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Abstract
There has always been controversy over how renewable energy technologies can play a role in reducing carbon emissions. 
Based on the energy patent data and the economic data of 244 prefecture-level cities from 2007 to 2017 in China, we explore 
the carbon reduction effect of renewable energy technology and its mechanism from the perspective of energy production, 
conservation, and management. The two-way fixed effect, instrumental variable, spatial Durbin, and mediation effect models 
are employed to explore empirical results. We found that (1) the impact of renewable energy technologies on carbon emis-
sions is nonlinear, with an inverted U shape. However, this inverted U-shaped relationship only exists locally in cities and 
there are uncertainties in adjacent cities, which indicates that cross-regional cooperation in renewable energy technology 
needs to be improved. (2) The mechanism analysis shows that industrial agglomeration and energy consumption scale are 
the channels that renewable energy technologies affect carbon emissions. Thus, the implicit carbon emissions generated by 
industrial agglomeration and the failure to green upgrade energy consumption are the main reasons for the inverted U-shaped 
relationship. (3) The carbon reduction effect of renewable energy technologies of conservation type takes effect first, and 
renewable energy technologies of production type do not reduce carbon emissions in non-eastern cities, which means that 
non-eastern cities are likely to become pollution havens. This study provides evidence for renewable energy technologies to 
achieve efficient carbon emission reduction and cross-regional technical cooperation.

Keywords Renewable energy technology innovation · Carbon emission · Energy patent · Spatial econometric model · 
Nonlinear effect

Introduction

Technological innovation plays a vital role in affecting 
pollution and carbon emissions (Wahab 2021). In particu-
lar, technological innovations in the energy sector have 
greatly contributed to reconciling the potential contradic-
tion between economic growth and carbon emission (Zhang 
and Cheng 2009; Khan et al. 2023a; Khan et al. 2023b). It 
is noteworthy that the impact of energy technology inno-
vation on carbon emissions is uncertain (Álvarez-herránz 
et al. 2017; Zhu et al. 2020). The main reason is that differ-
ent from green technology innovation, energy technology 

innovation is not beneficial to the environment entirely. In 
other words, although non-green energy technology inno-
vation has improved energy intensity, it will increase non-
green energy consumption (Qu et al. 2023), which will not 
decrease carbon emission. This is the earliest inference about 
the energy rebound effect from the Jevons paradox. Conse-
quently, because of the intervention of the energy rebound 
effect, it is necessary to determine whether technological 
innovation can reduce carbon emissions (Yang and Li 2017). 
However, the innovation of energy technology in Jevons par-
adox period mainly focused on coal, oil, and other traditional 
fossil energy, and the concept of renewable energy was still 
in its infancy. The emission reduction effect of the current 
renewable energy technology innovation has always been 
controversial and needs to be discussed (Qu et al. 2022; Su 
and Fan 2022; Yang et al. 2019).

Renewable energy sources and their technologies are 
considered clean compared to fossil energy sources (Wang 
et  al. 2023). However, renewable energy technology  
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can play a role in carbon emission reduction only when it is 
applied in practice (Wang and Zhu 2020), some areas do not 
have the appropriate natural resources for renewable energy 
generation. In other words, the renewable energy technology 
developed in place A does not have to be effective only in 
place A (Zhu et al. 2020). For instance, cities in Beijing-
Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta 
in China are regions with high carbon emissions and are 
also the regions with the strongest innovation vitality and 
the most patent applications. Most of the renewable energy 
technologies are applied in cities with relatively abundant 
renewable energy resources. In these cities, carbon emission 
reduction effect is generated by the application of renewable 
energy technologies to replace fossil energy. The carbon 
emission reduction effect of renewable energy technology 
will be affected in neighboring cities with relatively scarce 
renewable energy resources. Consequently, the impact of 
renewable technology innovation on carbon emissions may 
have a spatial spillover effect (Chen et al. 2018a; Jiang et al. 
2022; Lin and Ma 2022; Yang et al. 2019).

In addition, we need to further explain the mechanism 
by which renewable energy technology reduces carbon 
emissions. Specifically, renewable energy technology 
innovation will positively promote industrial structure 
green transformation and energy structure optimization (Su 
and Fan 2022; Wang and Zhu 2020). As a matter of fact, 
renewable energy technology is generally considered clean, 
so the development of renewable energy technology is a 
sign of green transformation of industrial structure. On the 
other hand, innovation in renewable energy technologies 
can help energy transformation by encouraging the 
substitution of fossil fuels, in order to obtain its effect 
of reducing carbon emissions (Dilanchiev et al. 2023). 
However, economic development creates a rigid demand 
for energy resources, and while there is a transition towards 
a greener energy consumption structure, the energy 
consumption scale is also gradually expanding. It is only 
through the coordination and synchronization of the energy 
consumption structure and scale that renewable energy 
technologies can effectively reduce carbon emissions. A 
similar situation exists at the industrial level. Consequently, 
mechanism analysis is carried out from the energy and 
industry levels to explain the impact of renewable energy 
technologies on carbon emissions. The production process 
and management process of energy and the new technology 
and method of energy application are considered as 
technological innovation. Different types of renewable 
energy technology innovation may have different impacts 
on carbon emissions. This paper divides renewable energy 
technologies from the perspectives of energy production, 
conservation, and management, and discusses the carbon 
emission reduction effects of different types of renewable 
energy technologies.

Generally, the potential contributions of this paper are 
as follows. (1) We have provided new evidence for the non-
linear impact of renewable energy technology innovation 
on carbon emissions and from the perspective of energy 
production, conservation, and management. (2) The media-
tion effect model is employed to comprehensively analyze 
the mechanisms of renewable energy technology innovation 
affecting carbon emissions, including energy-related and 
industrial channels, to explain the causes of nonlinearity. (3) 
Considering the spatial spillover effect of carbon emissions 
and renewable energy technologies, and based on the geo-
graphic and economic composite weight matrix, the impact 
of renewable energy technology innovation on carbon emis-
sions is investigated from a spatial perspective.

This paper is organized as follows. The literature review 
and research hypothesis are presented in the “Literature 
review” section. The methodology is shown in the “Meth-
odology” section. The “Data and variables” section shows 
data and variables. The “Empirical results and discussion” 
section includes the empirical results and discussion. The 
conclusions are in the “Conclusion and policy implications” 
section.

Literature review

Although many studies have recognized the irreplaceable 
impact of technology on pollutants, the pollution emission of 
the previous studies focuses on  SO2, nitrogen oxide (NOx), 
and biological oxygen demand (BOD), and less on carbon 
emission, the main factor causing climate change. In the 
context of increasingly serious climate change, we need to 
pay attention not only to the emissions of pollutants such as 
sulfur dioxide, wastewater, solid waste, and PM2.5 involved 
in traditional fields, but also to greenhouse gases represented 
by carbon, which is consistent with the goal of carbon peak 
and carbon neutralization in China.

Nonlinear impact of renewable energy technology 
innovation on carbon emissions

Numerous studies have found that the impact of technology 
innovation on carbon emissions is not immutable. The typi-
cal theoretical explanation is the rebound effect or backfires 
effect in the energy sector, which is an old issue that comes 
from the Jevons paradox. For instance, Yang and Li (2017) 
believe that although technology innovation is the greatest 
contributor to carbon emission mitigation, however, due to 
the rebound effect, the carbon emission reduction effect of 
technology innovation needed further study. Chang et al. 
(2018) found that when the technology level in clean-good 
production is higher, the rebound effect is more pronounced, 
and there are more pollutants, which leads to the unstable 
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impact of technology innovation on the environment. Berner 
et al. (2022) support the conclusion of the rebound effect 
that the improvement of energy efficiency brought about by 
technological innovation will not reduce carbon emissions 
immediately. Moreover, Sun et al. (2019) believe that the 
current green innovation realizes energy conservation and 
emission reduction through improving energy efficiency, 
which depends on the support of the government. Due to the 
cost effect, it is difficult for green innovation to reduce car-
bon emissions in the short term only by relying on the role of 
the market-oriented. The study from Álvarez-herránz et al. 
(2017) suggests that the carbon reduction effects of energy 
technology innovation may not be achieved overnight. 
Dauda et al. (2021) used panel data from 1990 to 2016 in 
Africa to explore the impact of innovation on carbon emis-
sions and found that there was a nonlinear inverse U-shaped 
relationship between innovation and carbon emissions. Lin 
and Zhu (2019) focus on China and discussed the impact of 
renewable energy technology innovation on carbon emis-
sions, which is a study specifically aimed at energy technol-
ogy. They believed it necessary to consider the nonlinear 
impact of renewable energy technology on carbon emissions. 
Obobisa et al. (2022)’s research believes that although green 
innovation and the increase of renewable energy consump-
tion benefit reduced carbon emissions, its carbon emission 
reduction effect is based on economic growth and institu-
tions. Based on these viewpoints, we believe that the impact 
of renewable energy technology innovation on carbon emis-
sions may show a nonlinear characteristic.

Hypothesis 1. Renewable energy technology innovation 
has a nonlinear impact on carbon emissions.

Spatial spillover effects of renewable energy 
technology innovation on carbon emissions

Then, why is the impact of renewable energy technology 
innovation on carbon emissions nonlinear? Many scholars 
tried to explore this issue from the perspective of the spatial 
spillover effect of carbon emissions and technology inno-
vation. One potential fact is that pollutants such as carbon 
emissions have significant spatial autocorrelation features. 
Balado-Naves et al. (2018) believe that considering the spa-
tial spillover effect of carbon emissions is helpful to fur-
ther explore the EKC hypothesis’s assertion about pollut-
ants and economic growth. Subsequently, Fernández et al. 
(2022) and Peng et al. (2021) believe that energy technology 
and green technology also have the spatial diffusion effect, 
and it is impossible to accurately consider their impact on 
the economy and environment without considering the dif-
fusion of technology innovation. Yang et al. (2020) also 
considered the spatial effect of environment-biased tech-
nological progress and carbon emissions and found that 

environment-biased technological progress would increase 
fossil energy consumption, thereby increasing carbon emis-
sions. This is the main reason why green technologies can-
not directly achieve carbon reduction effects. The above 
discussions on green innovation and environment-biased 
technological progress have laid a solid foundation for the 
research of energy technology. Wang and Zhu (2020) stud-
ied the impact of energy technology innovation on carbon 
emissions by employing spatial econometrics and believed 
that renewable energy technology innovation can achieve 
a carbon emission reduction effect, and this effect still has 
spatial heterogeneity. Zhu et al. (2020) discuss the impact 
of renewable energy technology innovation on air pollution 
and believe that after considering the spatial spillover effect, 
different pollutants are significantly changed from each other 
in terms of the impact of renewable energy technology inno-
vation. It is not difficult to find that the impact of renewable 
energy technology innovation on carbon emissions can be 
accurately discussed only when the potential space spillover 
effect is considered.

Hypothesis 2. The impact of renewable energy technol-
ogy innovation on carbon emissions has a spatial spillover 
effect.

Carbon reduction channels for renewable energy 
technology innovation

When discussing the spatial spillover effect, some studies 
have pointed out that technology innovation will have an 
impact on carbon emissions through energy and industry 
channels (Yang et al. 2020; Wang and Zhu 2020). Lin and 
Ma (2022) analyzed the channels through which green tech-
nology innovation affects carbon emissions, and found that 
energy efficiency, energy structure, and industrial upgrad-
ing are the main factors. Su and Fan (2022) believe that 
the joint action of renewable energy technology innova-
tion and industrial structure upgrading can promote green 
economic development. Its research shows that renewable 
energy technology innovation can further affect the econ-
omy and the environment through industrial upgrading. Xu 
et al. (2021) pointed out that green technology innovation 
will affect carbon emission performance through industrial 
structure and energy consumption structure. Meanwhile, 
industrial agglomeration is also considered to be an impor-
tant factor affecting air pollutants and carbon emissions 
(Chen et al. 2022a).

