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Abstract
Fungal pre-treatment using Pleurotus ostreatus (PO) was carried out on individual and combinations of agro-waste wheat 
straw (WS), rice straw (RS), and pearl millet straw (PMS) with the addition of biochar (5%,7.5% and 10%) to reduce the pre-
treatment duration. Further remaining substrate known as spent mushroom substrate (SMS) was used in anaerobic digestor 
(AD) for estimation enhanced biomethane yield. Equal ratios of RS + WS, WS + PMS, PMS + RS, and RS + PMS + WS 
and biochar addition were taken for enhancing pre-treatment, PO growth and AD process. The extent of pre-treatment was 
recorded with the maximum lignin removal of 40.4% for RS + PMS + WS as compared to untreated counterparts and 0.5%, 
2.2%, and 3.3% times more lignin removal from individual PMS, RS, and WS respectively. Addition of biochar to the sub-
strates reduced the total pre-treatment duration by days as compared to the non-biochar substrates. Biological efficiency (BE) 
used for the analysis of mushroom growth varied from 51–92%. Further, the average bio-methane yield was 187 ml/gVS 
for SMS of PMS + WS + RS with 10% biochar indicating an increment of 83.33% from untreated SMS of PMS + WS + RS. 
This, higher biomethane yield was 9.35%, 22.22% and 57.14% times higher than individual SMS of PMS, RS, and WS 
respectively. The current study shows that biochar not only enhances the bio-methane yield but also reduces the biologi-
cal pre-treatment duration and removes the dependency on one lignocellulosic biomass for energy (bio-methane) and food 
(mushroom) production.
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ostreatus

Abbreviations
AD  Anaerobic digestion
BE  Biological efficiency
C/N  Carbon to nitrogen
CO2  Carbon dioxide
GHG  Green-house gas
PMS  Pearl Millet Straw
PO  Pleurotus ostreatus
RS  Rice Straw
SMS  Spent mushroom substrate
WS  Wheat Straw

Introduction

Food crisis is one of the significant problems faced by the 
world at present whereas energy production from fossil 
fuels causes greenhouse gases emission (GHGs) around 
the world (Yuan et al. 2021). Currently, mushroom cul-
tivation is quite gaining attention all over the world. As 
mushroom consists high amount of protein which is ben-
eficial for the human body, and due to the global food cri-
sis mushroom cultivation can be a sustainable solution for 
this crisis. On the other hand, a large amount of agro-waste 
and animal manure is generated annually with high organic 
content. To this, agro-waste is directly burned which 
causes GHGs emissions (Luskar et al. 2022). Therefore, 
the utilization of agro-waste for mushroom cultivation is a 
favorable ecological impact, and it not only reduces GHGs 
emissions but also provides food to tackle the food crisis 
faced by the world today. Mushroom cultivation also has 
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a financial advantage and residue after cultivation is also 
utilized as cattle food or for energy generation, later as 
fertilizers. This process also helps in keeping the environ-
ment as it consumes agro-waste (Pérez-chávez et al. 2019).

The world is facing an energy crisis as well as a cli-
mate crisis. The energy demand is increasing rapidly due 
to population growth, urbanization, and industrialization, 
while the world’s energy resources are finite and depleting. 
Simultaneously, energy fossil fuels are the largest con-
tributor to emissions. Therefore, mushroom cultivation on 
agro-waste can act as a sustainable solution for energy pro-
duction (bioenergy) and minimizing waste. The remaining 
residue after cultivating mushroom (PO) known as spent 
mushroom substrate (SMS), has great potential to gener-
ate bio-energy. With every kg of mushroom cultivated, 
approximately 5 kg of SMS is generated (Lin et al. 2014; 
Gao et al. 2021). This huge amount of SMS which has high 
organic content can be utilized to produce energy result-
ing in a cycle of food-energy nexus or sustainable reuse 
of resources as shown in Fig. 1. However, there are still 
challenges related to different properties of wastes and bio-
masses and other parameters such as AD parameters which 
may affect the mushroom growth as well as biogas yield.

