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Abstract
Accurate and stable carbon price forecasts serve as a reference for assessing the stability of the carbon market and play a 
vital role in enhancing investment and operational decisions. However, realizing this goal is still a significant challenge, and 
researchers usually ignore multi-step-ahead and interval forecasting due to the non-linear and non-stationary characteristics 
of carbon price series and its complex fluctuation features. In this study, a novel hybrid model for accurately predicting 
carbon prices is proposed. The proposed model combines multi-step-ahead and interval carbon price forecasting based on 
the Hampel identifier (HI), time-varying filtering-based empirical mode decomposition (TVFEMD), and transformer model. 
First, HI identifies and corrects outliers in carbon price. Second, TVFEMD decomposes carbon price into several intrinsic 
mode functions (imfs) to reduce the non-linear and non-stationarity of carbon price to obtain more regular features in series. 
Next, these imfs are reconstructed by sample entropy (SE). Subsequently, the orthogonal array tuning method is used to 
optimize the transformer model’s hyperparameters to obtain the optimal model structure. Finally, after hyperparameter 
optimization and quantile loss function, the transformer is used to perform multi-step-ahead and interval forecasting on each 
part of the reconstruction, and the final prediction result is obtained by summing them up. Five pilot carbon trading markets 
in China were selected as experimental objects to verify the proposed model’s prediction performance. Various benchmark 
models and evaluation indicators were selected for comparison and analysis. Experimental results show that the proposed 
HI-TVFEMD-transformer hybrid model achieves an average MAE of 0.6546, 1.3992, 1.6287, and 2.2601 for one-step, three-
step, five-step, and ten-step-ahead forecasting, respectively, which significantly outperforms other models. Furthermore, 
interval forecasts almost always have a PICI above 0.95 at a confidence interval of 0.1, thereby indicating the effectiveness 
of the hybrid model in describing the uncertainty in the forecasts. Therefore, the proposed hybrid model is a reliable carbon 
price forecasting tool that can provide a dependable reference for policymakers and investors.
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Introduction

Global warming stands as the greatest challenge confront-
ing humanity in the twenty-first century, presenting a great 
threat to human survival and development. Greenhouse gas 
emissions (mainly carbon dioxide) from human industri-
alization activities are the direct cause of global warming. 
Many measures have been proposed to reduce emissions 

and control the trend of global warming. The emission trad-
ing system (ETS) was first proposed in the Kyoto Proto-
col, which assigns a price to carbon and is recognized as 
an effective policy tool to control emissions. In the 26th 
UN Climate Change Conference of the Parties (COP26), 
the importance of ETS for climate change was emphasized, 
and the global carbon trading system was initially finalized. 
Different from other financial markets, the carbon market 
emerged late and is characterized by an immature market 
system that is highly susceptible to other external factors, 
such as market regulation, energy, and environmental poli-
cies (Sun and Zhang 2018). These factors lead to dramatic 
fluctuations in carbon price. Therefore, building an accurate 
carbon price forecasting model that can help policymakers 
and enterprises understand the fluctuation pattern of carbon 
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price and thus develop relevant policies and investment 
strategies is necessary (Hao et al. 2020). However, the non-
linear, uncertain, and complex nature of carbon price fluc-
tuations (Lutz et al. 2013) makes the accurate forecasting of 
carbon price series a significant challenge.