Moreover, as renewable energy technology innovation 
is closely related to the energy sector, it is an indisputable 
fact that renewable energy technology innovation can affect 
energy consumption structure, energy efficiency, and other 
energy factors (Obobisa et al. 2022). Yang et al. (2019) 
pointed out the potential impact of energy structure when 
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discussing the influencing factors of energy technology inno-
vation. Lin and Zhu (2019) also believe that attention must 
be paid to the energy structure when exploring renewable 
energy technologies, including fossil energy consumption 
and renewable energy consumption. Therefore, we indicate 
the energy effects of renewable energy technology innova-
tion on carbon emissions in terms of energy consumption 
scale, energy consumption structure, and energy intensity. 
Regarding the industrial effect, we rely on industrial struc-
ture and industrial agglomeration to measure it. The research 
hypothesis is as follows:

Hypothesis 3. Renewable energy technology innovation 
can affect carbon emissions through energy and industry 
factors.

Methodology

The empirical analysis method is expanded from the Sto-
chastic Impacts by Regression on Population, Affluence, and 
Technology (STIRPAT) model. The STIRPAT model is a 
classical method to discuss pollution emission and its impact 
factors, and it is widely employed to analyze the environ-
mental impact of technology (Chen et al. 2022a; Huang et al. 
2021; Sadorsky 2014; Shao et al. 2011; Xu and Lin 2015; 
Zhu et al. 2020).

Firstly, we extend the STIRPAT model to obtain a base-
line model of this paper in nonlinear formation:

In Eq. (1), we employ renewable energy technology inno-
vation (RETI) to replace the technology (T) in the STIRPAT 
model to explore its impact on carbon emissions and mecha-
nism. The quadratic term of renewable energy technology 
innovation (RETI2) is used to explore the potential nonlinear 
impact of renewable energy technology innovation on car-
bon emissions.

The dependent variable is the carbon emissions (CO2) 
of the city i in year t. X represents a set of control variables, 
including population (POP), affluence (pGDP and pGDP2), 
foreign direct investment (FDI), government intervention 
(GOV), financial development (FD), urbanization (URB), 
transportation infrastructure (TI), and green space (GS). γi 
and μt denote city fixed effect and year fixed effect, respec-
tively. εit indicates the error term. This paper clusters to the 
city level.

In addition, to decrease potential endogeneity caused by 
reverse causality (Habiba et al. 2022), the impact of renew-
able energy technology innovation on carbon emissions 
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was discussed based on the two-stage least square (2SLS) 
method and instrumental variables (IV) as follows:

Eq. (2) and Eq. (3) constitute the first stage and the 
second stage regressions. IV is an instrumental variable for 
renewable energy technology innovation of city i in year t. 
The instrumental variables in this paper are environmen-
tal concerns (EV), environmental regulation (ER), and the 
lag term of RETI, respectively. The interpretation of other 
variables was consistent with Eq. (1).

Secondly, we extend Eq. (1) to the spatial econometric 
model to analyze the potential spatial spillover effect of 
renewable energy technology innovation on carbon emis-
sions. Some studies believe that there is a spatial spillover 
effect of carbon emissions (Chen et al. 2022a; Wang and 
Zhu 2020; Yang et al. 2020; Dong et al. 2022), so we can 
consider that the dependent variable in Eq. (1) has spatial 
effects. In addition, the spatial spillover effect of techno-
logical innovation has also been confirmed to some extent 
(Fernández et al. 2022; Peng et al. 2021; Zhu et al. 2020), 
so the independent variable and its quadratic term also 
have the spatial spillover effect. Consequently, the spatial 
Durbin model (SDM) is considered. The SDM model of 
Eq. (4) is as follows:

where ρ is the coefficient of spatial effect with the depend-
ent variable, and W is the spatial weight matrix. Other vari-
ables have the same meaning as Eq. (1). Regarding the spa-
tial weight matrix (W), economic distance weight matrix 
(WGDP), geographic distance weight matrix (WGEO), and 
composite spatial weight matrix (W1 and W2) are considered, 
where the geographic distance matrix (WGEO) is gotten by 
calculating the latitude and longitude distance (d) between 
city i and city j, which is expressed as follows:

The economic distance matrix (WGDP) is gotten by cal-
culating the difference between the average value of per 
capita GDP (Y) in the sample period of city i and city j.
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The composite spatial weight matrix of W1 is composed 
of a WGDP and a WGEO as follows:

where ϕ represents the weight of WGEO and WGDP in W1, 
and ϕ ∈ (0, 1). We assume that ϕ = 0.5 which shows that the 
power of geographical distance and economic distance on 
spatial spillover effect is similar.

The composite spatial weight matrix of W2 is used for the 
robustness test, as follows:

The index of Moran’s I is employed to test the spatial 
effect, which is a typical practice (Yang et al. 2020; Zhu 
et al. 2020).

Thirdly, the mediation effect models employed for mecha-
nism analysis are as follows:

M is the mediation variable, including the industrial 
structure (IS), industrial agglomeration (AGG ), energy con-
sumption scale (EC), energy consumption structure (ES), 
and energy intensity (EI). Y is a set of control variables 
except for the mediation variable. The meanings of γi, μt, and 
εit are consistent with Eq. (1). If coefficients θ1, β1, and λ2 in 
Eq. (9), Eq. (10), and Eq. (11) are significant, and the coef-
ficient of λ1 compared θ1 in Eq. (11) and Eq. (9) becomes 
smaller or decreased significantly, which indicates that there 
is a mediation effect.

Data and variables

We employ the data of 244 prefecture-level cities in China 
as the research sample and the period of 2007 to 2017. 
Since there are various missing observations in prefecture-
level cities before 2006, the research sample of this paper 
starts from 2007. Due to the lack of data on the environ-
ment and energy consumption, prefecture-level cities in 
Tibet, Hong Kong, Macao, and Taiwan are not included. 
We have retained prefecture-level cities with relatively 
complete data on foreign direct investment in the areas 
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of Xinjiang, Qinghai, Gansu, Ningxia, and Inner Mongo-
lia. In addition, for the consistency of the sample period, 
prefecture-level cities with short establishment time are 
excluded from the research sample (e.g., cities named San-
sha, Suizhou, and Danzhou). Taking 2007 as the base year, 
we employed the GDP price index to deflate the per capita 
GDP data to eliminate the impact of price fluctuations. The 
GDP price index is collected on the website of the develop-
ment research center of the State Council1.

Dependent variable

This paper takes the carbon emissions (CO2) and their per 
capita form (pCO2) of prefecture-level cities in China as 
the dependent variables (Chen et al. 2022b; Lin and Ma 
2022; Wang and Zhu 2020). The data on carbon emissions 
are mainly collected from China Emission Accounts and 
Datasets (CEADs)2 and populated using energy data from 
the China Urban Statistical Yearbook and the research from 
Chen et al. (2021).

Main independent variables

The main independent variables are renewable energy tech-
nology innovation (RETI) and its quadratic term (RETI2). 
This paper measures the level of RETI in an area based on 
the number of renewable energy technology patent applica-
tions (Noailly and Smeets 2015; Noailly and Smeets 2021). 
Measuring the energy technology innovation by energy pat-
ents has been widely used (Fernández et al. 2022; Huang 
et al. 2021; Johnstone et al. 2010; Noailly and Shestalova 
2017; Qu et al. 2022, 2023; Wang and Zhu 2020). It is note-
worthy that the technologies related to the application of 
energy cover many fields. Therefore, from the perspective 
of production, conservation, and management of energy, we 
divide the above renewable energy technology patents into 
three types: energy production (RETI_EP), energy conserva-
tion (RETI_EC), and energy management (RETI_EM).

Specifically, the renewable energy technology innovation 
of the energy production type includes solar energy, wind 
energy, geothermal energy, hydro energy, marine (ocean) 
energy, biomass energy, and waste-to-energy. Renewable 
energy technology innovation of the energy conservation 
type includes storage of electricity energy, storage of ther-
mal energy, and measurement of electricity consumption. 
The renewable energy technology innovation of the energy 
management type includes treatment of energy waste, reuse 
of energy waste materials, pollution control, and so on.

1 http:// www. drcnet. com. cn/ www/ int/
2 https:// www. ceads. net. cn/

http://www.drcnet.com.cn/www/int/
https://www.ceads.net.cn/
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The patent data representing innovation comes from 
the China National Intellectual Property Administration 
(CNIPA) and is matched to the prefecture-level city through 
the address and zip code of the renewable energy technol-
ogy patent. The international patent classification (IPC) of 
relevant renewable energy technology patents is provided in 
Table 16 of Appendix 1.

Instrumental variables

To alleviate the endogeneity caused by the reverse causality 
between carbon emissions and renewable energy technol-
ogy innovation, this paper uses the following instrumental 
variables for 2SLS:

(1) According to Xu et al. (2021), we believe that environ-
mental concerns (EV) can be used as an instrumental 
variable for renewable energy technology innovation. 
The improvement of public environmental concerns 
will have a positive impact on renewable energy tech-
nology innovation. Environmental concern is mostly 
the choice of public opinion or individuals, and the 
level of environmental concern will not affect carbon 
emissions (Li et al. 2021). This paper uses the Baidu 
Index to measure environmental concern, which is 
considered to be an effective indicator to measure 
public environmental concern in the context of the 
information time (Du et al. 2019; Li et al. 2021; Liu 
et al. 2019). Similar schemes refer to the Google Index 
(Kahn and Kotchen 2011; Zheng et al. 2012). Specifi-
cally, haze, environmental pollution, air pollution, and 
climate change were selected as the search keywords 
of the Baidu Index. The reason for selecting these key-
words is that they have high public perception and can 
represent the public’s concern about the environment, 
that is, environmental concern (Li et al. 2021).

(2) Another instrumental variable of renewable energy 
technology innovation is environmental regulation 
(ER). Numerous studies have revealed that envi-
ronmental regulation can have an impact on techno-
logical innovation, and green innovation, including 
renewable energy technology innovation (Shao et al. 
2020). Although the environmental regulation shows 
the reduction of pollution emissions (Du et al. 2019), 
however, according to the Porter hypothesis, the com-
pliance cost effect and innovation offset effect jointly 
determine the impact of environmental regulation on 
enterprise innovation (Shao et al. 2020). Renewable 
energy technology innovation can reduce pollution 
emissions and thus reduce compliance costs with envi-
ronmental regulations. Referring to Chen et al. (2018b), 
this paper adopts the proportion of the frequency of 
words related to the word “environmental protection” 

in the local government work report in the number of 
words in the full text of the report as the proxy variable 
of environmental regulation.

In addition, the first-order lag of renewable energy tech-
nology innovation will also be regarded as an instrumental 
variable for comparative analysis.

Control variables

The baseline and spatial econometric models in this paper 
are extended by the STIRPAT model, so other variables 
affecting carbon emissions need to be controlled.

(1) Population density (POP): The population of a region 
is an important factor affecting carbon emissions (Chen 
et al. 2018a), which is prominent in developing coun-
tries. The population density is expressed by the popu-
lation per unit area of each prefecture-level city in this 
paper.

(2) Economic development (pGDP and pGDP2): The envi-
ronmental Kuznets curve (EKC) hypothesis shows that 
there is a nonlinear relationship between economic 
development and carbon emissions (Balado-Naves 
et al. 2018). Per capita GDP is a typical indicator to 
measure the economic development of a city. Concur-
rently, the nonlinear relationship described in the EKC 
hypothesis is investigated with the support of the quad-
ratic term of per capita GDP (pGDP2).

(3) Foreign direct investment (FDI): The direction of the 
impact of foreign direct investment on carbon emis-
sions is uncertain. Some studies believe that FDI helps 
to control carbon emissions (Zhang and Zhou 2016), 
but there are also opposite conclusions (Yang et al. 
2020). In this paper, the FDI is expressed as the pro-
portion of foreign direct investment in GDP.

(4) Government intervention (GOV): As the macroeco-
nomic actors, government intervention will certainly 
have an impact on pollution emissions (Wang et al. 
2021b). However, the impact of government interven-
tion on pollution emissions may show nonlinear fea-
tures. We describe government intervention in terms of 
the proportion of expenditure in the local fiscal budget 
in GDP (Peng et al. 2021).

(5) Financial development (FD): The impact of financial 
development on carbon emissions has always been 
a concern (Acheampong et al. 2020; Shahbaz et al. 
2021). This paper employs the proportion of the cash 
surplus of various loans of financial institutions in GDP 
at the end of the year as the proxy variable of financial 
development.