As lignocellulosic biomass is consisting of three main 
components which are cellulose, hemicellulose, and lignin. 
While cellulose and hemicellulose are readily biodegrad-
able, lignin is recalcitrant and highly resistant to microbial 
degradation. This makes the overall degradation of lignocel-
lulosic biomass slow and difficult, resulting in low biogas 
yield during the AD process. The hydrolysis process in AD 
is crucial for the breakdown of complex polymers (organic 
matter) into modest molecules which can be utilized eas-
ily by microorganisms for biogas production (Kumar et al. 
2019). However, cellulose and hemicellulose accessibility 
in lignocellulosic biomass is limited due to the presence of 
lignin, which creates a physical barrier. This limits the activ-
ity of cellulolytic microorganisms as well as their growth in 
the AD reactor, resulting in reduced biogas yield.

To overcome these challenges, numerous types of pre-
treatment methods exist to enhance cellulose and hemicellu-
lose accessibility to microorganisms. These methods include 
chemical treatments (like acid or alkaline hydrolysis), physi-
cal treatment (like sonication or steam explosion), thermal 
treatments (like autoclave or microwave), and biological 
treatments (like microbial or enzymatic) (Yadav et al. 2019). 
These pre-treatments in lignin breakdown in the biomass, 

Fig. 1  Sustainable reuse of resources
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increasing the surface area as well as cellulose and hemicel-
lulose accessibility to microorganisms resulting in a signifi-
cant increment in biogas production during the AD process 
(Paritosh et al. 2020). Biological pre-treatment takes longer 
duration but is an eco-friendly and inexpensive treatment 
method compared to thermal and chemical pre-treatment.

Mushroom cultivation is a biological (fungal) pre-treat-
ment on agro-waste for the generation of biogas through AD. 
Agaricaceae, Polyporaceae, and Pluteaeceae families have 
commercial application for cultivation which comes under 
the Agaricales order which are edible fungi (Hoa and Wang 
2015; Padri et al. 2022; Sharma et al. 2020). Moreover, the 
edible mushroom is an excellent source of vitamins, proteins, 
and minerals. Mushrooms include minerals such potassium, 
phosphorus, sodium, calcium, magnesium, copper, zinc, iron, 
molybdenum, selenium and, vitamins especially B vitamins 
are abundant in mushrooms. Mushrooms include thiamine 
(B1), riboflavin (B2), niacin (B3), and pantothenic acid (B5) 
Most of them have low starch content and act as ideal food 
for patients suffering from diabetes (Wang and Zhao 2023).

At the commercial level, cultivation of four major edible 
mushrooms is available, which are Volvariella spp (paddy straw 
mushroom or tropical mushroom), Pleurotus spp (Oyster mush-
room), Lentinus edodes (Japanese mushroom) and Agaricus 
bisporus (white button mushroom) (Pérez-chávez et.al 2019; 
Chatterjee et al. 2017; Xiao et al; 2022). A low temperature 
and fermented substrates are needed for the button mushroom's 
growth, while the paddy straw mushroom needs a raised tempera-
ture of 35°C and thrives on unfermented substrates. In the range 
of 20°C to 30°C, the Japanese and oyster mushrooms grew well 
on non-fermented substrates (Silva et al. 2020; Song et al. 2021).

Biochar offers numerous advantages as it is porus in nature, 
provides microhabitat for microorganisms, provides direct 
inter-electron transfer, helps in purifying biogas, and reduce 
duration for biogas production (Chen et al. 2023). Therefore, 
to reduce biological pre-treatment duration biochar as addi-
tive can be used during pre-treatment process for enhanced 
mushroom growth as well as enhanced biogas genration. In 
this study, mushroom cultivation on agro-waste is adopted to 
utilize waste and fulfilling the need for food as the mushroom 
which is considered a substitute source of protein for vegetar-
ian diets. After the harvesting of the mushroom, an important 
amount of organic residue known as spent mushroom sub-
strate (SMS) (pre-treated agro-waste) remains, which will be 
utilized for the production of biogas. Individual agro-waste 
as well as different combinations were used for mushroom 
cultivation. The growth was evaluated based on the duration 
of the first pinhead formation, duration of the first harvest, BE, 
and weight of fresh mushrooms. Organic matter in the SMS 
was analyzed by compositional analysis. This organic matter 
was further utilized for biogas generation by the AD process 
to estimate the enhanced biomethane yield.

