autocorrelation analysis

The Moran’s I is often used in spatial correlation analysis. 
The Moran’s I can be divided into a global Moran’s I and a 
local Moran’s I. In this paper, the global Moran’s I is used 
to analyse the spatial agglomeration of the national CEI.

N represents the prefecture-level cities in China; yi rep-
resents the CEI of city i; y represents the CEI; W represents 
the spatial weighting matrix. The Moran’s I range is [-1,1], 
with positive values representing positive spatial autocor-
relation and negative values representing negative spatial 
autocorrelation of CEI.

The STIRPAT model

The STIRPAT model is a development of the IPAT model, 
which has the following basic form:

I, P, A and T represent regional CEI, population density, 
economic development level and GTI ability, respectively; a 
denotes the model coefficient; b, c and d denote the variables 
for population, economic development level and technical 
factors, respectively; and e denotes the model error term.

The baseline regression and the panel quantile model

To examine the relationship between GTI and CEI in the 
eastern, central, western and northeastern regions, the fol-
lowing baseline regression model was set:

ln CEIit denotes the CEI of the explanatory variable. 
i denotes the prefecture-level city. t denotes the year. X’

it 

(2)T =
1

n

n
∑

i=1

yi

y
log

(

yi

y

)

(3)Moran’s I =
N

N
∑

i=1

N
∑

j=1

Wij

N
∑
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N
∑
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Wij

�
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��
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�

N
∑

i=1

�
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�2

(4)I = a PbAcTde

(5)ln CEIit = �
0
+ �

1
ln GTPit + X’

it
� + �i + �t + �it

denotes the control variable. μi denotes individual fixed 
effects. δt denotes time fixed effects. εit denotes the random 
disturbance term.

The vast majority of regression models have been devel-
oped from ordinary least squares (OLS), a model that can 
only measure the effect of the independent variable on the 
conditional mean of the dependent variable but does not 
reflect the full picture of the entire conditional distribution 
of the dependent variable and therefore does not reflect the 
heterogeneity of factors influencing CEI across regions. To 
compensate for the shortcomings of OLS, as it is highly 
susceptible to extreme values, Koenker et al. (Koenker 2004) 
proposed the quantile regression model, taking the following 
general form:

The study decomposes the factors influencing CEI based 
on the STIRPAT model (Wen and Shao 2019) and constructs 
the following panel quantile model.

τ denotes the quantile point, Qτ ln CEIi denotes the τ con-
ditional quantile result for CEI, βi is the regression coeffi-
cient of the explanatory variable at the quantile point, GTI 
denotes green technology innovation, PGDP denotes the 
level of economic development, IS denotes industrial struc-
ture, FDI denotes the level of external openness, and PD 
denotes population density. ε denotes the random error term, 
and β0 is the intercept term. To reduce the errors caused by 
heteroskedasticity and differences in magnitudes, all vari-
ables are normalized and treated logarithmically.

Data

Explained variable

Carbon emission intensity (CEI), carbon emissions per unit 
of GDP, is an important indicator of economic and environ-
mental sustainability (Dong et al. 2018; Zhao et al. 2022). 
The calculation of carbon emissions is based on the Cheng 
et al. approach (Cheng et al. 2023).

Core explanatory variables

The measurement of GTI includes the perspectives of 
measuring the efficiency of GTI and measuring the output 
of green patents. Compared with the former, green patents 
are more intuitive and quantifiable, and data are available 
at the prefectural level. Because of the lag in the granting 
of patents and the difference between GTI and traditional 
technology innovation, the use of patent grants (Lee and 

(6)Q�

(

yi
)

= �0(�) + �1(�)xi1 +⋯ + �p(�)xip

(7)
Q� lnCEIi = �

0(�) + �
1(�) lnGTIi1 + �

2(�) lnPGDPi2

+ �
3(�) ln ISi3 + �

4(�) lnFDIi4 + �
5(�) lnPDi5 + �
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Lee 2013), patent inventions (Lin and Du 2015) and research 
expenditure ratios (Irandoust 2016) to measure GTI may be 
somewhat inaccurate. The research obtained information 
on all patent applications published by the National Intel-
lectual Property Administration (Dong et al. 2020) based 
on the Green List of the International Patent Classification 
launched by the World Intellectual Property Organization 
(WIPO) and selected the number of green invention patent 
applications and green utility model patent applications to 
represent GTI by referring to Weng et al. (Weng et al. 2022).