The importance of carbon prices has garnered substantial 
attention among researchers in recent years, thereby leading 
to a growing interest in the field of carbon price forecast-
ing. Many scholars have proposed advanced carbon price 
forecasting models, and various models have been applied 
to carbon price forecasting. In general, these models can be 
divided into three main categories (Zhu et al. 2017), namely, 
(1) traditional time series models, (2) artificial intelligence 
models, and (3) hybrid models. Traditional time series mod-
els are primarily based on statistical methods. For example, 
autoregressive integrated moving average (ARIMA) (Zhu 
and Wei 2013), autoregressive conditional heteroscedasticity 
(GARCH) (Byun and Cho 2013); (Benz and Trück 2009), 
and other models. These statistical methods are based on 
the significance of constructing models that can capture 
certain statistical features of carbon price fluctuations, such 
as heteroscedasticity, fat-tailedness, and leverage effects. 
Although the construction of statistical models is simple, 
easy to implement, widely applied, and has achieved specific 
results, statistical models based on the assumption of linear-
ity cannot effectively address these characteristics (Sun and 
Zhang 2018) because of the non-linear and non-stationarity 
characteristics of carbon prices (Tian and Hao 2020). There-
fore, achieving satisfactory accuracy in carbon price fore-
casting using these traditional time series models is difficult.

In recent years, the rise of artificial intelligence (AI) 
has prompted the utilization of many AI models for carbon 
price forecasting. Compared with traditional time series 
models, these AI models exhibit better robustness and gen-
eralization ability and can effectively deal with non-linear 
and non-stationary time series (Han et al. 2019). The most 
commonly used models include support vector machines 
(SVMs), extreme learning machines (ELMs), and several 
types of artificial neural networks (ANNs). Yi et al. (2017) 
predicted carbon prices through back propagation neural 
network (BPNN). The experimental results proved that this 
model exhibited higher prediction accuracy than the statis-
tical model. Du et al. (2022) employed a BPNN to predict 
prices in Fujian’s carbon market. They verified that BPNN 
could make effective carbon price predictions. These studies 
illustrate that AI models significantly improved prediction 
accuracy and could be adapted to various situations. Among 
these AI models, ANN-based models exhibit exceptional 
performance. Zhang and Wen (2022) predicted carbon price 
by using temporal convolutional neural network (TCN), 
and their experimental findings demonstrated the superior 
performance of TCN compared with traditional statistical 
models and some machine learning models, such as random 

forest (RF), XGBoost, and SVM. Therefore, ANN-based 
carbon price prediction models, such as LSTM, GRU, and 
TCN, have emerged as prominent contenders in the field. 
These sequential ANN models possess excellent ability for 
time series modeling. However, the failure to effectively 
handle long-term dependencies and interrelatedness in time 
series has left room for further improvement in carbon price 
forecasting accuracy. Transformer model based on attention 
mechanisms is more effective in the long-term dependence 
and interactions of time series data than other ANN struc-
tures (Wu et al. 2020), thereby appearing in time series mod-
eling. Bommidi et al. (2023) utilized the transformer model 
for short-term wind speed prediction, and the experimental 
results proved that the prediction ability of the transformer 
model is higher than the commonly used sequential ANN 
structure. Wang et al. (2022) constructed a temporal fusion 
transform (TFT) to predict carbon prices in the Chinese pilot 
market, and experiments showed that TFT has superior pre-
diction effects compared with LSTM and GRU. Therefore, 
the transformer model holds promising application prospects 
in carbon price forecasting.