Materials and methods

Oyster mushroom culture and selection of feedstock

Growth and analysis of PO mushrooms were studied on 
different substrates and their combinations at the biofuel 
lab at Malaviya National Institute of Technology Jaipur 
located in Rajasthan, India. The MTCC 1801 strain (PO) 
was obtained from the Institute of Microbial Technology, 
Chandigarh, and was cultured on potato dextrose agar in 
Petri dishes. These dishes were incubated at 21℃ in the 
incubator until mycelium was fully spawned (6–8 days) 
and stored at 4 ℃ in the refrigerator until further use. In 
Fig. 2, is an overview of this study and methods to be used 
to evaluate the mushroom cultivation and pre-treatment 
by it, biomethane yield, and nutrients present in slurry for 
fertilizer purposes. Wheat straw (WS), rice straw (RS), 
and pearl millet straw (PMS) were considered as sub-
strates individually as well as in the combination of 1:1, a 
total of 7 samples (RS, WS, PMS, RS + WS, WS + PMS, 
PMS + RS, and RS + PMS + WS). Prosopis wood biochar 
commonly known as babool was used in this study whose 
C/N ratio 74.13 which was available at Biofuel lab at Mala-
viya National Institute of Technology Jaipur. Fresh efflu-
ent was locally available from a biogas plant (Durgapura, 
Jaipur; 26.8 N, 75.7 E) was used as inoculum, and before 
use, it was incubated at 55℃ for 7 days for the survival 
of thermophilic organisms only. Thermophilic conditions 
were considered because state of Rajasthan, India, comes 
under a high-temperature state hence the thermophilic con-
ditions were used to match and make this process more 
applied in such environmental conditions. Table 1 shows 
the physical and chemical properties of PMS, RS, WS, and 
inoculum.

Substrate preparation and inoculation

A 45gm of each substrate (dry weight) was mixed in 800 ml 
of deionized (DI) water comprising each 1.5gm of hydrated 
lime (Ca(OH)2) for 6 h for cleaning and to prevent micro-
organisms contamination on substrates. Before placing the 
substrate in DI, water and (Ca (OH)2) were thoroughly mixed 
to achieve homogenization. Substrates were left in the open 
overnight to remove excess water and placed in beakers for 
spawning accordingly to their ratios as indicated in Table 2. 
To enhance mushroom growth additive biochar in different 
ratios (5%, 7.5%, and 10%) was mixed with the substrate.

The sets were prepared with different combinations of 
additives for the biological pre-treatment (PO) on differ-
ent substrates. Substrates were inoculated with mycelium 
(approx. 20%) in a laminar hood apparatus for a sterilized 
environment. It was placed in a controlled environment of 
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18–21 °C and around 70 ± 5% relative humidity for the spawn 
run. After completion of the spawn run, the reduction in tem-
perature was about 16–20°C, with no change in humidity, and 
was watered daily to keep moisture content in check.

Harvesting and parameters

When the fruiting body starts curling up and the tops were 
completely developed, mushrooms were harvested from sub-
strates and the smaller ones were left to develop. Clusters 

Fig. 2  Methodology Overview

Table 1  Characteristics of rice 
straw, pearl millet straw, wheat 
straw, and inoculum

Characteristics Rice straw Pear millet straw Wheat straw Inoculum

Total solids (%) 93.55 ± 1.4 92.67 ± 2.2 90.7 ± 1.6 11.3 ± 0.4
Volatile solids (%) 82.84 ± 1.8 86.72 ± 1.5 81.42 ± 1.1 7.7 ± 0.2
Carbon (%) 36.37 ± 0.5 40.8 ± 0.2 41.53 ± 0.4 36.4 ± 0.1
Hydrogen (%) 5.16 ± 0.6 7.6 ± 1.3 8.03 ± 0.7 4.3 ± 0.8
Nitrogen (%) 0.68 ± 0.4 0.8 ± 0.3 0.55 ± 0.2 1.6 ± 0.3
Oxygen (%) 54.6 ± 0.9 46.8 ± 1.1 45.28 ± 0.4 56.8 ± 0.5
C/N ratio 54.2 ± 0.6 51.1 ± 0.4 72 ± 0.7 21 ± 0.5
Lignin (%) 19.04 ± 0.5 15.5 ± 0.4 17.41 ± 0.7 -

Table 2  Substrates considered and their combination

Substrates Ratio C/N ratio

RS - 54
WS - 72
PMS - 51
RS + WS 1:1 63
WS + PMS 1:1 61.5
PMS + RS 1:1 52.5
RS + PMS + WS 1:1:1 59
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of mushrooms were weighed and parameters were evalu-
ated like duration from the day of inoculation to the day of 
mycelium appearance. Duration from the day of inoculation 
to the day of first gathering and the percent of the yield of 
fresh mushrooms over the dry weight of substrates is known 
as biological efficiency.