Control variables

In addition to GTI, the study chose the four aspects in 
Table 1, namely, the level of economic development, indus-
trial structure, openness to the outside world and population 
density, as explanatory variables to analyse the relationship 
between each factor and CEI.

Data source

Based on the availability of data, prefecture-level cities with 
serious missing data were removed, and some of the missing 
data were linearly interpolated. Finally, data from 264 pre-
fecture-level cities in China from 2006-2019 were selected 
for analysis, accounting for the influence of prefecture-level 
city divisions. All data were obtained from the China Urban 
Statistical Yearbook, China Statistical Yearbook, prefecture-
level municipalities’ statistical yearbooks and statistical 

bulletins. The descriptive statistics for all variables are pre-
sented in Table 2.

According to the National Bureau of Statistics division 
method, the 264 prefecture-level cities are divided into four 
regions: eastern region, central region, western region and 
northeastern region. The prefecture-level cities in 10 prov-
inces, including Beijing, Tianjin, Shanghai and so on, are 
part of the eastern region. The six prefecture-level cities in 
Shanxi, Anhui, Henan and other provinces are in the central 
region. The prefecture-level cities in 12 provinces (autono-
mous prefectures), including Chongqing, Sichuan and Yun-
nan, belong to the western region. And the prefecture-level 
cities in three provinces, Liaoning, Jilin and Heilongjiang, 
belong to the northeastern region.

Empirical results

Time evolution of CEI

From 2006 to 2019, the average CEI in China showed a 
decreasing trend each year, as it decreased from 0.74 tons 
per million yuan in 2006 to 0.36 tons per million yuan in 
2019, with an average annual decrease rate of 5.39% as 
shown in Figure 2. From 2006 to 2019, the CEI of the north-
east region showed a U-shaped trend and was always higher 
than the national average CEI by region. From 2006 to 2019, 
the CEI of the western region fluctuated and decreased, and 

Table 1  Description of each 
factor variable

Variables Symbol Definition

Carbon emission intensity CEI Carbon emissions/GDP
Green technology innovation GTI Number of green invention patent 

applications+Number of green utility model 
patent applications

Level of economic development PGDP Real GDP per capita
Level of openness to the outside world FDI Actual foreign investment/GDP
Industrial structure IS Value added of secondary industry/GDP
Population density PD Total population/administrative area

Table 2  Variable descriptive statistics

Variables Obs Mean S. D. Min Max

lnCEI 3696 -1.1052 0.7738 -3.7832 2.2568
lnGTI 3696 4.6515 1.8560 0 10.4536
lnPGDP 3696 10.4460 0.6963 4.5951 13.0557
lnIS 3696 3.8409 0.2439 2.4596 4.4497
lnFDI 3696 0.0581 1.3258 -8.6393 3.0448
lnPD 3696 5.7802 0.9124 1.5476 7.9227

Fig. 2  Trends in the temporal evolution of CEI in China and the four 
major regions
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after 2015, it was close to the national average level. This 
may be related to the construction of “low-carbon pilot cit-
ies” and “national ecological civilization demonstration 
zones”. On the one hand, green finance and carbon trading 
have contributed to the rapid development of low-carbon 
and clean technologies in the western region, and industrial 
production tended to be advanced and clean. On the other 
hand, clean energy resources such as wind and solar energy 
have been fully developed in the western region, and the 
energy consumption structure has significantly improved. 
The central and eastern regions have always been lower than 
the national average CEI, approximately showing that the 
central region > the eastern region from 2006 to 2008, the 
central region and the eastern region were similar in CEI 
from 2009 to 2012, and the central region < the eastern 
region from 2013 to 2019. The 2006 carbon emission inten-
sities of the eastern region and the central region were 0.578 
and 0.647, respectively, and the carbon emission intensities 
of the two regions in 2019 were 0.578 and 0.647, respec-
tively. The carbon emission intensities of the two regions 
were 0.319 and 0.259, respectively, and the average annual 
decline rates were 4.47% and 6.80%, respectively.

From 2006 to 2019, the Gini coefficient and the Thiel 
index of the CEI of prefecture-level cities in China showed 
approximately the same fluctuating decreasing and then 
increasing trend as shown in Table 3. The Gini coefficient 
and the Thiel index decreased in 2019 compared with 2006, 
and the regional differences narrowed, which is related to 
the strengthening of regional synergy and emission reduc-
tion, optimization and improvement of energy policies and 
industrial green transformation.