Nevertheless, each single model has corresponding 
defects in the face of the current highly volatile and chaotic 
carbon price (Huang et al. 2021). The prediction accuracy of 
using single models is not the best and most ideal (Niu and 
Wang 2019). Many advanced hybrid models have been pro-
posed and used. Hybrid models can be mainly classified into 
two categories, namely, by using decomposition techniques 
and integrated optimization algorithms. Many researchers 
employ signal decomposition techniques to decompose car-
bon price series, which reduces non-stationarity and extracts 
the different scale features of carbon prices (Zhu et al. 2018), 
thereby improving the predictive accuracy. Many decom-
position methods that are used, commonly include empiri-
cal mode decomposition (EMD-Type), variational mode 
decomposition (VMD), and wavelet transformer. Yun et al. 
(2022) constructed a hybrid carbon price prediction model 
that included complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) and long short-
term memory (LSTM). The experimental results show that 
the hybrid model exhibited better prediction performance 
than the single model. Sun et al. (2016) predicted the carbon 
price based on VMD and spiking neural networks (SNNs) 
and achieved good results. In experiments, VMD has dem-
onstrated better feature extraction performance than EMD, 
which resulted in higher prediction accuracy. Liu and Shen 
(2019) combined the empirical wavelet transform (EWT) 
and gated recurrent unit (GRU) neural network to estab-
lish a hybrid model for carbon price prediction and verified 
through experiments that the model was superior to a single 
ARIMA, BPNN, and GRU. The decomposition algorithms, 
including EMD-type, VMD, and WT, offer effective ways to 
decompose the carbon price series. However, they possess 
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certain drawbacks. VMD and WT require manual selection 
of decomposition level and wavelet basis function, respec-
tively (Yang et al. 2021). EMD-type is an adaptive decompo-
sition algorithm but is susceptible to mode aliasing phenom-
enon and be affected by end effects (Wu and Huang 2004). 
These issues can affect the quality of decomposition and 
thus lead to unstable forecasting outcomes. Time-varying 
filtering-based empirical mode decomposition (TVFEMD) 
was proposed by Li et al. 2017. TVFEMD is an adaptive 
method that can effectively overcome mode mixing alias-
ing and has high computational efficiency. Due to its supe-
rior performance, it has been applied in some time series 
forecasting, such as non-ferrous metal price forecast (Wang 
et al. 2021) and wind speed prediction (Xiong et al. 2021). 
Therefore, this study applies TVFEMD to decompose car-
bon price. Many researchers use optimization algorithms 
to optimize the model’s hyperparameters and thus improve 
its processing power. Considering that the performance of 
some AI models relies on the configuration of hyperparam-
eters, especially ANN models (Zhang et al. 2017) and the 
accuracy of the model may fluctuate greatly with different 
hyperparameter settings, many scholars have employed intel-
ligent optimization algorithms to optimize the configura-
tion of model hyperparameters. Sun and Xu (2021) utilized 
linearly decreasing weight particle swarm optimization 
(LDWPSO) to optimize the hyperparameters of the wavelet 
least squares SVM (wLSSVM) and applied it to carbon price 
prediction. The optimized wLSSVM model demonstrated 
higher prediction accuracy than the non-optimized model. 
Sun and Zhang (2020) utilized an improved bat algorithm 
(IBA) to search for the optimal hyperparameters of extreme 
learning machine (ELM), which further enhanced ELM’s 
predictive performance. The selection of a proper optimiza-
tion algorithm is crucial for model configuration. However, 
heuristic optimization algorithms often struggle to ensure 
the stability of their optimization results and can easily fall 
into local optima. In this study, an orthogonal array-based 
hyperparameter optimization technique was used to identify 
the optimal hyperparameter configuration of the model.

In previous discussions, the majority of forecasting meth-
ods primarily emphasize point forecast, thereby ignoring the 
importance of interval forecasting, which cannot be disre-
garded in forecasting. Interval forecasts quantify the uncer-
tainty in carbon price forecasts and therefore contain more 
information than point forecasts (Zhang et al. 2016). Interval 
forecast is based on a certain level of significance of a set 
of upper and lower bounds. Compared with point forecast, 
it can reflect the possibility of result variation caused by 
uncertainty in the prediction. When time series exhibit high 
instability and non-linear trends, interval forecast is a power-
ful tool to help decision makers. Quantile regression (QR) 
is a regression analysis model in statistics that estimates the 
conditional quantile relationship between variables without 