(6) Urbanization (URB): The carbon emission caused 
by urbanization is also a hot issue of academic con-
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cern (Sadorsky 2014; Wang et al. 2021a). Mean-
while, the time-varying and U-shaped relationship 
between urbanization and carbon emissions have 
been partially discussed (Sufyanullah et al. 2022; 
Xu and Lin 2015). Therefore, the proxy variable 
of urbanization is constructed by the digital num-
ber (DN) of the grayscale value by employing the 
nighttime light data provided by the National Geo-
physical Data Center (NGDC) with unstable light 
sources removed (Liu et al. 2012; Xu et al. 2021). In 
addition, the nighttime stable light data in the mete-
orological satellite program’s operational linescan 
system (DMSP-OLS)3 format and the national polar-
orbiting partnership satellite’s visible infrared imag-
ing radiometer suite (NPP-VIIRS)4 format are cali-
brated concerning Chen et al. (2021) and Hu et al. 
(2022) methods.

(7) Transportation infrastructure (TI): The development of 
infrastructure in a city will promote energy consump-
tion and generate carbon emissions (Chen et al. 2022b), 
especially transportation infrastructure (Xie et  al. 
2017). In this paper, the transportation infrastructure 
is represented by the actual paved per capita road area 
at the end of the year.

(8) Green space (GS): Urban afforestation, forest, and veg-
etation are considered an early classical carbon storage 
scheme, which can inhibit carbon emissions (Jo 2002; 
Zhao et al. 2010). The per capita public green area is 
the proxy variable of green space in this paper.

Mechanism variables

Mechanism analysis is divided into energy factors and indus-
trial factors.

(1) Industrial factor mechanism variables include indus-
trial structure (IS) and industrial agglomeration (AGG 
). Industrial structure has always been regarded as a key 
factor causing air pollution and affecting carbon emissions 
(Yang et al. 2020). Generally, the manufacturing industry (a 
secondary sector of the economy in China) is an important 
source of increasing carbon emissions (Chen et al. 2019; 
Zhu et al. 2020). We regard the industrial structure as the 
proportion of the secondary sector of the economy in GDP 
because it is the main energy-consuming sector. Industrial 
agglomeration will also have an impact on air pollutants 
or carbon emissions (Chen et al. 2022c; Yang et al. 2020), 
which may be an important reason for the spatial spillover 
effect of carbon emissions. Therefore, we employ a stand-
ardized location quotient to measure the level of industrial 

agglomeration concerning the O’Donoghue and Gleave 
(2004) method as follows:

where eir represents the employment of r industry in city 
i. We measure the standardized location quotient by the 
employment of the secondary sector of the economy.

(2) Energy factor mechanism variables include energy 
consumption scale (EC), energy consumption structure 
(ES), and energy intensity (EI). There is no doubt that 
factors related to energy consumption are important 
reasons for carbon emissions, especially fossil energy 
(Zhang and Cheng 2009). Employing renewable energy 
is an important way to reduce carbon emissions (Huang 
et al. 2021; Wang et al. 2016). The energy consumption 
scale is measured in per capita form of standard coal. 
Due to the lack of data on renewable energy consumption 
in the prefecture-level city in China, this paper employs 
the proportion of electricity consumption in total energy 
consumption to represent the energy consumption struc-
ture (Xu et al. 2021). The energy intensity is measured 
by energy consumption scale per unit GDP (10,000 tons 
of standard coal).

Empirical results and discussion

This section includes the descriptive statistics; the second 
part is analysis of the baseline model; the third part is to 
eliminate potential endogeneity problems; the fourth part 
is considering the potential spatial spillover effect of CO2 
and RETI; the fifth part is the robustness test; the sixth part 
is the mechanism analysis based on the mediation effect 
model; and the seventh part is the analysis of the potential 
heterogeneity.

Descriptive statistics

All variables are presented in natural logarithms, and the 
logarithmic transformation with renewable energy technol-
ogy patents of (1 + X) to avoid missing values. The datasets 
of this paper come from the China City Statistical Yearbook, 
the China National Intellectual Property Administration 
(CNIPA), the National Geophysical Data Center (NGDC), 
and the government work reports of prefecture-level cities in 
China. Table 1 shows the descriptive statistics of variables.

Descriptive statistics make some facts emerge: (1) Not all  
cities in China have carried out renewable energy technology 
innovations. (2) The economic indicators show that there 
is a huge break in city development in China. (3) The gaps 

(12)AGG =
(
eir∕

∑
eir

)
∕

(
∑

eir∕
∑

i

∑

r

eir

)

3 http:// www. ngdc. noaa. gov/ eog/ dmsp. html
4 https:// eogda ta. mines. edu/ produ cts/ vnl/

http://www.ngdc.noaa.gov/eog/dmsp.html
https://eogdata.mines.edu/products/vnl/
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Table 1  Descriptive statistics of 
variables

Variables Mean Std. dev Min Max Obs

Dependent variables lnCO2 3.104 0.749 0.738 5.441 2684
lnpCO2 −2.846 0.654 −6.479 −0.355 2684

Main independent variables lnRETI 4.827 1.695 0 10.271 2684
lnRETI_EP 3.924 1.607 0 9.285 2684
lnRETI_EC 3.391 1.840 0 9.228 2684
lnRETI_EM 3.723 1.740 0 9.073 2684

Control variables lnpGDP 10.728 0.643 8.327 15.675 2684
lnPOP −3.349 0.872 −7.637 0.774 2684
lnGS 0.840 0.961 −5.877 4.328 2684
lnTI 1.053 0.889 −2.921 4.291 2684
lnFDI −5.396 1.349 −14.848 0.713 2684
lnGOV −0.989 0.754 −3.835 1.798 2684
lnFD 0.987 0.630 −2.043 3.247 2684
lnURB −1.204 1.472 −5.464 2.876 2684

Mechanism variables lnIS 3.875 0.263 2.276 4.477 2684
lnAGG −5.246 0.945 −8.198 −2.196 2684
lnES −0.277 0.784 −3.712 2.495 2684
lnEC 4.403 1.184 0.952 8.183 2684
lnEI −11.907 0.829 −14.709 −8.069 2684

Table 2  The estimation results 
of carbon emission in the 
baseline model

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in parentheses. Clustering to the city level

Variables lnCO2

(1) (2) (3) (4) (5)

lnRETI 0.0191*** 0.0644***
(5.45) (8.58)

lnRETI2 −0.0056***
(−7.32)

lnRETI_EP 0.0460***
(7.28)

lnRETI_EP2 −0.0050***
(−5.95)

lnRETI_EC 0.0264***
(5.88)

lnRETI_EC2 −0.0039***
(−5.98)

lnRETI_EM 0.0406***
(7.96)

lnRETI_EM2 −0.0052***
(−7.88)

Control variables Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes Yes
Constant 1.9127*** 2.9797*** 2.6387*** 2.7041*** 3.1090***

(5.21) (9.17) (7.76) (7.77) (9.65)
Adj R2 0.9917 0.9920 0.9919 0.9918 0.9920
Obs 2684 2684 2684 2684 2684
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between per capita public green area, foreign direct invest-
ment, and urbanization are prominent

Analysis of baseline model

Table 2 reports the baseline model based on Eq. (2). The 
dependent variable in columns (1) to (5) is carbon emis-
sions, and the independent variable in column (1) only 
contains the primary term of RETI. The empirical results 
in column (1) show that renewable energy technology 
innovation has not played a role in reducing carbon emis-
sions, which is contrary to intuition. Column (2) reports the 
empirical results considering the quadratic term of renew-
able energy technology innovation. The coefficients of the 
primary (RETI) and quadratic terms (RETI2) of the renewa-
ble energy technology innovation are significant at 1%, and 
the primary term is positive and the quadratic term is nega-
tive; that is, there is an important inverse U-shaped rela-
tionship between renewable energy technology innovation 
and carbon emissions. Based on column (2), the inflection 
point of the inverse U-shaped curve is further calculated 
(5.75), and it is found that only when the renewable energy 
technology innovation develops to the established scale, its 
carbon emission reduction effect can be highlighted. Due to 
space constraints, the coefficients of the control variables 
are reported in Table 17 of Appendix 1.

The reason for the above stylized facts may be due to 
the high cost of renewable energy technology and the dif-
ferent application purposes of renewable energy technol-
ogy. It is not difficult to find that there are various types of 
renewable energy technologies. For example, the carbon 
emission reduction effect of renewable energy technolo-
gies such as solar energy, wind energy, and hydro energy 
is indirectly highlighted by replacing the application of 
traditional fossil energy in electric power production. 
Therefore, the renewable energy technology of energy 
production type often has a long construction cycle and 
high investment cost, which makes it difficult to immedi-
ately show the effect of carbon emission reduction. The 
renewable energy technologies of energy management and 
energy conservation type are directly related to pollution 
treatment, pollutant recovery, and even carbon capture, 
utilization, and storage (CCUS). Although such tech-
nologies also have cost problems, their carbon emission 
reduction effects may be more prominent. We must also 
note that in the long run, renewable energy technology of 
energy production type can produce significant economic 
benefits, while other types of renewable energy technolo-
gies can improve utilization by reducing pollutants.

We further consider different types of renewable 
energy technologies with energy production (RETI_EP), 
energy conservation (RETI_EC), and energy management 
(RETI_EM). The empirical results in columns (3), (4), and 

(5) also show a similar inverse U shape, which indicates 
that the impact of different types of renewable energy 
technologies on carbon emissions may be analogous. 
However, in column (4), the inflection point between 
renewable energy technology of energy conservation type 
and carbon emission is earlier than column (2) (3.38 < 
5.75). The results show that renewable energy technology 
of energy conservation type can achieve carbon emission 
reduction faster than the other two technologies (3.38 <  
4.60, 3.38 < 3.91). This kind of renewable energy tech-
nology is related to storage of electricity energy, storage 
of thermal energy, measurement of electricity consump-
tion, low energy lighting, etc., in the modern society 
dominated by electrical appliances; these patents have 
greatly improved energy efficiency and played a direct 
role in reducing carbon emissions.

Analysis of endogeneity

Reverse causality is an easily discovered source of endoge-
neity problems. Cities with fewer carbon emissions may not 
be interested in renewable energy technology innovation, 
and the level of renewable energy technology innovation 
will have an impact on carbon emissions, which is a typi-
cal situation of reverse causality. The endogeneity problem 
caused by the reverse causality between carbon emissions 
and renewable energy technology innovation is addressed 
by the instrumental variable method and 2SLS. It should be 
noted that the Baidu Index started in 2011, so the sample 
period with environmental concern as the instrumental vari-
able is from 2011 to 2017.

Table 3  The first stage of the two-stage least square

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in 
parentheses. Clustering to the city level

Variables lnRETI

(1) (2) (3)

lnEV 0.0763***
(4.95)

lnER 0.0394***
(2.91)

L.lnRETI 0.0454**
(2.35)

Control variables Yes Yes Yes
Year fixed effect Yes Yes Yes
City fixed effect Yes Yes Yes
Constant −4.6830**

(−2.26)
−13.810***
(−4.09)

−11.6618***
(−3.40)

F test (p) 900.80
(0.000)

626.31
(0.000)

652.50
(0.000)

Adj R2 0.9922 0.9823 0.9848
Obs 1708 2684 2440
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The instrumental variables are environmental concerns, 
environmental regulation, and the first-order lag of renew-
able energy technology innovation. We can find the results 
of the first stage regression in Table 3. In columns (1) to 
(3), the coefficient between each instrumental variable and 
renewable energy technology innovation is significantly 
positive, and the F-statistic test is significantly greater than 
10 at 1%, indicating that there are no weak instruments. 
Therefore, environmental concern is conducive to renewable 
energy technology innovation, and environmental regula-
tion will also promote renewable energy technology innova-
tion. According to column (3), renewable energy technology 
innovation also has the features of technology dependence. 
The level of technological innovation in the early period 
will have an impact on the current period. Table 4 shows 
the results of the second stage of the 2SLS method. After 
considering the endogeneity problem, the causality between 
renewable energy technology innovation and carbon emis-
sions is still significantly inverse U-shaped at 1% and 5% 
levels. Therefore, the impact of renewable energy technol-
ogy on carbon emissions shows the first increase and then 
a decrease.