Chemical compositional analysis

Remaining substrate after fungal pre-treatment known as 
SMS, a small amount (around 1gm) of SMS was checked for 
the delignification by chemical compositional analysis. SMS 
was dissolved in 75 mL water and boiled for 1 h to check the 
material that could be dissolved in hot water. After a break 
of 1 h, the water was drained and replaced with the new 
water to boil for another hour. SMS was boiled, then cooled 
in cold water, dried for 15 h at 60 °C, and finally weighed. 
The remaining SMS was diluted with 30 mL of DI water 
containing sodium chlorite (0.6 g) and 10% acetic acid (2 
mL) and heated for 1 h at 75°C to determine the lignin con-
tent. After cooling the SMS for 2 h, the same amount of 
sodium chlorite and acetic acid was added and was heated 
for another 2 h. Five water washes, two from acetone, and 
1 from ether wash were performed. After 90 min of drying at 
105°C, the remaining SMS was weighed (Yadav et al. 2019).

Biomethane potential (BMP) test

AD of SMS took place in 610 mL batch serum bottles which 
are sealed with a 400 mL working capacity, and the col-
lected biogas was held in the remaining 210 mL. Each sub-
strate SMS was used in the batch AD to produce biogas. Posi-
tive control and negative control were done by non-pre-treated 
combinations and inoculum respectively. The inoculum bot-
tles were combined with 1.55 g substrate VS per liter to start 
the experiment and the pH was about 7.1. The bottles were 
sealed with a rubber stopper and used cello tape to hold the 
rubber stopper, and then placed in an incubator (55°C, 90 
revolutions per minute, 15 days) on a shaker (REMI CIS 24, 
India) (Kumar et al. 2019). A gas chromatograph (TRACE 
1300, Thermo Fisher Scientific, India) equipped with a ther-
mal conductivity detector and Helium as carrier gas was used 
for the composition analysis of biogas (Yadav et al. 2019).

Daily, by utilizing a digital pressure meter (Testo 512, 
Germany) pressure was measured and a further volume of 
biogas generated in the headspace was determined. Biogas 
volume was calculated using daily pressure difference under 
standard pressure and temperature conditions using the fol-
lowing equation: (Kumar et al. 2019)

Vbiogas =
PVheadC

RT

where,

Vbiogas  Biogas volume measured daily (L)
P  Absolute pressure difference (mbar)
Vhead  Headspace volume (L)
C  Molar volume (22.4 L/mol)
R  Universal gas constant (83.14 L mbar/mol K)
T  Absolute temperature (K)

Results

Biological pre‑treatment duration

Duration of pre-treatment of agro-waste used in this study 
was calculated in 28 days. Fungal (PO) treatment was identi-
fied by the development of mycelium and mycelium devel-
opment duration varies for different agro-waste and their 
combinations. Table 3 shows the duration of pre-treatment 
which was considered when mushroom growth starts and 
also shows the first mushroom harvest duration. Biological 
pre-treatment (PO) carried out for the combination samples 
finished earlier by 2–5 days when compared to the individual 
RS and WS whereas for PMS pre-treatment finished earli-
est by 1 day compared to combinations of PMS as shown 
in Table 3.

PMS is a C4 plant that is robust in nature whereas RS 
and WS are C3 plant that has more dense topology struc-
ture (Wang et al. 2012) due to which fungi easily breaks the 
structural bonding of PMS whereas, in the case of RS and 
WS, it is tough to break structure bonding. WS showed less 
lignin removal from its combinations due to the presence of 
selenium in it which lays a negative impact on fungi growth 
decrease in the amount of biomass and leakage of protein 
which is an essential nutrient for fungi growth (Xu et al. 
2021; Peng et al. 2020).

While with the use of biochar in the pre-treatment pro-
cess, duration was reduced due to biochar being a porous 
material that helps in providing a microhabitat for microor-
ganism growth. Due to its high specific surface area, which 
offers more fungi and organic matter contact hence complet-
ing the pre-treatment process rapidly as a similar observation 
made by (Luz et al. 2018; Wang et al. 2022).