To further investigate the time-series evolution of CEI, 
the kernel density curves are plotted for four years in Fig-
ure 3: 2006, 2010, 2015 and 2019. From the centre of the 
curve, the centre of the kernel density curve shifts to the left, 
the peak increases, and the shape changes from “short and 
fat” to “tall and thin”, indicating that the CEI of Chinese pre-
fecture-level cities decreases year by year and the regional 
gap decreases. In terms of the tails on both sides, the right 

trailing edge is always longer than the left trailing edge, and 
the length of the trailing edge decreases, indicating that the 
CEI of some prefecture-level cities in China is significantly 
higher than that of other cities, and the number of prefecture-
level cities with high CEI decreases significantly.

Spatial evolution of carbon emission intensity

The visualization of the CEI in China from 2006 to 2019 
using the ArcGIS natural breakpoint method in Figure 4 
shows that the overall CEI indicates a spatial distribution 
pattern of high in the north and low in the south, high in the 
west and low in the east, and this is closely related to China's 
industrial layout, economic development level, energy con-
sumption structure, etc. (Ahmad et al. 2021). In 2006, the 
lowest CEI was 0.066 in Lincang, and the highest was 5.467 
in Xining. In 2019, the lowest was 0.028 in Chongzuo, and 
the highest was 2.386 in Wuhai. From 2006 to 2019, the CEI 
decreased significantly, and the number of prefecture-level 
cities with high CEI decreased significantly. By region, the 
northwest region has the highest CEI, with the high CEI 
prefecture-level cities distributed in clusters, while the high 
CEI prefecture-level cities in the central region are distrib-
uted in points and are mainly in resource-based cities. The 
carbon emission reduction effect of GTI is relatively weak 
in the two regions because of the heavy industrial struc-
ture, relatively slow-paced development mode, need for an 
improved technology innovation capacity, and insufficient 
R&D investment. The prefecture-level cities with high CEI 
in Northeast China are distributed in surface distribution. 
From the perspective of provinces, the high CEI areas in 
Liaoning Province form a “C” distribution pattern with Dan-
dong-Benxi-Tieling-Fuxin as the boundary. The overall CEI 
in Jilin Province is low. The CEI in Heilongjiang Province is 
high in the north and low in the south, high in the east and 
low in the west. The prefecture-level city with a high CEI 

Table 3  The Gini coefficient and the Thiel index for the CEI of pre-
fecture-level cities in China

Year Gini  
coefficient

Thiel 
index

Year Gini  
coefficient

Thiel 
index

2006 0.4349 0.1513 2013 0.3656 0.1001
2007 0.4112 0.1311 2014 0.3700 0.1028
2008 0.4121 0.1324 2015 0.3794 0.1057
2009 0.4200 0.1595 2016 0.4070 0.1238
2010 0.3879 0.1145 2017 0.4098 0.1260
2011 0.3817 0.1123 2018 0.4178 0.1317
2012 0.3750 0.1075 2019 0.4308 0.1385

Fig. 3  The kernel density curve of CEI
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is mainly Hegang in the north. This is mainly related to the 
shrinkage of cities in the northeast, and thus is affected by 
the bottleneck of transformation of resource-based cities, 
the heavy industrial structure of the northeast, the unrea-
sonable allocation of labour resources, the insufficient sup-
port capacity of urban development, and the limited level of 
GTI, restricting the reduction in CEI. The CEI of the eastern 
region, especially the southeast coastal region south of the 
Qinling and Huaihe Rivers, is relatively low, and is related 
to the high level of development of the regional circular 
economy and low-carbon economy.

Exploratory space analysis of carbon emission 
intensity

The study measured the CEI Moran’s I of each prefec-
ture-level city using Geoda software, and the results are 
in Table 4. The Moran’s I is positive in all cases and it 
passes the 1% significance test in all years except 2006, the 
year in which it passes the 5% significance test. CEI has 
a significant positive spatial correlation, showing that the 

CEI of the prefecture-level cities is influenced by the sur-
rounding prefecture-level cities. The Moran’s I showes a 
fluctuating upward trend during the study period, reaching 
the maximum value in 2016, and the spatial agglomeration 
slightly weakened after 2016.