knowing the type of variable distribution (He and Li 2018). 
QR can be well combined with ANN models to produce 
interval prediction results. Wang et al. (2020a, 2020b) com-
bined LSTM with QR for short-term wind speed prediction, 
and the interval prediction results constructed by QR could 
cover the uncertainty of wind speed prediction well. Lim 
et al. (2021) integrated QR and transformer-based model and 
achieved remarkable interval forecasts. Therefore, this study 
combines the transformer model with QR for the interval 
forecasting of carbon prices. Furthermore, most models tend 
to overlook the presence of outliers in carbon price. In real-
ity, carbon prices are commonly disturbed by non-control-
lable and unexpected non-repetitive information, such as the 
enactment of new market regulation policies, the upcoming 
date of carbon quota submission, or extreme weather. These 
factors can result in outliers within the carbon price series, 
potentially leading the model to learn erroneous informa-
tion and leads to overfitting. Consequently, the generaliza-
tion ability of the model is compromised. Sun et al. (2021) 
demonstrated that outliers in the carbon price series could 
negatively affect forecasts by using the box plot method to 
remove outliers from the carbon price. Hence, the identifi-
cation and correction of outliers play a significant role in 
carbon price forecasting.

In summary, to fill the gap of the current research, this 
study constructs a hybrid carbon price forecasting method 
that combines Hampel identifier (HI), time-varying filtering 
for empirical mode decomposition (TVFEMD), transformer, 
and optimization with orthogonal array tuning (OATM) for 
multi-step-ahead and interval forecasting of carbon prices. 
First, HI is used to identify and correct outliers present in the 
original carbon price series to eliminate their negative impact 
on carbon price data. Subsequently, TVFEMD decomposes the 
processed carbon price series into multiple intrinsic mode func-
tions (imfs), which are reconstructed through sample entropy 
(SE). Finally, based on the transformer model after the hyper-
parameters are optimized by OATM, each imfs is predicted, and 
the results are summed to obtain the deterministic prediction 
results. The quantile loss function is used to obtain the predic-
tion intervals at various confidence levels. The main innova-
tions and contributions of this study are outlined as follows:

(1) Identification and correction of outliers. Carbon prices 
are irregular and fluctuate dramatically. By identifying 
and correcting the outliers in the original carbon price 
through HI, the basic information in the original data 
can be retained better, and the training of the model is 
not affected by the outliers, thus improving the predic-
tion performance of the hybrid model.

(2) An advanced data decomposition strategy is used. 
TVFEMD improves EMD. TVFEMD can eliminate the 
mode aliasing phenomenon in EMD and can adaptively 
decompose the original data into clearer and more 
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detailed sub-sequences, thereby effectively reducing 
the non-linear and non-stationarity characteristics in 
carbon price series.

(3) Advanced deep learning architecture is used. The deep 
learning (DL) model is widely used in carbon price fore-
casting. This study is the first to attempt to use the trans-
former model in carbon price forecasting, explore the 
potential of the transformer’s application in carbon pric-
ing forecasting, and expand on related theoretical methods 
because this model has better modeling ability in terms of 
long-term dependence and interaction of series. Subse-
quently, because the performance of deep learning models 
is very sensitive to the configuration of hyperparameters, 
OATM is used in this study to optimize the hyperparam-
eters in the transformer model. OATM makes a trade-off 
between time consumption and model accuracy to select 
the optimal hyperparameter configuration.

(4) Multi-step-ahead and interval forecasts of carbon prices 
are constructed. Considering that the results of one-step-
ahead forecasts are not sufficient to provide reliable 
information for investors and policymakers, the multi-
step-ahead and interval of carbon price are predicted, 
which can better reflect the changing trend and fluctua-
tion pattern of carbon price, based on the transformer’s 
excellent modeling ability of long-term dependence 
of series and quantile loss function. Multi-step-ahead 
prediction can represent the long-term trend of carbon 
price, whereas interval prediction can comprehensively 
reflect the fluctuation information of carbon price.

The remainder of this paper is presented as follows: 
“Methodology” presents the methodology used in this study. 
“Framework of the proposed forecasting system” describes 
the framework flow of the proposed hybrid model. “Data 
collection and preprocessing” contains the description of 
the data and the evaluation metrics. “Experimental analy-
sis” presents the analysis and discussion of the experiments. 
Finally, “Conclusion” presents the conclusions.

Methodology

In this section, the main methods used in the proposed model 
of this study, including HI, TVFEMD, transformer, OATM, 
and quantile loss, are introduced.