The growth of fungi and lignin degradation of lignocel-
lulosic biomass goes simultaneously, through which the effi-
ciency of pre-treatment is determined. As shown in Fig. 3(a), 
lignin removal without biochar addition, combination 
(RS + PMS + WS) showed maximum lignin removal of 33.2% 
due to better nutritional growth compared to their substrate 
for fungi growth. Whereas individual PMS and combination 
(PMS + WS) also showed almost the same lignin removal of 
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33% and 32.9% respectively, and the least lignin removal of 
30.9 was seen for WS compared to their untreated counterpart. 
With the addition of 5%,7.5%, and 10% biochar maximum 
removal of lignin was seen for combination (RS + PMS + WS) 
of 34.1%,37.1%, and 40.2% respectively. Also, almost the 

same amount of lignin removal was seen for PMS at 33.9%, 
37.1%, and 40.4% respectively compared to their untreated 
counterpart. However, the lowest removal of lignin was for 
WS as shown in Fig. 3(b), (c), (d). A higher amount of sele-
nium in WS and RS can be the reason for less pre-treatment 

Table 3  Pre-treatment duration Sample Duration of first pinhead formation (days)

No additive 5% Biochar 7.5% Biochar 10% Biochar

WS 27 24 23 22
RS 24 21 21 19
PMS 22 19 17 16
WS + RS 26 23 22 20
PMS + WS 22 21 19 16
RS + PMS 23 20 19 17
WS + RS + PMS 23 20 18 17
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Fig. 3  Biological pre-treatment of samples (a) with no additive, (b) with 5% biochar addition, (c) with 7.5% biochar addition, (d) with 10% bio-
char addition
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efficiency in the case of a combination of WS + RS as that of 
PMS + RS and PMS + WS (Solovyev et al. 2018).

(Kainthola et al. 2019) worked on RS pre-treated by PO 
showed 21.85% lignin removal whereas in this study for 
RS lignin removal was found 39% with biochar addition. 
Whereas this study showed lignin removal of 40% for PMS 
and 37% for WS with biochar addition which was found 
higher than the study done by (Yadav et al. 2019) showing 
lignin removal of 30% and 36% for PMS and WS respec-
tively. (Mamimin et al. 2021) showed lignin removal from 
fungal pre-treatment was about 18% which was less com-
pared to this study.

As shown in Fig. 4, the addition of a biochar percentage 
of 10% compared to no biochar addition resulted in maxi-
mum lignin removal of about 27% for RS and a minimum 
of about 21% for PMS due to its electron transfer property 
which enhances the direct inter-electron transfer which 
enhances the microbial community growth (Lin et al. 2022).

Mushroom analysis

Duration of the first oyster mushroom harvesting was seen 
between 26–36 days for all samples with or without additives. 

With the addition of biochar, the mushroom harvesting pro-
cess was enhanced as for combination (WS + RS + PMS) with 
10% biochar showed a minimum duration of 26 days as well 
as PMS also showed the same duration of 26 days whereas 
the maximum duration was seen for WS of 36 days without 
biochar addition as shown in Table 4. Duration for mushroom 
harvesting on RS, WS, and RS + WS without biochar is 34, 
38, and 34 days, similar findings on the same substrate of PO 
cultivation were observed by (Elattar et al. 2019).

The carbon to nitrogen (C/N) ratio is a very essential fac-
tor in mycelium and mushroom growth as the most suitable 
range is 32 to 150 (Hoa and Wang 2015) and carbon and 
nitrogen are important nutrients for the growth and devel-
opment of PO, an edible mushroom. Carbon serves as a 
building block for structural compounds such as cellulose 
and lignin and is also required for energy whereas nitrogen 
is needed for the synthesis of amino acids, nucleic acids, 
and other nitrogen compounds including chitin which is 
an important component of the cell wall. Thus, for proper 
growth of PO appropriate amount of carbon and nitrogen 
should be present for optimal growth and development, or 
else the C/N ratio being too high or too low can lead to inhi-
bition of fungi growth (Zakil et al. 2022).