Analysis of spatial spillover effect

We further analyzed the potential spatial spillover effects of 
carbon emissions and renewable energy technology innova-
tion under the spatial weight matrix of W1. The index of 
Moran’s I is used for the spatial effect test with the variables 
of lnCO2 and lnRETI. The test results of the spatial effect 
are shown in Table 18 of Appendix 2. The Moran’s I scatter 
diagram (2007, 2012, and 2017) are presented in Fig. 1 and 
Fig. 2 of Appendix 2. To simplify the table, the coefficients 

of the control variables and their spatial lag terms are not 
reported in Table 5.

According to Table 5, the Wald-statistic test shows that 
the SDM model cannot degenerate into SEM or SAR mod-
els. The coefficient of the spatial lag term of the dependent 
variables (W*lnCO2) in columns (1) to (4) is significantly 
positive at the 1% level, which verifies that there is a sig-
nificant spatial spillover effect of carbon emissions. The 
reasons for this effect relate to the carbon pollution cycle 
and the carbon footprint formed by economic activities, 
which is consistent with the spatial effect test of Appendix 
2. This result implies that the governance of carbon emis-
sions needs the coordination of various cities.

After considering the spatial effects of dependent vari-
ables and main independent variables, the relationship 
between renewable energy technology innovation and 
carbon emissions still presents an inverse U shape. How-
ever, this inverse U-shaped relationship is effective for 
local renewable energy technologies, while the inverse U 
shape between renewable energy technologies and car-
bon emissions in adjacent cities is not reliable. Specifi-
cally, we further consider renewable energy technology 
innovation from the types of energy production, energy 
conservation, and energy management. The empirical 
results show that the variations in spatial lag terms in 
columns (2) to (3) are not significant. There is an inverse 
U-shaped relationship between renewable energy tech-
nology of energy production type and carbon emissions, 
only locally, not in adjacent cities.

It should be noted that the spatial effect item in column 
(4) shows that the renewable energy technology of energy 
management type also has an inverse U-shaped relation-
ship with adjacent cities (W*lnRETI_EM and W*lnRETI_
EM2). Generally, renewable energy technology of energy 
management type is employed to treat the pollutants gener-
ated by energy application, including energy technology 
patents such as treatment of waste, reuse of waste materi-
als, and pollution control. Most of the pollutants must be 
treated in fixed regions, which requires cross-urban coor-
dination and cooperation so this type of renewable energy 
technology has a significant spatial spillover effect.

Robustness tests

The robustness tests are as follows: First, we employ the 
per capita carbon emissions to re-estimate the baseline 
and spatial model to eliminate the scale effect. Second, 
considering the spatial weight matrix of W2, the results of 
the spatial econometric model are verified again. Third, 
the samples of the municipalities and low-carbon cities 
pilot were excluded. Fourth, the winsorize (replace sample 
value less than 1% and more than 99%) is used to limit the  

Table 4  The second stage of the two-stage least square

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in 
parentheses. Clustering to the city level

Variables lnCO2

(1) (2) (3)

lnEV lnER L.lnRETI

lnRETI 0.1450***
(4.01)

0.2313**
(2.00)

0.3084**
(2.32)

lnRETI2 −0.0131***
(−4.10)

−0.0195**
(−2.02)

−0.0265**
(−2.33)

Control variables Yes Yes Yes
Year fixed effect Yes Yes Yes
City fixed effect Yes Yes Yes
Constant 3.8970***

(11.13)
5.3357***
(3.01)

5.9274***
(3.40)

Adj R2 0.9958 0.9905 0.9893
Obs 1708 2684 2440
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Fig. 1  Moran’s I scatter diagram 
of lnCO2 with W1 in 2007, 
2012, and 2017
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Fig. 2  Moran’s I scatter diagram 
of lnRETI with W1 in 2007, 
2012, and 2017
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impact of extreme values of the empirical results. Moreo-
ver, the coefficients of the control variables and the space 
item of control variables are not reported in the robustness 
test for simplification.

Robustness test for scale effect

Table 6 shows the scale effect test results of the baseline 
model. Compared with columns (2) to (5) in Table 2, the 
empirical results are maintained except for the coefficient 
values of the baseline model. The inverse U-shaped rela-
tionship between renewable energy technology innovation 
and carbon emissions still exists, and the inflection point of 
renewable energy technology of energy conservation type 
is still the earliest, and its carbon emission reduction effect 
is the most prominent. Therefore, after the scale effect 
is eliminated by employing per capita carbon emissions 
(lnpCO2), the empirical results of this paper are believable.

Table 7 shows the scale effect test results of the spatial  
model. Per capita carbon emissions (ρ) still have a signifi-
cant spatial spillover effect. The inverse U shape between 
renewable energy technology innovation and carbon emis-
sions is not stable in adjacent cities. Only renewable energy 
technology of energy management type has produced a 
spatial spillover effect, which once again shows that the 
co-processing of carbon emissions and pollutants between 

Table 5  Empirical results of carbon emission in the spatial economet-
ric model

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in 
parentheses. W is the spatial weight matrix

Variables lnCO2

(1) (2) (3) (4)

FE FE FE FE

W*lnCO2 
(ρ)

0.8417***
(54.45)

0.8460***
(55.25)

0.8449***
(55.04)

0.8398***
(53.89)

lnRETI 0.0330***
(6.71)

- - -

lnRETI2 −0.0031***
(−5.85)

- - -

lnRETI_EP - 0.0233***
(5.47)

- -

lnRETI_EP2 - −0.0024***
(−4.13)

- -

lnRETI_EC - - 0.0132***
(4.49)

-

lnRETI_EC2 - - -0.0021***
(−4.62)

-

lnRETI_EM - - - 0.0188***
(5.35)

lnRETI_
EM2

- - - −0.0028***
(−5.80)

W*lnRETI 0.0248**
(2.21)

W*lnRETI2 −0.0020**
(−2.02)

W*lnRETI_
EP

0.0145
(1.49)

W*lnRETI_
EP2

−0.0020*
(−1.75)

W*lnRETI_
EC

0.0157
(1.07)

W*lnRETI_
EC2

−0.0017*
(−1.93)

W*lnRETI_
EM

0.0278***
(3.26)

W*lnRETI_
EM2

−0.0024***
(−2.59)

Control 
variables

Yes Yes Yes Yes

Space item 
of control 
variables

Yes Yes Yes Yes

Wald test 
(p)

170.13
(0.000)

32.65
(0.005)

39.38
(0.001)

185.27
(0.000)

Obs 2684 2684 2684 2684

Table 6  Robustness test for scale effect (baseline model)

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in 
parentheses. Clustering to the city level

Variables lnpCO2

(1) (2) (3) (4)

lnRETI 0.0667***
(7.64)

lnRETI2 −0.0076***
(−8.52)

lnRETI_
EP

0.0483***
(6.21)

lnRETI_
EP2

−0.0068***
(−6.56)

lnRETI_
EC

0.0260***
(4.63)

lnRETI_
EC2

−0.0057***
(−7.66)

lnRETI_
EM

0.0419***
(6.87)

lnRETI_
EM2

−0.0071***
(−8.96)

Control 
variable

Yes Yes Yes Yes

Year fixed 
effect

Yes Yes Yes Yes

City fixed 
effect

Yes Yes Yes Yes

Constant −6.7357***
(−15.05)

−7.1607***
(−15.69)

−6.9921***
(−14.74)

−6.6691***
(−14.98)

Adj R2 0.9807 0.9805 0.9806 0.9808
Obs 2684 2684 2684 2684
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different cities already has the foundation. Therefore, after 
the potential scale effect is eliminated by per capita carbon 
emissions, the empirical results of this paper are robust.

Robustness test for spatial spillover effect

We further use another composite spatial weight matrix 
(W2) to test the robustness of the spatial spillover effect. 

The empirical results in columns (1) to (4) show that the 
relationship between renewable energy technologies and 
local urban carbon emissions is still inverted U-shaped. 
Although the constitution of the spatial weight matrix  
is changed, the results of the spatial spillover effect are 
not affected essentially (Table 8). Therefore, as long as 
the same spatial factors (geographic distance and eco-
nomic distance) are considered, the spatial effect between 

Table 7  Robustness test for 
scale effect (spatial econometric 
model with the matrix of W1)

*, **, ***Significance at the 10%, 5%, and 1% level. t statistics in parentheses. W is the spatial weight 
matrix

Variables lnpCO2

(1) (2) (3) (4)

FE FE FE FE

W*lnpCO2 (ρ) 0.6714***
(29.69)

0.6798***
(30.47)

0.6764***
(30.31)

0.6584***
(28.40)

lnRETI 0.0427***
(5.71)

lnRETI2 −0.0047***
(−5.78)

lnRETI_EP 0.0300***
(4.62)

lnRETI_EP2 −0.0039***
(−4.36)

lnRETI_EC 0.0159***
(3.56)

lnRETI_EC2 −0.0034***
(−5.05)

lnRETI_EM 0.0241***
(4.51)

lnRETI_EM2 −0.0039***
(−5.30)

W*lnRETI 0.0057
(0.33)

W*lnRETI2 −0.0011
(−0.69)

W*lnRETI_EP 0.0020
(0.14)

W*lnRETI_EP2 −0.0012
(−0.68)

W*lnRETI_EC 0.0079
(0.69)

W*lnRETI_EC2 −0.0012
(−0.85)

W*lnRETI_EM 0.0136
(1.05)

W*lnRETI_EM2 −0.0023*
(−1.66)

Control variables Yes Yes Yes Yes
Space item of control 

variables
Yes Yes Yes Yes

Wald test (p) 147.48
(0.000)

137.06
(0.000)

147.08
(0.000)

165.05
(0.000)

Obs 2684 2684 2684 2684
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renewable energy technology innovation and carbon emis-
sions will be maintained.

Robustness test for locational advantage and low‑carbon 
cities pilot

First, the locational advantages brought by municipal-
ities directly under the central government (Beijing, 

Shanghai, Tianjing, and Chongqing) need to be elimi-
nated. Table 9 shows the empirical results after exclud-
ing the municipalities. We still compare these empiri-
cal results with the detection in columns (2) to (5) of 
Table 2. The inverse U-shaped relationship between 
renewable energy technology innovation and carbon 
emissions is maintained. The inflection point of column 
(3) in Table 9 is 2.770, which shows that renewable 

Table 8  Robustness test with 
different spatial weight matrix 
(W2)

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in parentheses. W is the spatial weight 
matrix

Variables lnCO2

(1) (2) (3) (4)

FE FE FE FE

W*lnCO2 (ρ) 0.6781***
(40.15)

0.6779***
(40.08)

0.6795***
(40.09)

0.6820***
(40.64)

lnRETI 0.0400***
(6.85)

lnRETI2 −0.0039***
(−6.08)

lnRETI_EP 0.0241***
(4.87)

lnRETI_EP2 −0.0024***
(−3.52)

lnRETI_EC 0.0182***
(5.32)

lnRETI_EC2 −0.0028***
(−5.37)

lnRETI_EM 0.0242***
(5.87)

lnRETI_EM2 −0.0037***
(−6.43)

W*lnRETI 0.0063
(0.57)

W*lnRETI2 0.0008
(0.82)

W*lnRETI_EP 0.0112
(1.23)

W*lnRETI_EP2 −0.0004
(−0.34)

W*lnRETI_EC −0.0026
(−0.38)

W*lnRETI_EC2 0.0020**
(2.40)

W*lnRETI_EM 0.0033
(0.43)

W*lnRETI_EM2 0.0012
(1.38)

Control variables Yes Yes Yes Yes
Space item of control 

variables
Yes Yes Yes Yes

Wald test (p) 248.41
(0.000)

251.31
(0,000)

234.93
(0.000)

265.95
(0.000)

Obs 2684 2684 2684 2684
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energy technology of energy conservation type still 
shows carbon emission reduction effects prominently.