Hampel identifier

HI is an effective outlier identification and correction tech-
nique that utilizes median deviation and absolute median devi-
ation as the criteria for determining outliers with good robust-
ness (Yao et al. 2019). For the data series: X={x1,x2,x3,…,xn}, 
k is the number of adjacent points on each side of xi in a given 

window, the size of the moving window is 2k+1, the local 
median mi, and the scale estimate of the median estimated 
deviation σi are calculated as follows:

where k =
�
1∕

�√
2erfc−1(1∕2)

��
≈ 1.4826 is the unbiased 

estimate of the Gaussian distribution.

According to Eq. 3, if the absolute value of the differ-
ence between the evaluated data xi and the local median 
mi is greater than nσ times σi, then the evaluated data xi are 
considered an outlier, and the outlier is replaced by the local 
median mi, and nσ is usually set to 3 (Wang et al. 2020a, 
2020b).

Time‑varying filter empirical mode decomposition

TVFEMD, which is an improvement of the empirical modal 
decomposition (EMD), is proposed by Li et al. (2017).The 
decomposition of the imfs in EMD and EEMD cannot guar-
antee the existence of only one amplitude mode, and the 
local mean values determined by EMD through the third 
spline interpolation of the upper and lower envelopes are 
difficult to represent by a strict analytical expression, which 
may lead to meaningless imfs obtained by EMD and EEMD. 
TVFEMD improves the performance of frequency separa-
tion and stability at low sampling rates, solves the problem 
of modal aliasing, and preserves the time-varying charac-
teristics of the time series. The meaning of the TVFEMD 
parameter is clear and simple to choose (Ma and Zhang 
2020), which allows the imfs obtained by TVFEMD to rep-
resent the pattern features in the time series better.

The specific calculation steps of TVFEMD are presented 
as follows:

The instantaneous amplitude A(t) and frequency φ‘(t) of 
the original sequence x(t) are obtained by Hibert transform; 
then, the local maximum value A(tmax) and the local mini-
mum value A(tmin) of A(t) are solved. The interpolation of 
A(tmax) and A(tmin) yields β1(t) and β2(t); the instantaneous 
mean α1(t)=(β1(t)+β2(t))/2 and the instantaneous envelope 
α2(t)=(β1(t)-β2(t))/2 are calculated. η1(t) and η2(t) are obtained 
by the interpolation of φ‘(tmax)A2(tmax) and φ‘(tmin)A2(tmin).
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(
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Subsequently, ��

1
(t) and ��

2
(t) are calculated by Eqs. 6 and 

7, respectively.

Calculate the local cutoff probability ��

bis
(t).

The signal h(t) can be extracted by ��

bis
(t) , and 

h(t) = cos
[
∫ �

�

bis
(t)dt

]
 . The signal x(t) is approximated by 

B-sample interpolation of h(t) extreme points h(tmax) and 
h(tmax), and the result of the approximation is m(t).

Calculate the stopping criterion θ(t). When θ(t) is less 
than the threshold ξ, x(t) is treated as an imf, otherwise, set 
x(t) = x(t) − m(t), repeat the steps above until the stopping 
criterion is satisfied.

The original sequence xraw(t) is finally decomposed into 
several imfs and a residual term，xraw(t) =  ∑  IMFk + Resid.

Transformer

The transformer model has gained significant attention in 
time series modeling because of its ability to efficiently cap-
ture long-term dependencies in sequences and interactions 
between data. Unlike TCN or LSTM that rely on recursive and 
convolutional layers, transformer models the information in 
time series through the encoder–decoder structure (Wen et al. 
2022), The encoder maps the input sequence X=[x1,x2,... ,xn] 
into a continuous representation Z=[z1,z2,... ,zn], and Z inputs 
the decoder to generate the output sequence Y=[y1,y2,... ,ym]. 
The encoder and decoder are stacked with N identical mod-
ules, and each module mainly contains two parts: the multi-
head self-attention layer and the feed-forward network (FFN). 
The structure of the Transformer model is shown in Fig. 1.
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The attention mechanism uses the query-key-value 
(QKV) ( Q = hWQ

m
，K = hWK

m
，V = hWV

m
，h ∈ ℝN × d is the 

input，WQ
m
,WK

m
∈ ℝ

d×dk，and WV
m
∈ ℝ

d×dv is the trainable 
weight matrix model to generate the attention of the scaled 
dot product.