Fig. 4  China's CEI in 2006, 2010, 2015 and 2019

Table 4  Moran’s I of CEI from 2006 to 2019

***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively

Year CEI Z Year CEI Z

2006 0.186** 4.0785 2013 0.227*** 5.5181
2007 0.188*** 4.4904 2014 0.248*** 6.6075
2008 0.178*** 4.2096 2015 0.304*** 7.2384
2009 0.225*** 8.6023 2016 0.390*** 9.3343
2010 0.217*** 5.7006 2017 0.374*** 9.2861
2011 0.209*** 5.5897 2018 0.350*** 8.9791
2012 0.212*** 5.4329 2019 0.349*** 9.1630
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The results of the panel quantile model

Stability test

To ensure that the data are smooth and valid and to avoid 
pseudoregression, the variables were tested for smoothness 
in Table 5, and all variables passed the LLC and ADF tests, 
and the data were smooth without unit roots.

Panel quantile regression results

To comprehensively and effectively determine the factors 
influencing CEI and regional differences, the study selected 
five representative quartiles of q10, q25, q50, q75, and q90 
for panel data regression and listed the fixed-effect model as 
a comparison in Table 6. The coefficient of GTI is negative 
and passes the 1% significance test in all five quartiles, indi-
cating that GTI is an effective way to reduce carbon emis-
sions. With the increase in the quantile, the carbon emission 
reduction effect of GTI shows a U-shaped weakening change 
and then a strengthening change, probably because GTI 
affects CEI mainly through the technology spillover effect 
and rebound effect. Moderate environmental regulation sig-
nificantly promotes the rapid development of GTI and the 

improvement of energy use efficiency, enabling enterprises 
to achieve relatively “clean” production, and playing a posi-
tive role in reducing CEI. With the widespread application of 
GTI, enterprises’ production costs have decreased, and prod-
uct prices have fallen, stimulating greater market demand 
and highlighting the rebound effect. However, at a compre-
hensive view, the coefficient of the impact of GTI on CEI is 
negative, that is, the carbon emission reduction effect of GTI 
is greater than the carbon emission scale expansion effect 
brought by its promotion of economic growth, so GTI is an 
effective way to reduce CEI. In addition, the inhibiting effect 
of GTI on CEI is significantly better in the higher quartile 
areas than in the lower quartile areas, and this is mainly 
related to the foundation of GTI. The lower quartile areas 
already have had a preliminary green production and liv-
ing system in resource use, energy substitution, production, 
waste treatment, transportation and travel, with relatively 
low pollutant emissions and reduced reliance on GTI. While 
in the higher quartile areas, there is more room for carbon 
emission reduction, and GTI further releases technological 
dividends and helps green and low-carbon transformation.

The regression coefficient of the economic development 
level is significantly positive. It is thus related to the fact 
that after economic development reaches a threshold, the 
industry moves from an “agglomeration economy” to an 
“agglomeration diseconomy”. There is spatial heterogeneity 
in the regression coefficients of industrial structure, which 
is negative at q10, q50 and q75 and positive at q25 and q90, 
and is closely related to the type of regional industries and 
the way of industrial development. Foreign investment in 
the middle and low quantile regions follows the pollution 
refuge hypothesis. It promotes carbon transfer while trans-
ferring the three high industries, but in the high quantile 
regions it follows the pollution halo hypothesis. The spillo-
ver of knowledge and technology improves the level of 
technology management and energy use efficiency in the 
region, reducing CEI (Wang et al. 2019). Population density 

Table 5  Stability test of panel data

Variable LLC Test ADF-Fisher Test

Stat. p-Value Stat. p-Value

lnCEI -16.3386 0.0000 18.3703 0.0000
lnGTI -28.5635 0.0000 24.6594 0.0000
lnPGDP -15.9628 0.0000 12.7209 0.0000
lnIS -5.9602 0.0000 20.1192 0.0000
lnFDI -20.3574 0.0000 22.6654 0.0000
lnPD -18.5584 0.0000 11.5451 0.0000

Table 6  The panel quantile 
regression results

***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively

Variables q10 q25 q50 q75 q90 FE

lnGTI -0.143***
(0.0299)

-0.111***
(0.0141)

-0.097***
(0.0145)

-0.157***
(0.0182)

-0.171***
(0.0304)