Second, the empirical results in Table 10 exclude the 
impact of the low-carbon cities pilot. The low-carbon cities 
pilot will reduce the carbon emissions of a region in other 
aspects, but the inverse U-shaped curve still exists after the 
impact of the low-carbon cities pilot is released.

Robustness test for extreme value

Table 11 shows the empirical results after excluding extreme 
values, with the causality maintained except for the value 
of the coefficients. In general, the empirical result of the 
baseline model and the spatial model in this paper is robust.

Analysis of mechanism

Table 12 reports the mechanism analysis results of the indus-
trial factor. When industrial structure (IS) is regarded as a 
mediation variable, the coefficient of renewable energy tech-
nology innovation in columns (1) to (2) is not significant. 

Consequently, the industrial structure is not a mediation var-
iable of renewable energy technology innovation affecting 
carbon emissions. The empirical results in columns (3) to 
(4) show that industrial agglomeration is the channel which 
renewable energy technologies affect carbon emissions.

Table 13 reports the mechanism analysis results of the 
energy factor. The results in columns (1) to (2) show that 
energy consumption (EC) scale is a mediation variable 
between renewable energy technologies and carbon emis-
sions, and renewable energy technologies affect carbon 
emissions by acting on energy consumption scale. The 
mediation effects of energy consumption structure (ES) and 
energy intensity (EI) are not valid. Therefore, only industrial 
agglomeration (AGG ) and energy consumption scale (EC) 
meet the mediation effect. Specifically, the renewable energy 
technology innovation increases carbon emissions by induc-
ing the industrial agglomeration and increasing the energy 
consumption scale, which indicates that the carbon emis-
sions generated by the application cost of renewable energy 
technology are larger than the carbon emission reduction 
effect in the short term.

Table 9  Robustness test for excluding samples of locational advan-
tages

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in 
parentheses. Clustering to the city level

Variables lnCO2

(1) (2) (3) (4)

lnRETI 0.0552***
(7.64)

lnRETI2 −0.0046***
(−6.27)

lnRETI_
EP

0.0387***
(6.43)

lnRETI_
EP2

−0.0039***
(−4.98)

lnRETI_
EC

0.0205***
(4.77)

lnRETI_
EC2

−0.0037***
(−4.51)

lnRETI_
EM

0.0349***
(7.06)

lnRETI_
EM2

−0.0044***
(−6.94)

Control 
variable

Yes Yes Yes Yes

Year fixed 
effect

Yes Yes Yes Yes

City fixed 
effect

Yes Yes Yes Yes

Constant 3.1181***
(9.71)

2.8320***
(8.55)

2.8133***
(8.20)

3.2651***
(10.18)

Adj R2 0.9916 0.9915 0.9914 0.9916
Obs 2640 2640 2640 2640

Table 10  Robustness test for excluding samples of low-carbon cities 
pilot

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in 
parentheses. Clustering to the city level

Variables lnCO2

(1) (2) (3) (4)

lnRETI 0.0551***
(6.93)

lnRETI2 −0.0046***
(−5.55)

lnRETI_
EP

0.0372***
(5.78)

lnRETI_
EP2

−0.0037***
(−4.29)

lnRETI_
EC

0.0176***
(3.81)

lnRETI_
EC2

−0.0023***
(−3.45)

lnRETI_
EM

0.0348***
(6.49)

lnRETI_
EM2

−0.0044***
(−6.31)

Control 
variable

Yes Yes Yes Yes

Year fixed 
effect

Yes Yes Yes Yes

City fixed 
effect

Yes Yes Yes Yes

Constant 3.2029***
(9.44)

2.9585***
(8.65)

2.8941***
(8.10)

3.3621***
(9.79)

Adj R2 0.9909 0.9908 0.9907 0.9908
Obs 2376 2376 2376 2376
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In general, to develop renewable energy technologies, 
related industries are highly concentrated in specific areas,  
leading to the repeated construction of industrial agglomera-
tion areas related to renewable energy technologies, which 
increases carbon emissions. In addition, the spread of renew-
able energy technologies has unlocked the energy consump-
tion potential constrained by fossil energy, which is related to 
the energy rebound effect. It can be seen that although renew-
able energy technologies are highly expected to reduce car-
bon emissions, the repeated construction caused by industrial 
agglomeration and the blind expansion of energy consump-
tion scale are the important reasons for their failure to reduce 
carbon emissions immediately. In addition, renewable energy 
technologies have not promoted the effective green upgrad-
ing of energy consumption structure, which has also become 
a key factor in the rise of carbon emissions in the short term. 
Both the improvement of renewable energy consumption and 
the clean transformation of energy structure should be based 
on the application of renewable energy technology, which 
requires a large amount of technology application costs (new 
technics, new equipment, new construction, etc.). Therefore, 
the application cost of renewable energy technology and its 
implied carbon emission are the main factors restricting its 
carbon reduction effect, which is also easy to be forgotten.

Analysis of heterogeneity

Heterogeneity analysis includes four aspects: geographic 
region, patent type, resource-based city, and key city for 
environmental protection. Table 14 and Table 15 show the 
empirical results of heterogeneity. To simplify the analysis, 
each column contains four regression results, so the constants 
and R2 are not reported. In Table 14, the impact of resource-
based (RB) cities and key cities for environmental protec-
tion (EP) is mainly reflected in the value of the coefficient, 
that is, the impact of intensity. By calculating the inflection 
point (RB 5.489 > 5.139, EP 5.773 > 4.309), it is found that 
resource-based cities and key cities for environmental protec-
tion are more dependent on renewable energy technologies, 
and renewable energy technology innovation can achieve car-
bon emission reduction effects faster in these cities.

In Table 15, in China’s non-eastern cities, renewable energy 
technology innovation of the energy production type and energy 
management type cannot achieve carbon emission reduction 
effects. Only renewable energy technologies of energy con-
servation type that related to the treatment of pollutants have 
achieved carbon emission reduction in non-eastern cities. 
Therefore, the phenomenon of pollution haven may exist in 
China’s central and western cities. Finally, patent types do not 
have a special impact, and both invention patents and utility 
model patents can play a role in reducing carbon emissions.

Table 11  Robustness test for excluding samples of extreme value

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in 
parentheses. Clustering to the city level

Variables lnCO2

(1) (2) (3) (4)

lnRETI 0.0673***
(8.87)

lnRETI2 −0.0059***
(−7.40)

lnRETI_
EP

0.0482***
(7.34)

lnRETI_
EP2

−0.0051***
(−5.83)

lnRETI_
EC

0.0255***
(5.86)

lnRETI_
EC2

−0.0037***
(−5.82)

lnRETI_
EM

0.0422***
(8.30)

lnRETI_
EM2

−0.0057***
(−8.26)

Control 
variable

Yes Yes Yes Yes

Year fixed 
effect

Yes Yes Yes Yes

City fixed 
effect

Yes Yes Yes Yes

Constant 1.6890***
(2.94)

1.0159*
(1.77)

1.1095*
(1.92)

2.0490***
(3.66)

Adj R2 0.9931 0.9930 0.9929 0.9931
Obs 2684 2684 2684 2684

Table 12  Empirical results of the mediation effect model of industrial 
factor

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in 
parentheses. Clustering to the city level

Variables M=lnIS lnCO2 M=lnAGG lnCO2
(1) (2) (3) (4)

lnRETI 0.0019
(0.35)

0.0191***
(5.43)

0.0447***
(3.37)

0.0184***
(5.25)

M 0.0278
(1.48)

0.0149**
(2.44)

Control vari-
ables

Yes Yes Yes Yes

Year fixed 
effect

Yes Yes Yes Yes

City fixed 
effect

Yes Yes Yes Yes

Constant −4.3117***
(−4.56)

2.0326***
(5.49)

−6.6815***
(−7.02)

2.0122***
(5.46)

Adj R2 0.8736 0.9917 0.9345 0.9917
Obs 2684 2684 2684 2684
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Conclusion and policy implications

Based on the economic data and energy technology pat-
ent data of prefecture-level cities in China from 2007 to 
2017, the impact of renewable energy technology inno-
vation on carbon emissions and its mechanisms are dis-
cussed. This investigation into renewable energy tech-
nology innovation is conducted with the perspective 
of energy production, conservation, and management. 

The instrumental variable method alleviates the endo-
geneity problem between renewable energy technol-
ogy innovation and carbon emissions, and the spatial 
econometric model eliminates the spatial spillover 
effects of renewable energy technology innovation and 
carbon emissions. Subsequently, we also employed the 
mediation effect model to analyze the mechanism.

We found that (1) renewable energy technology innova-
tion has a nonlinear inverted U-shaped impact on carbon 
emissions. It is important to note that spatial spillovers 

Table 13  Empirical results of 
the mediation effect model of 
energy factor

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in parentheses. Clustering to the city level

Variables M=lnEC lnCO2 M=lnES lnCO2 M=lnEI lnCO2
(1) (2) (3) (4) (5) (6)

lnRETI 0.0802***
(4.42)

0.0184***
(5.27)

−0.0008
(−0.06)

0.0191***
(5.46)

0.0698***
(3.12)

0.0195***
(5.52)

M 0.0091*
(1.73)

0.0060
(1.03)

−0.0053
(−1.15)

Control variables Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes Yes Yes
Constant 0.3916

(0.22)
1.9091***
(5.30)

−0.8049
(−0.76)

1.9175***
(5.23)

−15.5865***
(−5.43)

1.8303***
(4.78)

Adj R2 0.9347 0.9917 0.8865 0.9917 0.7602 0.9917
Obs 2684 2684 2684 2684 2684 2684

Table 14  Heterogeneity with 
resource-based cities and 
environmental protection cities

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in parentheses. RB is a resource-based city. 
EP is a key city for environmental protection

Variables lnCO2

RB cities Non-RB cities EP cities Non-EP cities

(1) (2) (3) (4)

lnRETI 0.0505***
(4.91)

0.0925***
(8.90)

0.0762***
(7.26)

0.0767***
(7.22)

lnRETI2 −0.0046***
(−4.10)

−0.0090***
(−8.59)

−0.0066***
(−6.43)

−0.0089***
(−7.45)

lnRETI_EP 0.0364***
(3.92)

0.0641***
(7.47)

0.0570***
(6.48)

0.0502***
(5.68)

lnRETI_EP2 −0.0041***
(−3.10)

−0.0077***
(−7.12)

−0.0060***
(−5.38)

−0.0076***
(−6.07)

lnRETI_EC 0.0175***
(3.02)

0.0462***
(6.78)

0.0319***
(5.46)

0.0316***
(4.80)

lnRETI_EC2 −0.0037***
(−3.73)

−0.0067***
(−7.57)

−0.0050***
(−6.03)

−0.0061***
(−5.77)

lnRETI_EM 0.0299***
(4.30)

0.0558***
(7.91)

0.0497***
(7.01)

0.0453***
(6.26)

lnRETI_EM2 −0.0037***
(−3.72)

−0.0080***
(−8.93)

−0.0063***
(−7.13)

−0.0077***
(−7.17)

Control variables Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes
Obs 1001 1683 1804 880
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indicate that the inverse U-shaped relationship between 
renewable energy technologies and carbon emissions exists 
locally, while the inverted U-shaped relationship with neigh-
boring cities is uncertain. Conservation renewable energy 
technologies achieve carbon reduction faster than production 
and management renewable energy technologies. After a set 
of robustness tests and the elimination of endogenous issues, 
this empirical result is still valid. (2) Mechanism analysis 
shows that energy consumption structure and energy inten-
sity are not the channels for renewable energy technologies 
to affect carbon emissions, but renewable energy technolo-
gies can affect carbon emissions through energy consump-
tion scale. Furthermore, in terms of industrial factors, indus-
trial agglomeration is the channel through which renewable 
energy technologies affect carbon emissions. The results 
show that the hidden carbon emissions generated by indus-
trial agglomeration and the failure of energy consumption 
to achieve green upgrading are the main reasons for the 
inverted U-shaped relationship. (3) Heterogeneity analysis 
found that renewable energy technology can play a faster 
role in carbon emission reduction in non-resource-based 
cities and non-key cities for environmental protection. Pro-
duction and management renewable energy technologies do 
not play a role in carbon reduction activities in non-eastern 
cities, suggesting that non-eastern cities are more likely to 
be affected by the pollution haven effect.