Fig. 4  Comparison between 
lignin removal of different pre-
treatment combinations
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Table 4  Duration of first 
mushroom harvest on substrates 
with and without biochar 
addition

Sample Duration of first mushroom harvest (days)

No additive 5% Biochar 7.5% Biochar 10% Biochar

WS 36 33 31 31
RS 33 30 29 28
PMS 32 29 27 26
WS + RS 35 32 30 29
PMS + WS 34 33 28 28
RS + PMS 35 31 28 27
WS + RS + PMS 33 30 27 26
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With the addition of biochar, mushroom growth was 
enhanced hence reducing the duration of harvesting. The 
porous nature of biochar is an essential factor responsible for 
the growth of mushrooms as it absorbs water and nutrients 
from agro-waste and is made available to mycelium. The abil-
ity of biochar to translocate these nutrients and water through 
its porous network may further support the growth of myce-
lium by enabling it easily colonize the substrate (Zhu et al. 
2017). Biochar likely acted as a place for retaining nutrients 
and water from RS, WS, and PMS to promote PO growth.

The amount of fresh mushroom harvested on agro-
waste was recorded as maximum for the combination of 
PMS + WS + RS with a 10% biochar addition of 746mg 
whereas a minimum yield of 460mg was recorded for the 
WS sample without the addition of biochar. It showed that 
using a variety of agro-waste for mushroom growth, some 
amount of increment is seen in the number of mushrooms 
harvested. But mushrooms harvested on PMS and RS alone 
with 10% biochar addition also showed good yields of 676 
and 624mg respectively as shown in Fig. 5. Using PMS and 
RS samples individually and in combinations showed more 
yield compared to a sample consisting of WS.

For the analysis of mushrooms, BE is an important factor 
as it represents the amount of mushroom yield based on the 
amount of dry substrate. The significance of BE is to iden-
tify the effectiveness of mushrooms and the combination of 
substrates used for mushroom growth. As shown in Fig. 6, 
the most effective mushroom growth was best for the com-
bination of substrates (PMS + WS + RS) of 91.42%, 89.17%, 
86.64%, and 84.31% with 10%, 7.5%, 5% biochar addition, 
and without biochar addition respectively whereas RS alone 
(89.46%) showed better combination effectiveness compared 

to PMS (75.73%) with 10% biochar addition. BE of WS was 
a minimum of 55.99% which was similar to findings on the 
same substrate by (Muswati et al. 2021). Overall, biochar is 
promising bio-fertilizer or supplement for enhanced myce-
lium growth and further oyster mushroom growth.

Bio‑methane potential (BMP) test

AD of SMS (remains after fungal pre-treatment) was carried 
in batch mode for 15 days duration at 55°C (thermophilic con-
dition). Biochar traces were still present in the substrate after 
pre-treatment which acts as an improvement source in biogas 
production. To investigate the potential synergistic effects of 
combining various agricultural waste materials on biomethane 
production, the mixture of substrates resulted in higher biome-
thane yields compared to individual substrates. Combinations 
were utilized as a means of exploring the potential benefits of 
utilizing mixed substrates for biomethane production.

The spent mushroom substrate (SMS) was employed 
after the pre-treatment of agro-waste materials with Pleuro-
tus ostreatus and biochar. The objective of the study was to 
determine the potential increase in biomethane production 
resulting from the use of treated SMS and to compare this 
with the biomethane yield of untreated SMS. The labora-
tory-scale batch mode bottles were supplemented with SMS 
samples, both treated and untreated. The bottle and incuba-
tor were purposefully engineered to create an environment 
that would facilitate the ideal conditions for the microbial 
consortium responsible for the production of methane. The 
SMS samples underwent controlled conditions of retention 
time, temperature, and pH to promote the growth of anaero-
bic microorganisms during the testing process.

Fig. 5  Weight estimation of 
fresh mushroom
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The findings suggest that the application of treatment 
to the SMS resulted in a greater production of biomethane 
in comparison to the SMS that was not treated. The find-
ings indicate that the application of Pleurotus ostreatus and 
biochar as pre-treatment agents resulted in an increase in 
substrate digestibility and a corresponding enhancement in 
methane gas produced during anaerobic digestion.

From Fig. 7, it is clear that all the substrates with biochar 
addition examined in this study show better cumulative biogas 
yield compared to substrates with no biochar addition, and 
the substrate with more biochar content showed a higher 
amount of biogas yield. The highest cumulative biogas yield 
was seen with 10% biochar content of 867 ml/gmVS for SMS 
of combination PMS + RS + WS and SMS of PMS sample 
along with RS individual and in combination also show a 
high cumulative yield of 711 ml/gmVS and 763 ml/gmVS 
respectively. Whereas minimum yield was seen in WS for all 
pre-treatment conditions with or without biochar. The high-
est cumulative biogas yield obtained from SMS of combi-
nation PMS + RS + WS with 10% biochar was 18%,24.1%, 
and 31.37% that of individual SMS of PMS, RS, and WS 
respectively, whereas 28.83% compared to combination 
PMS + RS + WS with no additive and 40.48% compared to no 
additive as well as no fungal pre-treatment. Whereas the aver-
age biogas yield of 36 ml/gmVS was also found maximum 
for SMS of combination PMS + RS + WS with 10% biochar.