-0.0228**
(0.00962)

lnPGDP 0.376***
(0.0790)

0.235***
(0.0457)

0.169***
(0.0385)

0.244***
(0.0463)

0.227***
(0.0778)

-0.524***
(0.0221)

lnIS -0.045
(0.115)

0.033
(0.0959)

-0.014
(0.0585)

-0.010
(0.0938)

0.055
(0.110)

-0.131***
(0.0434)

lnFDI 0.103***
(0.0216)

0.111***
(0.0132)

0.089***
(0.0148)

0.029*
(0.0164)

-0.056***
(0.0169)

0.009
(0.00618)

lnPD 0.180***
(0.0358)

0.143***
(0.0194)

0.048**
(0.0210)

0.025
(0.0309)

0.017
(0.0359)

0.030
(0.0633)

Constant -6.169***
(0.711)

-4.520***
(0.498)

-2.668***
(0.489)

-2.502***
(0.530)

-2.019***
(0.759)

4.805***
(0.412)

Observations 3696 3696 3696 3696 3696 3696
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contributes to CEI, mainly because increasing population 
density increases energy demand and pollutant emissions.

Heterogeneity analysis

Analysis of spatial heterogeneity

To further illustrate the heterogeneity of the effects of GTI on 
CEI in the eastern, central, western, and northeastern regions, 
a panel quantile regression model is used to test the heteroge-
neity in Table 7. The impact of GTI on CEI in the four major 
regions is spatially heterogeneous. In the eastern region, the 
effect of GTI on CEI showes a negative inhibitory effect and 
the carbon emission reduction effect is enhanced as the quar-
tile increases. With the compensatory effect of GTI and the 
free flow of green production factors, the financing pressure 
of the green development of enterprises has been eased, and 
the rapid development of green and low-carbon technology 
has pushed forward carbon emission reduction in the eastern 
region. Overall, the eastern region has a higher level of GTI, a 
mature innovation system, a diminishing marginal effect, and 
a reduced dependence on GTI. The middle and lower quartiles 
in the central region show a negative inhibitory effect at the 
1% significance level. The industrial transfer brought along 
relatively advanced production technologies, releasing the 
environmental spillover effects of GTI. In the western and the 
northeast regions, there is spatial heterogeneity in the effects of 
GTI and CEI. High-quantile areas have a significant negative 
inhibitory effect, while low-quantile areas have a significant 
positive promotional effect. Resource-based cities with high 
carbon emissions, such as Benxi, have continued to adjust their 
industrial structure and optimize their energy consumption pat-
terns, thus contributing to a reduction in CEI. Strategic plans 
such as the revitalization of Northeast China and the estab-
lishment of the demonstration zone for undertaking industrial 
transfer in Jixinan have attracted some polluting industries to 
transfer to low-carbon-emitting cities, coupled with the rela-
tively low level of marketization, the existence of mismatch of 
innovation resources and other problems, the economic growth 
effect brought about by technological progress is greater than 
the emission reduction effect of technological advances.

Analysis of policy context heterogeneity

The study is based on the average of marketization and envi-
ronmental regulation, with prefecture-level cities that are 
greater than the average being labeled as high marketiza-
tion level (H-MI) and loose environmental regulation (L-ER) 
areas, respectively. On the contrary, they are low marketiza-
tion level (L-MI) and strict environmental regulation (S-ER) 
areas. The impacts of GTI on CEI under the four policy 
conditions of L-MI, H-MI, S-ER and L-ER are denoted as 
 lnGTI1,  lnGTI2,  lnGTP3 and  lnGTP4, respectively (Table 8). Ta
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Among them, the environmental regulation is calculated by 
the entropy weight method to measure industrial wastewater, 
industrial sulphur dioxide and industrial smoke (dust) emis-
sions per unit of output value, and the marketization level 
is calculated regarding the National Economic Research 
Institute.

Overall, the suppression of CEI by GTI is stronger under 
the conditions of H-MI and S-ER areas. Strict environmen-
tal regulations force enterprises to increase investment in 
GTI, improve production and operation methods, reduce 
end-of-pipe emissions of pollutants, and promote the recy-
cling of resources, which is a vital and indispensable means 
to achieve pollution reduction and carbon reduction at this 
stage. Full free flow of factors in the market, open and trans-
parent market information, efficient matching with the green 
development needs of enterprises, and the realization of pro-
gress in green technologies, green processes and green prod-
ucts, which further reduces carbon emissions. Therefore, the 
further release of the carbon emission reduction effect of 
GTI requires the efficient and coordinated development of 
an active government and an effective market.