The policy implications related to the conclusion are as 
follows:

(1) Improve a fiscal policy framework conducive to renewable 
energy technology innovation, to achieve accurate support 
for specific types of renewable energy technologies. This 
is not only beneficial to the coordinated development of 
different types of renewable energy technologies, avoid-
ing redundant construction, but also effectively reduces the 
cost effect of renewable energy technologies and makes 
their carbon emission reduction effects more effective.

(2) With the support of regional economic circles, deepen 
cooperation in renewable energy projects between dif-
ferent cities, eliminate the spatial spillover of carbon 
emissions, and improve the spatial diffusion of renew-
able energy technologies, especially renewable energy 
technology of energy production type.

(3) Existing policies mainly focusses on renewable energy 
technologies such as solar energy, photovoltaic, or wind 
power, while other types of renewable energy technologies 
need further support. The establishment of an efficient and  
all-inclusive renewable energy technology policy support 
scheme is conducive to the rationalization and the trans-
formation of the energy structure as soon as possible.

(4) In China, most of non-eastern cities have superior 
renewable energy resources. We need actively to pro-

Table 15  Heterogeneity with 
geographic region and patent 
type

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in parentheses

Variables lnCO2

Eastern cities Non-East cities Invention Utility model

(1) (2) (3) (4)

lnRETI 0.0896***
(5.67)

0.0323***
(4.16)

0.0398***
(7.17)

0.0574***
(8.23)

lnRETI2 −0.0093***
(−6.57)

−0.0018**
(−2.05)

−0.0050***
(−7.37)

−0.0071***
(−8.61)

lnRETI_EP 0.0656***
(4.89)

0.0213***
(3.30)

0.0291***
(6.15)

0.0434***
(7.98)

lnRETI_EP2 −0.0086***
(−5.62)

−0.0010
(−1.04)

−0.0046***
(−6.05)

−0.0070***
(−7.92)

lnRETI_EC 0.0407***
(3.61)

0.0215***
(3.79)

0.0152***
(4.33)

0.0303***
(6.83)

lnRETI_EC2 −0.0067***
(−5.67)

−0.0022***
(−2.78)

−0.0043***
(−7.07)

−0.0061***
(−8.12)

lnRETI_EM 0.0549***
(5.66)

0.0096**
(2.07)

0.0299***
(7.07)

0.0380***
(8.39)

lnRETI_EM2 −0.0081***
(−6.99)

−0.0006
(−0.82)

−0.0053***
(−8.27)

−0.0074***
(−10.54)

Control variables Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes
Obs 1034 1650 2684 2684
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mote renewable energy technology of energy produc-
tion type cooperation and project construction in the 
central and western cities, to improve the carbon emis-

sion reduction effect of renewable energy technologies 
in non-eastern cities, and prevent the harm caused by 
the transfer of polluting industries.

Appendix 1

Table 16  The international patent classification of renewable energy technology  innovation1

1 We have upgraded the IPC code of energy technologies (Wind, Solar, Geothermal, Marine, Hydro, and Biomass Energy) with reference to 
IPC GREEN INVENTORY from https:// www. wipo. int/ class ifica tions/ ipc/ green- inven tory/ home. In addition, the IPC code of renewable energy 
technology is also used in related research (Johnstone et al. 2010; Qu et al. 2023; Noailly and Shestalova 2017; Noailly and Smeets 2021; Wang 
and Zhu 2020; Yang et al. 2019; Zhu et al. 2020). The classification of renewable energy technologies in this paper is only for research, and the 
conclusions are not concentrated here
2 Some types of patents may have duplication of IPC codes (such as E02B9/08 in Marine energy and E02B9 in Hydro energy), and we will elimi-
nate them to avoid recurring with patents
3 Electric power is considered as a renewable energy, so accumulators technology should be regarded as a renewable energy technology, which is 
different from B60K 6/28, H01G 11/00, H02J 3/28 and other versatile battery, capacitor, power networking, and LED technologies

Classification Patent type IPC code

Energy production Wind energy F03D, H02K 7/18, B63B35/00, E04H12/00, B60K16/00, B63H13/00, B60L8/00
Solar energy F03G6, F24J2; F26B3/28; H01L27/142; H01L31/042-058, F24S, H02S, H01L27/142, 

H01L31/00-31/078, H01G9/20, H02S10/00, H01L25/00, H01L25/03, H01L25/16, 
H01L25/18, H01L31/042, C01B33/02, C23C14/14, C23C16/24, C30B29/06, G05F1/67, 
F21L4/00, F21S9/03, H02J7/35, H01G9/20, H01M14/00, H01L27/30, 51/42-51/48, 
F24D17/00, 18/00, F24D3/00, 5/00, 11/00, 19/00, F24S90/00, F03D1/04, 9/00, 13/20, 
F03G6/00, C02F1/14, F02C1/05, H01L31/0525, H02S40/44, F03G6/00-6/06, E04D13/00, 
13/18, F22B1/00, F24V30/00, F25B27/00, F26B3/00, 3/28, F24S23/00, G02B7/183, 
F24S10/10

Geothermal energy F03G4, F24J3/08, F24T, F01K
Marine (ocean)  energy2 E02B9/08, F03B13/10-26, F03G7/05
Hydro energy E02B9, F03B, F03C, F03B15/00-15/22, B63H19/02, B63H19/04, F03B13/12-13/26
Biomass energy C10L5/42–44, F02B43/08
Waste-to-energy F01K27/00, F01K23/06-23/10, F01N5/00, F02G5/00-5/04, F25B27/02, F01K17/00, 23/04, 

F02C6/18, F25B27/02, C02F1/16, D21F5/20, F22B1/02, F23G5/46, F24F12/00, F27D17/00, 
F28D17/00-20/00, C10J3/86

Energy conservation Storage of electricity  energy3 B60K6/28, B60W10/26, H01M10/44-10/46, H01G11/00, H02J3/28, 7/00, 15/00
Storage of thermal energy C09K5/00, F24H7/00, F28D20/00, 20/02
Measurement of electricity consumption G01R, H02J, B60L3/00

Energy management Treatment of energy waste B09C, A61L11/00, A62D3/00, 101/00, G21F9/00, B03B9/06, D21B1/08, 1/32
Reuse of energy waste materials A43B1/12, 21/14, B22F8/00, C04B7/24-7/30, C04B18/04-18/10, C05F, C08J11/00-11/28, 

C09K11/01, C11B11/00, 13/00-13/04, C14C3/32, C21B3/04, C25C1/00, D01F13/00-13/04
Pollution control C02F, B01D53/14, 53/22, 53/62, B65G5/00, C01B32/50, E21B41/00, 43/16, E21F17/16, 

F25J3/02, B01D53/00-53/96, C10L10/02, 10/06, F23J7/00, B63J4/00

https://www.wipo.int/classifications/ipc/green-inventory/home
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Table 17 is a supplement to Table 2, where population den-
sity (lnPOP), transportation infrastructure (lnTI), govern-
ment intervention (lnGOV), and urbanization (lnURB) have 
positive impacts on carbon emissions (Huang et al. 2021; 
Zhang and Cheng 2009). The main reason why government 
regulation increases carbon emissions is its one-size-fits-
all intervention. The first term of economic development 
(lnpGDP) is positive, while the second term (lnpGDP2) 

is negative, which is consistent with the assumption of the 
environmental Kuznets curve (EKC). This implies that there 
is an inverted U-shaped relationship between economic 
development and pollution emissions (Chen et al. 2022c), 
where initially pollution increases with economic develop-
ment but eventually decreases. Finally, the impact of green 
space (lnGS), foreign direct investment (lnFDI), and finan-
cial development (lnFD) on carbon emissions is uncertain.

Table 17  Empirical results of 
the baseline model with control 
variable coefficients

*, **, ***Significance at the 10%, 5%, and 1% level. T statistics in parentheses. Clustering to the city level

Variables lnCO2

(1) (2) (3) (4) (5)

lnRETI 0.0191*** 0.0644***
(5.45) (8.58)

lnRETI2 −0.0056***
(−7.32)

lnRETI_EP 0.0460***
(7.28)

lnRETI_EP2 −0.0050***
(−5.95)

lnRETI_EC 0.0264***
(5.88)

lnRETI_EC2 −0.0039***
(−5.98)

lnRETI_EM 0.0406***
(7.96)

lnRETI_EM2 −0.0052***
(−7.88)

lnpGDP 0.3264*** 0.1602*** 0.2291*** 0.2284*** 0.1565***
(5.16) (2.97) (4.14) (4.06) (2.95)

lnpGDP2 −0.0131*** −0.0060*** −0.0090*** −0.0088*** −0.0059***
(−4.80) (−2.65) (−3.86) (−3.75) (−2.63)

lnPOP 0.0249*** 0.0242*** 0.0249*** 0.0247*** 0.0241***
(2.79) (2.73) (2.77) (2.82) (2.74)

lnGS 0.0013 0.0008 0.0011 0.0003 0.0002
(0.18) (0.11) (0.15) (0.04) (0.02)

lnTI 0.0153** 0.0124** 0.0139** 0.0145** 0.0143**
(2.35) (2.03) (2.20) (2.26) (2.21)

lnFDI −0.0023 −0.0008 −0.0014 −0.0014 −0.0009
(−1.39) (−0.52) (−0.83) (−0.81) (−0.54)

lnGOV 0.0243** 0.0221** 0.0232** 0.0231** 0.0218**
(2.43) (2.24) (2.34) (2.31) (2.20)

lnFD −0.0007 −0.0207* −0.0166 −0.0183 −0.0232*
(−0.06) (−1.74) (−1.39) (−1.51) (−1.94)

lnURB 0.0335*** 0.0330*** 0.0336*** 0.0352*** 0.0366***
(8.51) (8.64) (8.77) (9.19) (9.39)

Year fixed effect Yes Yes Yes Yes Yes
City fixed effect Yes Yes Yes Yes Yes
Constant 1.9127*** 2.9797*** 2.6387*** 2.7041*** 3.1090***

(5.21) (9.17) (7.76) (7.77) (9.65)
Adj R2 0.9917 0.9920 0.9919 0.9918 0.9920
Obs 2684 2684 2684 2684 2684



98335Environmental Science and Pollution Research (2023) 30:98314–98337 

1 3

Appendix 2

Acknowledgements The authors wish to gratefully acknowledge the 
editors and reviewers for their insightful and helpful comments that 
improved the manuscript.

Author contribution Fang Qu: conceptualization, writing, collecting 
data, methodology, revision, and proofreading. Chun-Mei Li: revision 
and proofreading.

Funding This work was supported by the Open Fund of Sichuan Oil 
and Gas Development Research Center (SKB23-06) and the Institute 
for Healthy Cities of Chengdu (2023ZC06).

Declarations 

Ethical approval N/A

Consent to participate N/A

Consent for publication N/A

Competing interests The authors declare no competing interests.