The result of our study was found to be comparable with 
many other studies using fungal pre-treatment and substrates 
RS, PMS, and WS. (Yadav et al. 2019) analyzed the fungal 
pre-treatment on WS showed 470 ml/gmVS which was com-
parable to fungal pre-treatment on WS (452 ml/gmVS) in 

our study, whereas they preferred coupled pre-treatment fol-
lowed by a bacterium which resulted in 570 ml/gmVS which 
was found less to our study in which fungal pre-treatment 
enhanced with the addition of 7.5% biochar on WS (647 ml/
gmVS). Similarly, they analyzed the same for the PMS in 
which with fungal pre-treatment they found a biogas yield 
of 450 ml/gmVS and which was comparable with our study 
for PMS (472 ml/gmVS) with fungal pre-treatment.

With the fungal pre-treatment and biochar addition about 
52% increment was seen in biogas generation compared to no 
pre-treatment in this study which was higher than study done 
by using other pre-treatment methods (Kucuker et al. 2020; 
Kumar et al. 2021a, b; Yuhendra et al. 2021). (Zhang et al. 
2021) used PO for pre-treatment process showed 51% incre-
ment in biogas yield which was lower than the biogas yield 
found in this study. The amount biogas produced from RS was 
658 ml/gmVS which was found higher than the study made by 
(Kainthola et al. 2019).

Cumulative and daily biogas production shows dynamic 
behaviour in the process and for methane content in biogas 
also (Gao et al. 2021). Biogas generated from the AD pro-
cess of lignocellulosic biomass is low due to the complex 
structure at the molecular level of lignocellulosic biomass 
which shows difficulties in degradation and whereas the 
pre-treatment process breaks it into a modest structure and 
degrades the lignin content, hence making things easier for 
micro-organisms (Pan et al. 2021; Gómez et al. 2018).

Biochar being a porous material facilitates biofilm forma-
tion, which provides a shield to microorganisms for selective 
enrichment during the AD process when acidic conditions 
are formed. The biochar absorbs nutrients from biomass as 

Fig. 6  Biological efficiency of 
mushroom production on differ-
ent agro-waste
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well as pores of biochar delivering a microhabitat for the 
microbial community which leads to enhanced growth of 
microorganisms (Luz et al. 2018; Kumar et al. 2021a, b). 
Biochar pH varies in the alkaline range owing to the pres-
ence of ash content, so under acidic conditions, biochar can 
facilitate the methanogenesis process effectively which leads 
to optimal operating conditions and increased total solids 
(Yin et al. 2016, 2019).

The average biogas yield for SMS of RS, WS, and PMS 
alone was less compared to that with the combinations of 
SMS of PMS as shown in Table 5 due to a balanced C/N 
ratio and PMS having a low C/N ratio compared to others 
(Yadav et al. 2019; Paritosh et al. 2020). SMS of combina-
tions PMS + RS and WS + PMS showed better biogas yield 
compared to SMS of combination WS + RS due to the less 
dense structure of PMS than RS and WS results in better 
lignin removal further increasing biogas yield.

Biomethane content

Average methane content generally varied between a 
minimum of 3.59 ml/gmVS for WS with no pre-treat-
ment to a maximum of 15.82 ml/gmVS for combination 
PMS + RS + WS with 10% biochar addition. Combinations 
showed a high amount of methane content compared to their 
counterpart.

Cumulative bio-methane content generally varied 
between a minimum of 92 ml/gVS for WS with no pre-
treatment to a maximum of 383 ml/gVS for a combination 
PMS + RS + WS with 10% biochar addition. Combinations 
showed a high amount of methane content compared to their 
counterpart as shown in Fig. 8. Using co-substrate in ther-
mophilic conditions results faster degradation of organic 
matter which reduce the duration of BMP test and also the 
amount of  CO2 produced is less (Paritosh et al. 2020).