Conclusion and implications

Exploring the heterogeneity of the impact of GTI on CEI 
among Chinese prefectures is of great practical significance 
and is required to implement differentiated, targeted and 
specific carbon emission reduction policies to promote 
the development of a low-carbon and circular economy in 
China. This paper uses a panel quantile model to measure 
the nonlinear relationship between GTI and CEI. The fol-
lowing findings were uncovered. First, the CEI of Chinese 
prefecture-level cities showed a decreasing trend from 2006 
to 2019, with spatial distribution characteristics of high in 
the north and low in the south, high in the west and low 
in the east, and the spatial gap was narrowed by the influ-
ence of regional synergistic emission reduction. Second, 

the spillover effect of GTI is stronger than the rebound 
effect, and thus has a significant inhibitory effect on CEI 
and shows a U-shaped trend of decreasing and then increas-
ing as the quantile increases. Economic development and 
population density significantly lead to an increase in CEI, 
while the effects of foreign direct investment and indus-
trial structure on CEI are heterogeneous. Finally, there is 
spatial heterogeneity in the impact of GTI on CEI among 
and within the four major regions and has been verified in 
different institutional contexts, with a significant inhibitory 
effect on the eastern regions, the central region, the western 
and northeast with high CEI regions. Conversely, there is 
a facilitative effect on the northeast and western with low 
CEI areas. This is mainly related to the industrial base and 
the level of technological innovation in each region.

Based on the above conclusions, this paper proposes 
countermeasure suggestions from the following aspects. 
First, tap the potential of GTI and release the dividends of 
GTI. On the one hand, we should increase the investment 
in green science and technology, reduce the trial-and-error 
costs of GTI, promote low-carbon, zero-carbon, negative-
carbon and other key core technologies, train professional 
talent in new technology fields, and release its dividends. On 
the other hand, a leading role should be assumed by carbon 
peak action through strengthening basic research on new and 
renewable energy applications, developing alternative new 
energy sources such as nuclear power and hydropower, and 
reducing carbon emissions in production and living. Sec-
ond, strengthen the synergy of regional GTI and promote the 
synergy of regional pollution and carbon reduction. Estab-
lish an international cooperation and exchange system and 
a regional green innovation network, improve the speed and 
scale of circulation of GTI, give full play to the comparative 
advantages of GTI in the eastern region, and enhance inter-
regional and intraregional technology exchange links. Third, 
differentiated policies should be implemented according to 
local conditions. Differences in geographical conditions lead 
to various priorities in the development of GTI. The east-
ern region should give full play to its advantages in green 
innovation, enhance green innovation exchanges at home 
and abroad and lead the development of green innovation. 
The central and western regions should strengthen regional 
innovation exchanges, improve the rate of transformation of 
green achievements and release green innovation dividends. 
And the northeastern region should pay attention to rais-
ing the market access threshold while accepting industrial 
transfer and reduce the transfer of highly polluting indus-
tries while introducing advanced production technologies. In 
addition, the government should reasonably grasp the inten-
sity of environmental regulations, adopt industry-differenti-
ated policies, give full play to the role of the market, promote 
the free flow of resource factors, and promote technological 
innovation towards green and low-carbon.

Table 8  Analysis of heterogeneity of policy context

***, **, and * indicate significance at the 1%, 5%, and 10% levels, 
respectively

Variables q10 q25 q50 q75 q90

lnGTI1 -0.100***
(0.0378)

-0.104***
(0.0237)

-0.087***
(0.0204)

-0.146***
(0.0350)

-0.093***
(0.0311)

lnGTI2 -0.186***
(0.0258)

-0.115***
(0.0198)

-0.100***
(0.0239)

-0.149***
(0.0199)

-0.216***
(0.0279)

lnGTI3 -0.264***
(0.0469)

-0.228***
(0.0591)

-0.240***
(0.0418)

-0.208***
(0.0325)

-0.215***
(0.0209)

lnGTI4 -0.112***
(0.0244)

-0.085***
(0.0130)

-0.046***
(0.0126)

-0.048***
(0.0113)

-0.073***
(0.0246)

Control vari-
able

YES YES YES YES YES
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