To improve the learning ability of single attention, the 
transformer model applies multi-head attention (Vaswani 
et al. 2017). The QKV is linearly projected for m times. In 
each projection, the attention function is executed in par-
allel to generate the output results of dv dimension. The 
projected output results are spliced and projected again to 
obtain the final output results. The QKV is linearly projected 
for m times. In each projection, the attention function Eq. 13 
is executed in parallel to generate the output results of dv 
dimension. The projected output results are stacked and pro-
jected again to obtain the final output results.

where WQ

i
,WK

i
∈ ℝ

dmodel×dk，Wv
i
∈ ℝ

dmodel×dv，in multi-head 
attention dk = dv = dmodel/m.

Carbon price series have long-term memory (Fan et al. 
2019), and for better extraction of historical information, long 
time steps must be covered. However, not all time steps are rel-
evant. In multi-head attention, the Softmax activation function 
is used to calculate the attention score equation (12), and Soft-
max cannot assign exactly zero scores because all scores sum 
to one, which reduces the attention allocation in the relevant 
time steps (Wiegreffe and Pinter 2019) and extracts informa-
tion from the irrelevant time steps to add noise to the model, 
thereby affecting the performance of the transformer model. 
Therefore, this study uses the sparse mapping α-entmax (Peters 
et al. 2019) instead of Softmax, which is defined as follows:

where []+ is the Relu activation function, 1 is a vector of all 
ones, and τ is the Lagrange multiplier. When α = 1 is equal 
to the Softmax function, when α > 1 can be sparse mapping, 
and α = 1.5 is a reasonable point (Martins and Fernandez 
Astudillo 2016). Therefore, this study set α = 1.5.

Orthogonal array tuning method

Zhang et al. (2019a) proposed OATM. Compared with the 
highly time-consuming and over-dependent configurations 
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QKT

√
dk

�

V .

(13)
MultiHeadAtt(Q,K,V) = Concat

(
head1,… , headm

)
WO,

(14)headi = Attention
(
QW

Q

i
,KWK

i
,VWV

i

)
,

(15)� − entmax(h) = [(� − 1)h − �1]
1∕�−1
+ ,



95697Environmental Science and Pollution Research (2023) 30:95692–95719 

1 3

of grid search, random search, and Bayesian optimization, 
OATM uses an orthogonal list to extract the most representa-
tive and balanced experimental combinations from all possi-
ble combinations. Furthermore, the use of these experimen-
tal combinations to optimize hyperparameters can achieve a 
trade-off between optimization time and model performance. 
The specific steps of OATM are presented as follows:

• Step 1. An orthogonal array is constructed to optimize the 
hyperparameters. The orthogonal array consists of a finite 
number of factors, with each factor containing the same finite 
number of levels. The arrangement of factors in the array 
ensures that each pair of different factors appears together 
in the same number of ordered combinations. For example, 

Table 1 shows an orthogonal array with three factors and 
three levels each. The total number of combinations in the set 
of all factors and levels S , Card(S) = 3 × 3 × 3 = 27 , and 
the set of orthogonal array isO，Card(O) = 9 . The two sets 
are displayed in a cube, as shown in Fig. 1, where A1, A2, 
and A3 are the three levels of factor A, and B and C are also 
a set of factors. The 27 nodes on the surface of the cube are 
set S , and the 9 red circles are set O . In Fig. 1, each red circle 
is uniformly distributed, one exists on each edge, and three 
exist on each face. Thus, O can be used as a representative 
subset of the set S , O ⊆ S . The different hyperparameters 
in optimization are the factors in the orthogonal array, and 
the levels correspond to the values that can be chosen in the 
hyperparameters.