(Mustafa et al. 2016) examine the PO pre-treatment to 
enhance the methane content from RS and obtained about 
42.5% methane yield whereas methane yield obtained in 
this study for RS was found 5–8% higher. (Kainthola et al. 
2019) analyzed the fungal pre-treatment by PO on RS which 
showed 269.99ml/gVS methane yield whereas in this study 
298ml/gVS methane yield was seen which is more.

With the use of biochar, methane content increased as 
biochar adsorbs the  CO2 through physical adsorption due 
to its high specific surface area and also the presence of 
free radicals, metals, and metal oxide on the biochar sur-
face which enhance the electron donating via the oxidation 
process (Chacon et al. 2020; Arenas et al. 2020). PMS indi-
vidually and in combination showed better methane content 
due to its less dense topology structure and  CO2 fixation 
compared to RS and WS (Wang et al. 2012).

Conclusion

Fungal pre-treatment (PO) was carried out on individual 
and combinations of agro-waste (RS, WS, and PMS) with 
the addition of biochar (5%, 7.5%, and 10%) during the pre-
treatment phase to reduce the duration of pre-treatment and 
to enhance the biomethane yield. The extent of pre-treatment 
was recorded with the maximum lignin removal of 40.4% 
for RS + PMS + WS as compared to untreated counterparts 
and 0.5%, 2.2%, and 3.3% times more lignin removal from 
individual PMS, RS, and WS respectively. PMS showed 
better lignin removal than RS and WS due to its less dense 
structure. The addition of biochar to the substrates reduced 
the total pre-treatment duration by 2–5 days as compared 
to the non-biochar substrates. Duration of the first oyster 
mushroom harvesting for all the substrates with or without 
biochar took 26–36 days. Biological efficiency used for the 
analysis of mushroom growth varied from 51–92%. Effec-
tive mushroom growth denoted by BE was seen with 10% 
biochar in combination with PMS + WS + RS (91.42%) and 
RS (89.46%) alone whereas minimum BE was seen for WS 
(55.99%) without biochar. Therefore, biochar can be said an 
excellent bio-fertilizer for mycelium and further mushroom 
growth as biochar provides a microhabitat for better fungal 
growth. Biogas yield was found maximum for the combi-
nations due to the balance C/N ratio. Further, the highest 
cumulative biogas yield was seen with a 10% biochar content 
of 867 ml/gmVS for SMS of combination PMS + RS + WS. 
Additionally, this higher biomethane yield was 18%, 24.1%, 
and 31.37% times higher than individual SMS of PMS, RS, 
and WS respectively as biochar also absorbs  CO2 which 

Table 5  Average biogas yield

Average biogas yield (ml/gmVS)

Pre-treatment conditions R P W R + W R + P P + W P + W + R

No Pre-treatment 16 ± 0.25 13 ± 0.14 17 ± 0.36 13 ± 0.3 14 ± 0.35 15 ± 0.18 18 ± 0.4
PO Pretreatment + No Additive 18 ± 0.1 18 ± 0.15 18 ± 0.04 19 ± 0.18 21 ± 0.24 22 ± 0.48 27 ± 0.14
PO Pretreatment + 5% biochar 21 ± 0.08 21 ± 0.34 21 ± 0.85 21 ± 0.39 24 ± 0.47 26 ± 0.19 31 ± 0.07
PO Pretreatment + 7.5% biochar 30 ± 0.05 31 ± 0.0.26 30 ± 0.31 30 ± 0.35 34 ± 0.28 35 ± 0.24 35 ± 0.12
PO Pretreatment + 10% biochar 28 ± 0.09 27 ± 0.47 28 ± 0.15 27 ± 0.1 32 ± 0.2 34 ± 0.27 36 ± 0.22
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yields enhance biomethane yield. The current study shows 
that biochar not only enhances the bio-methane yield but 
also reduces the biological pre-treatment duration and it also 
removes the dependency on one lignocellulosic biomass for 
energy (bio-methane) and food (mushroom) production and 
also reduce the dependency on one substrate as combination 
showed better results.

Further this slurry obtained after the AD process can be tested 
for fertilizer purpose and hence creating a circular economy 
which can be studied in future. As the mushroom cultivation was 
used in this study, a simultaneous study including microalgae in 
AD process with SMS can be studied in future as well as also to 
examine simultaneously the bio-oil production from microalgae 
and biogas production from fungal pre-treatment.
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