 References

Acheampong AO, Amponsah M, Boateng E (2020) Does financial 
development mitigate carbon emissions? Evidence from hetero-
geneous financial economies. Energy Econ 88:104768. https:// doi. 
org/ 10. 1016/j. eneco. 2020. 104768

Álvarez-herránz A, Balsalobre D, María J, Shahbaz M (2017) Energy 
innovations-GHG emissions nexus: fresh empirical evidence from 
OECD countries. Energy Policy 101:90–100. https:// doi. org/ 10. 
1016/j. enpol. 2016. 11. 030

Balado-Naves R, Baños-Pino JF, Mayor M (2018) Do countries influ-
ence neighbouring pollution? A spatial analysis of the EKC for 
CO2 emissions. Energy Policy 123:266–279. https:// doi. org/ 10. 
1016/j. enpol. 2018. 08. 059

Berner A, Bruns S, Moneta A, Stern DI (2022) Do energy efficiency 
improvements reduce energy use? Empirical evidence on the econ-
omy-wide rebound effect in Europe and the United States. Energy 
Econ. 110:105939. https:// doi. org/ 10. 1016/j. eneco. 2022. 105939

Chang JJ, Wang WN, Shieh JY (2018) Environmental rebounds/back-
fires: macroeconomic implications for the promotion of environ-
mentally-friendly products. J. Environ. Econ. Manage 88:35–68. 
https:// doi. org/ 10. 1016/j. jeem. 2017. 09. 004

Chen J, Wang P, Cui L, Huang S, Song M (2018a) Decomposition and 
decoupling analysis of CO2 emissions in OECD. Appl. Energy 
231:937–950. https:// doi. org/ 10. 1016/j. apene rgy. 2018. 09. 179

Chen Z, Kahn ME, Liu Y, Wang Z (2018b) The consequences of spa-
tially differentiated water pollution regulation in China. J Environ 
Econ Manage 88:468–485. https:// doi. org/ 10. 1016/j. jeem. 2018. 
01. 010

Chen X, Chen YE, Chang CP (2019) The effects of environmental 
regulation and industrial structure on carbon dioxide emission: 
a non-linear investigation. Environ. Sci. Pollut. Res 26:30252–
30267. https:// doi. org/ 10. 1007/ s11356- 019- 06150-6

Chen J, Gao M, Cheng S, Liu X, Hou W, Song M, Li D, Fan W (2021) 
China’s city-level carbon emissions during 1992–2017 based on 
the inter-calibration of nighttime light data. Sci. Rep 11:1–13. 
https:// doi. org/ 10. 1038/ s41598- 021- 81754-y

Table 18  The Moran’s I in 244 
cities, 2007–2017

*, **, ***Significance at the 10%, 5%, and 1% level. Z statistics in parentheses

Year Spatial weights matrix (W1) Spatial weights matrix (W2)

Moran’s I for lnCO2 Moran’s I for lnRETI Moran’s I for lnCO2 Moran’s I for lnRETI

2007 0.295***
(9.368)

0.212***
(6.772)

0.370***
(9.028)

0.388***
(9.491)

2008 0.299***
(9.475)

0.232***
(7.397)

0.374***
(9.126)

0.407***
(9.993)

2009 0.291***
(9.219)

0.253***
(8.031)

0.367***
(8.974)

0.457***
(11.147)

2010 0.290***
(9.209)

0.256***
(8.137)

0.370***
(9.041)

0.466***
(11.354)

2011 0.292***
(9.266)

0.278***
(8.818)

0.376***
(9.173)

0.461***
(11.234)

2012 0.292***
(9.251)

0.286***
(9.065)

0.375***
(9.150)

0.469***
(11.424)

2013 0.269***
(8.535)

0.258***
(8.212)

0.356***
(8.699)

0.445***
(10.843)

2014 0.267***
(8.464)

0.273***
(8.678)

0.352***
(8.611)

0.474***
(11.557)

2015 0.274***
(8.707)

0.285***
(9.041)

0.356***
(8.694)

0.476***
(11.603)

2016 0.273***
(8.657)

0.313***
(9.906)

0.351***
(8.587)

0.494***
(12.044)

2017 0.266***
(8.431)

0.341***
(10.798)

0.348***
(8.508)

0.510***
(12.412)

https://doi.org/10.1016/j.eneco.2020.104768
https://doi.org/10.1016/j.eneco.2020.104768
https://doi.org/10.1016/j.enpol.2016.11.030
https://doi.org/10.1016/j.enpol.2016.11.030
https://doi.org/10.1016/j.enpol.2018.08.059
https://doi.org/10.1016/j.enpol.2018.08.059
https://doi.org/10.1016/j.eneco.2022.105939
https://doi.org/10.1016/j.jeem.2017.09.004
https://doi.org/10.1016/j.apenergy.2018.09.179
https://doi.org/10.1016/j.jeem.2018.01.010
https://doi.org/10.1016/j.jeem.2018.01.010
https://doi.org/10.1007/s11356-019-06150-6
https://doi.org/10.1038/s41598-021-81754-y


98336 Environmental Science and Pollution Research (2023) 30:98314–98337

1 3

Chen X, Xu H, Zhang L, Cao H (2022a) Spatial functional division, 
infrastructure and carbon emissions: evidence from China. Energy 
256:124551. https:// doi. org/ 10. 1016/j. energy. 2022. 124551

Chen Y, Yao Z, Zhong K (2022b) Do environmental regulations of 
carbon emissions and air pollution foster green technology inno-
vation: evidence from China’s prefecture-level cities. J Clean Prod 
350:131537. https:// doi. org/ 10. 1016/j. jclep ro. 2022. 131537

Chen Y, Zhu Z, Cheng S (2022c) Industrial agglomeration and haze pol-
lution: evidence from China. Sci Total Environ 845:157392. https:// 
doi. org/ 10. 1016/j. scito tenv. 2022. 157392

Dauda L, Long X, Mensah CN, Salman M, Boamah KB, Ampon-
Wireko S, Kofi Dogbe CS (2021) Innovation, trade openness 
and CO2 emissions in selected countries in Africa. J Clean Prod 
281:125143. https:// doi. org/ 10. 1016/j. jclep ro. 2020. 125143

Dilanchiev A, Nuta F, Khan I, Khan H (2023) Urbanization, renewable 
energy production, and carbon dioxide emission in BSEC mem-
ber states: implications for climate change mitigation and energy 
markets. Environ Sci Pollut Res 30(25):67338–67350. https:// doi. 
org/ 10. 1007/ s11356- 023- 27221-9

Dong F, Zhu J, Li Y et al (2022) How green technology innovation 
affects carbon emission efficiency: evidence from developed coun-
tries proposing carbon neutrality targets. Environ Sci Pollut Res 
29:35780–35799. https:// doi. org/ 10. 1007/ s11356- 022- 18581-9

Du Y, Li Z, Du J, Li N, Yan B (2019) Public environmental appeal and 
innovation of heavy-polluting enterprises. J Clean Prod 222:1009–
1022. https:// doi. org/ 10. 1016/j. jclep ro. 2019. 03. 035

Fernández AM, Ferrándiz E, Medina J (2022) The diffusion of energy 
technologies. Evidence from renewable, fossil, and nuclear 
energy patents. Technol Forecast Soc Change 178:121566. 
https:// doi. org/ 10. 1016/j. techf ore. 2022. 121566

Habiba U, Xinbang C, Anwar A (2022) Do green technology innova-
tions, financial development, and renewable energy use help to 
curb carbon emissions? Renew. Energy 193:1082–1093. https:// 
doi. org/ 10. 1016/j. renene. 2022. 05. 084

Hu T, Wang T, Yan Q, Chen T, Jin S, Hu J (2022) Modeling the 
spatiotemporal dynamics of global electric power consumption 
(1992–2019) by utilizing consistent nighttime light data from 
DMSP-OLS and NPP-VIIRS. Appl Energy 322:119473. https:// 
doi. org/ 10. 1016/j. apene rgy. 2022. 119473

Huang J, Li X, Wang Y, Lei H (2021) The effect of energy patents on 
China’s carbon emissions: evidence from the STIRPAT model. 
Technol Forecast Soc Change 173:121110. https:// doi. org/ 10. 
1016/j. techf ore. 2021. 121110

Jiang W, Cole M, Sun J, Wang S (2022) Innovation, carbon emissions 
and the pollution haven hypothesis: climate capitalism and global 
re-interpretations. J Environ Manage 307:114465. https:// doi. org/ 
10. 1016/j. jenvm an. 2022. 114465

Jo HK (2002) Impacts of urban greenspace on offsetting carbon emis-
sions for middle Korea. J Environ Manage 64:115–126. https:// 
doi. org/ 10. 1006/ jema. 2001. 0491

Johnstone N, Hascic I, Popp D (2010) Renewable energy policies 
and technological innovation: evidence based on patent counts. 
Environ Resour Econ 45:133–155. https:// doi. org/ 10. 1007/ 
s10640- 009- 9309-1

Kahn ME, Kotchen MJ (2011) Business cycle effects on concern about 
climate change: the chilling effect of recession. Clim Chang Econ 
2:257–273. https:// doi. org/ 10. 1142/ S2010 00781 10002 92

Khan H, Weili L, Khan I, Zhang J (2023a) The nexus between natural 
resources, renewable energy consumption, economic growth, and 
carbon dioxide emission in BRI countries. Environ Sci Pollut Res 
30:36692–36709. https:// doi. org/ 10. 1007/ s11356- 022- 24193-0

Khan H, Weili L, Khan I, Zhang J (2023b) Exploring the nexus between 
energy consumption, income inequality and poverty, economic 
growth, and carbon dioxide emission: evidence from two step 
system generalized method of moments. Environ Sci Pollut Res 
30:35996–36011. https:// doi. org/ 10. 1007/ s11356- 022- 24695-x

Li W, Yang G, Li X (2021) Correlation between PM2.5 pollution and 
its public concern in China: evidence from Baidu Index. J Clean 
Prod 293:81–109. https:// doi. org/ 10. 1016/j. jclep ro. 2021. 126091

Lin B, Ma R (2022) Green technology innovations, urban innovation 
environment and CO2 emission reduction in China: fresh evidence 
from a partially linear functional-coefficient panel model. Technol 
Forecast Soc Change 176:121434. https:// doi. org/ 10. 1016/j. techf 
ore. 2021. 121434

Lin B, Zhu J (2019) The role of renewable energy technological inno-
vation on climate change: empirical evidence from China. Sci 
Total Environ 659:1505–1512. https:// doi. org/ 10. 1016/j. scito tenv. 
2018. 12. 449

Liu Z, He C, Zhang Q, Huang Q, Yang Y (2012) Extracting the dynamics 
of urban expansion in China using DMSP-OLS nighttime light data 
from 1992 to 2008. Landsc Urban Plan 106:62–72. https:// doi. org/ 10. 
1016/j. landu rbplan. 2012. 02. 013

Liu X, Ji X, Zhang D, Yang J, Wang Y (2019) How public environmen-
tal concern affects the sustainable development of Chinese cities: 
an empirical study using extended DEA models. J Environ Man-
age 251:109619. https:// doi. org/ 10. 1016/j. jenvm an. 2019. 109619

Noailly J, Shestalova V (2017) Knowledge spillovers from renewable 
energy technologies: lessons from patent citations. Environ Innov 
Soc Transitions 22:1–14. https:// doi. org/ 10. 1016/j. eist. 2016. 07. 
004

Noailly J, Smeets R (2015) Directing technical change from fossil-fuel 
to renewable energy innovation: an application using firm-level. J 
Environ Econ Manage 72:15–37. https:// doi. org/ 10. 1016/j. jeem. 
2015. 03. 004

Noailly J, Smeets R (2021) Financing energy innovation: internal finance 
and the direction of technical change. Environ Resour Econ 83:145–
169. https:// doi. org/ 10. 1007/ s10640- 021- 00602-9

O’Donoghue D, Gleave B (2004) A note on methods for measuring indus-
trial agglomeration. Reg Stud 38:419–427. https:// doi. org/ 10. 1080/ 
03434 00200 02139 32

Obobisa ES, Chen H, Mensah IA (2022) The impact of green tech-
nological innovation and institutional quality on CO2 emissions 
in African countries. Technol Forecast Soc Change 180:121670. 
https:// doi. org/ 10. 1016/j. techf ore. 2022. 121670

Peng W, Yin Y, Kuang C, Wen Z, Kuang J (2021) Spatial spillover 
effect of green innovation on economic development quality in 
China: evidence from a panel data of 270 prefecture-level and 
above cities. Sustain Cities Soc 69:102863. https:// doi. org/ 10. 
1016/j. scs. 2021. 102863

Qu F, Xu L, Zheng B (2022) Directed technical change and pollution 
emission: evidence from fossil and renewable energy technolo-
gies in China. Front Energy Res 10:1–11. https:// doi. org/ 10. 
3389/ fenrg. 2022. 794104

Qu F, Xu L, He C (2023) Leverage effect or crowding out effect? 
Evidence from low-carbon city pilot and energy technology 
innovation in China. Sustain Cities Soc 91:104423. https:// doi. 
org/ 10. 1016/j. scs. 2023. 104423

Sadorsky P (2014) The effect of urbanization on CO2 emissions in 
emerging economies. Energy Econ 41:147–153. https:// doi. org/ 
10. 1016/j. eneco. 2013. 11. 007

Shahbaz M, Destek MA, Dong K, Jiao Z (2021) Time-varying impact 
of financial development on carbon emissions in G-7 countries: 
evidence from the long history. Technol Forecast Soc Change 
171:120966. https:// doi. org/ 10. 1016/j. techf ore. 2021. 120966

Shao S, Yang L, Yu M, Yu M (2011) Estimation, characteristics, 
and determinants of energy-related industrial CO2 emissions 
in Shanghai (China), 1994–2009. Energy Policy 39:6476–6494. 
https:// doi. org/ 10. 1016/j. enpol. 2011. 07. 049

Shao S, Hu Z, Cao J, Yang L, Guan D (2020) Environmental regula-
tion and enterprise innovation: a review. Bus Strateg Environ 
29:1465–1478. https:// doi. org/ 10. 1002/ bse. 2446

https://doi.org/10.1016/j.energy.2022.124551
https://doi.org/10.1016/j.jclepro.2022.131537
https://doi.org/10.1016/j.scitotenv.2022.157392
https://doi.org/10.1016/j.scitotenv.2022.157392
https://doi.org/10.1016/j.jclepro.2020.125143
https://doi.org/10.1007/s11356-023-27221-9
https://doi.org/10.1007/s11356-023-27221-9
https://doi.org/10.1007/s11356-022-18581-9
https://doi.org/10.1016/j.jclepro.2019.03.035
https://doi.org/10.1016/j.techfore.2022.121566
https://doi.org/10.1016/j.renene.2022.05.084
https://doi.org/10.1016/j.renene.2022.05.084
https://doi.org/10.1016/j.apenergy.2022.119473
https://doi.org/10.1016/j.apenergy.2022.119473
https://doi.org/10.1016/j.techfore.2021.121110
https://doi.org/10.1016/j.techfore.2021.121110
https://doi.org/10.1016/j.jenvman.2022.114465
https://doi.org/10.1016/j.jenvman.2022.114465
https://doi.org/10.1006/jema.2001.0491
https://doi.org/10.1006/jema.2001.0491
https://doi.org/10.1007/s10640-009-9309-1
https://doi.org/10.1007/s10640-009-9309-1
https://doi.org/10.1142/S2010007811000292
https://doi.org/10.1007/s11356-022-24193-0
https://doi.org/10.1007/s11356-022-24695-x
https://doi.org/10.1016/j.jclepro.2021.126091
https://doi.org/10.1016/j.techfore.2021.121434
https://doi.org/10.1016/j.techfore.2021.121434
https://doi.org/10.1016/j.scitotenv.2018.12.449
https://doi.org/10.1016/j.scitotenv.2018.12.449
https://doi.org/10.1016/j.landurbplan.2012.02.013
https://doi.org/10.1016/j.landurbplan.2012.02.013
https://doi.org/10.1016/j.jenvman.2019.109619
https://doi.org/10.1016/j.eist.2016.07.004
https://doi.org/10.1016/j.eist.2016.07.004
https://doi.org/10.1016/j.jeem.2015.03.004
https://doi.org/10.1016/j.jeem.2015.03.004
https://doi.org/10.1007/s10640-021-00602-9
https://doi.org/10.1080/03434002000213932
https://doi.org/10.1080/03434002000213932
https://doi.org/10.1016/j.techfore.2022.121670
https://doi.org/10.1016/j.scs.2021.102863
https://doi.org/10.1016/j.scs.2021.102863
https://doi.org/10.3389/fenrg.2022.794104
https://doi.org/10.3389/fenrg.2022.794104
https://doi.org/10.1016/j.scs.2023.104423
https://doi.org/10.1016/j.scs.2023.104423
https://doi.org/10.1016/j.eneco.2013.11.007
https://doi.org/10.1016/j.eneco.2013.11.007
https://doi.org/10.1016/j.techfore.2021.120966
https://doi.org/10.1016/j.enpol.2011.07.049
https://doi.org/10.1002/bse.2446


98337Environmental Science and Pollution Research (2023) 30:98314–98337 

1 3

Su Y, Fan Q m (2022) Renewable energy technology innovation, 
industrial structure upgrading and green development from the 
perspective of China’s provinces. Technol Forecast Soc Change 
180:121727. https:// doi. org/ 10. 1016/j. techf ore. 2022. 121727

Sufyanullah K, Ahmad KA, Sufyan Ali MA (2022) Does emission 
of carbon dioxide is impacted by urbanization? An empirical 
study of urbanization, energy consumption, economic growth 
and carbon emissions - using ARDL bound testing approach. 
Energy Policy 164:112908. https:// doi. org/ 10. 1016/j. enpol. 
2022. 112908

Sun H, Edziah BK, Sun C, Kporsu AK (2019) Institutional qual-
ity, green innovation and energy efficiency. Energy Policy 
135:111002. https:// doi. org/ 10. 1016/j. enpol. 2019. 111002

Wahab S (2021) Does technological innovation limit trade-adjusted 
carbon emissions? Environ Sci Pollut Res 28:38043–38053. 
https:// doi. org/ 10. 1007/ s11356- 021- 13345-3

Wang Z, Zhu Y (2020) Do energy technology innovations contribute to 
CO2 emissions abatement? A spatial perspective Sci Total Envi-
ron 726:138574. https:// doi. org/ 10. 1016/j. scito tenv. 2020. 138574

Wang Z, Zhang B, Liu T (2016) Empirical analysis on the factors influenc-
ing national and regional carbon intensity in China. Renew Sustain 
Energy Rev 55:34–42. https:// doi. org/ 10. 1016/j. rser. 2015. 10. 077

Wang WZ, Liu LC, Liao H, Wei YM (2021a) Impacts of urbanization 
on carbon emissions: an empirical analysis from OECD coun-
tries. Energy Policy 151(7):112171. https:// doi. org/ 10. 1016/j. 
enpol. 2021. 112171

Wang KL, Zhao B, Ding LL, Miao Z (2021b) Government intervention, 
market development, and pollution emission efficiency: evidence from 
China. Sci Total Environ 757:143738. https:// doi. org/ 10. 1016/j. scito 
tenv. 2020. 143738

Wang X, Fan LW, Zhang H (2023) Policies for enhancing patent qual-
ity: evidence from renewable energy technology in China. Energy 
Policy 180:113660. https:// doi. org/ 10. 1016/j. enpol. 2023. 113660

Xie R, Fang J, Liu C (2017) The effects of transportation infrastructure on 
urban carbon emissions. Appl Energy 196:199–207. https:// doi. org/ 
10. 1016/j. apene rgy. 2017. 01. 020

Xu B, Lin B (2015) How industrialization and urbanization process 
impacts on CO2 emissions in China: evidence from nonparametric 
additive regression models. Energy Econ 48:188–202. https:// doi. 
org/ 10. 1016/j. eneco. 2015. 01. 005

Xu L, Fan M, Yang L, Shao S (2021) Heterogeneous green innova-
tions and carbon emission performance: evidence at China’s city 

level. Energy Econ 99:105269. https:// doi. org/ 10. 1016/j. eneco. 
2021. 105269

Yang L, Li Z (2017) Technology advance and the carbon dioxide emis-
sion in China – empirical research based on the rebound effect. 
Energy Policy 101:150–161. https:// doi. org/ 10. 1016/j. enpol. 2016. 
11. 020

Yang F, Cheng Y, Yao X (2019) Influencing factors of energy technical 
innovation in China: evidence from fossil energy and renewable 
energy. J Clean Prod 232:57–66. https:// doi. org/ 10. 1016/j. jclep 
ro. 2019. 05. 270

Yang G, Zha D, Zhang C, Chen Q (2020) Does environment-biased 
technological progress reduce CO2 emissions in APEC econo-
mies? Evidence from fossil and clean energy consumption. Envi-
ron Sci Pollut Res 27:20984–20999. https:// doi. org/ 10. 1007/ 
s11356- 020- 08437-5

Zhang XP, Cheng XM (2009) Energy consumption, carbon emissions, 
and economic growth in China. Ecol Econ 68:2706–2712. https:// 
doi. org/ 10. 1016/j. ecole con. 2009. 05. 011

Zhang C, Zhou X (2016) Does foreign direct investment lead to lower 
CO2 emissions? Evidence from a regional analysis in China. 
Renew Sustain Energy Rev 58:943–951. https:// doi. org/ 10. 1016/j. 
rser. 2015. 12. 226

Zhao M, Kong Z, Escobedo FJ, Gao J (2010) Impacts of urban for-
ests on offsetting carbon emissions from industrial energy use in 
Hangzhou. China J Environ Manage 91:807–813. https:// doi. org/ 
10. 1016/j. jenvm an. 2009. 10. 010

Zheng S, Wu J, Kahn ME, Deng Y (2012) The nascent market for 
“green” real estate in Beijing. Eur Econ Rev 56:974–984. https:// 
doi. org/ 10. 1016/j. euroe corev. 2012. 02. 012

Zhu Y, Wang Z, Yang J, Zhu L (2020) Does renewable energy techno-
logical innovation control China’s air pollution? A spatial analysis 
J Clean Prod 250:119515. https:// doi. org/ 10. 1016/j. jclep ro. 2019. 
119515

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/j.techfore.2022.121727
https://doi.org/10.1016/j.enpol.2022.112908
https://doi.org/10.1016/j.enpol.2022.112908
https://doi.org/10.1016/j.enpol.2019.111002
https://doi.org/10.1007/s11356-021-13345-3
https://doi.org/10.1016/j.scitotenv.2020.138574
https://doi.org/10.1016/j.rser.2015.10.077
https://doi.org/10.1016/j.enpol.2021.112171
https://doi.org/10.1016/j.enpol.2021.112171
https://doi.org/10.1016/j.scitotenv.2020.143738
https://doi.org/10.1016/j.scitotenv.2020.143738
https://doi.org/10.1016/j.enpol.2023.113660
https://doi.org/10.1016/j.apenergy.2017.01.020
https://doi.org/10.1016/j.apenergy.2017.01.020
https://doi.org/10.1016/j.eneco.2015.01.005
https://doi.org/10.1016/j.eneco.2015.01.005
https://doi.org/10.1016/j.eneco.2021.105269
https://doi.org/10.1016/j.eneco.2021.105269
https://doi.org/10.1016/j.enpol.2016.11.020
https://doi.org/10.1016/j.enpol.2016.11.020
https://doi.org/10.1016/j.jclepro.2019.05.270
https://doi.org/10.1016/j.jclepro.2019.05.270
https://doi.org/10.1007/s11356-020-08437-5
https://doi.org/10.1007/s11356-020-08437-5
https://doi.org/10.1016/j.ecolecon.2009.05.011
https://doi.org/10.1016/j.ecolecon.2009.05.011
https://doi.org/10.1016/j.rser.2015.12.226
https://doi.org/10.1016/j.rser.2015.12.226
https://doi.org/10.1016/j.jenvman.2009.10.010
https://doi.org/10.1016/j.jenvman.2009.10.010
https://doi.org/10.1016/j.euroecorev.2012.02.012
https://doi.org/10.1016/j.euroecorev.2012.02.012
https://doi.org/10.1016/j.jclepro.2019.119515
https://doi.org/10.1016/j.jclepro.2019.119515

	Carbon emission reduction effect of renewable energy technology innovation: a nonlinear investigation from China’s city level
	Abstract
	Introduction
	Literature review
	Nonlinear impact of renewable energy technology innovation on carbon emissions
	Spatial spillover effects of renewable energy technology innovation on carbon emissions
	Carbon reduction channels for renewable energy technology innovation

	Methodology
	Data and variables
	Dependent variable
	Main independent variables
	Instrumental variables
	Control variables
	Mechanism variables

	Empirical results and discussion
	Descriptive statistics
	Analysis of baseline model
	Analysis of endogeneity
	Analysis of spatial spillover effect
	Robustness tests
	Robustness test for scale effect
	Robustness test for spatial spillover effect
	Robustness test for locational advantage and low-carbon cities pilot
	Robustness test for extreme value

	Analysis of mechanism
	Analysis of heterogeneity

	Conclusion and policy implications
	Appendix 1
	Appendix 2
	Acknowledgements 
	References