Fig. 1  Flow chart of the proposed hybrid forecasting system



95698 Environmental Science and Pollution Research (2023) 30:95692–95719

1 3

• Step 2. Experiments are performed for all combinations 
of hyperparameters in the orthogonal array.

• Step 3. Range analysis. Range analysis plays a pivotal role in 
OATM. The experimental results obtained from Step 2 are 
analyzed using arrange analysis to determine the optimal level 
and importance of each hyperparameter. The importance of 
a hyperparameter is calculated by its influence on the experi-
mental results. Through range analysis, each hyperparameter 
is optimized, and the optimal levels are combined to create 
an optimized combination of hyperparameters, implying that 
the optimized hyperparameter combination may not be found 
among the existing orthogonal array.

• Step 4. Run the experiments on models with optimized 
hyperparameter combinations.

OATM utilizes a representative smaller subset of the 
hyperparameters for optimization, leading to higher effi-
ciency, as depicted in Fig.  1. The grid search method 
requires 27 experiments, whereas OATM only requires 9 
experiments, saving approximately 67% of time.

Quantile loss

In this study, quantile regression (QR) is used for forecast-
ing the carbon price interval. QR uses the data to conduct 
regression analysis at different quantiles, which can show 
the relationship between variables more comprehensively 
(Zhang et al. 2019a, 2019b). By improving the loss function 
of deterministic forecasting to a quantile loss function (Wen 
et al. 2017), the model can be used for quantile regression, 
and its loss function is expressed as follows:

(16)

L(𝛺,W) =
∑

yt∈𝛺

∑

q∈Q

∑𝜏max

𝜏=1

QL
(
yt, ŷ(q, t − 𝜏, t), q

)

M𝜏max

,

where Ω is the training domain containing M samples; W 
is the weight of the model; Q is the set of quantile outputs 
Q = {α∕2, 1 − α∕2} ; 1 − α is the confidence interval if α=1, 
that is, the same loss as the point forecast is the MAE loss 
function; and (.)+=max(0,.).

Evaluation indicators

This study selects several evaluation indicators to reflect the 
model’s performance in terms of precision and accuracy from 
various aspects. For deterministic forecasts, the evaluation 
indicators include mean absolute value error (MAE), root 
mean square error (RMSE), mean absolute percentage error 
(MAPE), goodness of fit (R2), and Taylor skill score (TSS). 
MAE represents the actual deviation; RMSE can represent 
the discrete degree of the sample; MAPE represents the over-
all level of error; R2 represents the overall fit of the forecast; 
and TSS is a comprehensive index that reflects the correlation 
coefficient, standard deviation, and centered root-mean-square 
(CRMS) of the prediction results (Taylor 2001). The smaller 
MAE, RMSE, and, MAPE are, the smaller the prediction error 
is, and the closer R2 and TSS are to 1, which indicates an accu-
racy of the model. For interval forecast, three indicators are 
selected: average width (AW), prediction interval coverage 
probability (PICP), and prediction interval normalized average 
width (PINAW), where AW reflects the interval width of the 
interval forecast, PICP represents the coverage of interval fore-
cast, and PINAW represents the percentage of average width in 
the data range. Generally, the prediction interval constructed 
is expected to have a small interval width but a high cover-
age rate. Thus, AW, PICP, and PINAW must be integrated to 
measure the effects of interval prediction. The evaluation index 
is expressed as follows:

(17)QL(y, ŷ, q) = q(y − ŷ)+ + (1 − q)(ŷ − y)+,

(18)MAE =
1

n

∑n

i=1
|
|yi − ŷi

|
|,

(19)RMSE =

√
1

n

∑n

i=1

(
yi − ŷi

)2
,

(20)MAPE =
1

n

∑n

i=1

|
|||

yi − ŷi

yi

|
|||
,

(21)R2 = 1 −

∑n

i=1

�
yi − ŷi

�2

∑n

i=1

�
yi − yi

�2 ,

(22)TSS =
4(1 + r)4

(
SDR +

1

SDR

)2(
1 + r0

)4
,

Table 1  Orthogonal array with three factors and three levels

Row no. Factor 1 Factor 2 Factor3

1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2
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where yi and ŷi are the actual and predicted values, respec-
tively; ŷi represents the mean of the predicted values; n is the 
length of the sequence; r and SDR are the correlation coeffi-
cient and variance ratio between the predicted sequence and 
the actual sequence, respectively; and r0 is set to one.  Udi 
and  Ldi are the upper and lower boundaries of the interval 
prediction, respectively; ymax is the max value in the actual 
sequence; and ymin is the min value.

Framework of the proposed forecasting 
system

Figure 1 presents the framework flow of the designed hybrid 
carbon price forecasting system based on the methodology 
in the previous section. As seen in Fig. 1, the forecasting 
steps can be divided into the following parts:

(1) Identification and correction of outliers. Owing to the 
complexity of carbon price, its fluctuation and fluctua-
tion pattern become very drastic and irregular, respec-
tively. Therefore, HI is used to process the original car-
bon price series to remove and correct outliers, thereby 
weakening the effects of outliers on model training.

(2) Decomposition and reconstruction of carbon price. 
TVFEMD is applied to decompose the complex car-
bon price series to obtain several imfs, which contain 
the features with varying frequencies in series, thereby 
simplifying model learning. TVFEMD guarantees 
the existence of only one amplitude mode in the imfs. 
Thus, the imfs by TVFEMD are more detailed and 
greater in terms of quantity than those decomposed by 
EMD; however, more imfs extend computation time 
and increase accumulation of errors (Zhao et al. 2022). 
Hence, imfs need to be reconstructed, and the generally 
used method is to calculate the entropy value among 
different imfs (Sun et al. 2021); the complexity of imfs 
is classified according to the entropy value, and imfs 
that are classified into the same class are summed and 
merged (Wang and Qiu 2021). However, some stud-
ies (Sun and Huang 2020a, 2020b) suggest that high-
frequency imfs contain complex fluctuations, and a 
secondary decomposition is implemented to further 

(23)AW =
1

n

∑n

i=1

(
Udi − Ldi

)
,

(24)PICP =
1

n

∑n

i=1
Ci,Ci =

{
1,Ci ∈

[
Ldi, Udi

]

0,Ci ∉
[
Ldi, Udi

] ,

(25)PINAW =
1

n

∑n

i=1

[(
Udi − Ldi

)
∕
(
ymax − ymin

)]
,

improve the prediction accuracy, thereby generating 
more imfs, which contradict the concept of recon-
struction. TVFEMD can effectively solve this con-
flict because the imfs obtained by its decomposition 
are more detailed, especially in the high-frequency 
part. Hence, the use of TVFEMD for the secondary 
decomposition of the imfs in the high-frequency part is 
unknot necessary. Therefore, this study uses SE (Rich-
man and Moorman 2000) to estimate the complexity of 
each imfs. On the one hand, SE is retained for the imfs 
with high complexity. On the other hand, imfs with low 
complexity and the imfs with similar sample SE val-
ues are summed and combined to reduce computational 
time consumption and error accumulation and to retain 
complex imf features. Normalization is performed to 
map the data to [0,1] before each component is inputted 
into the forecasting model.

(3) Optimization of hyperparameters. The transformer 
model includes a large number of hyperparameters, 
and different hyperparameter settings can have a huge 
impact on the prediction performance. In this study, 
OATM is used to tune the hyperparameters of the model 
and determine the appropriate hyperparameter configu-
rations to improve the performance of the model.

(4) Forecasting of carbon price. First, the Transformer 
model is used to perform one-step-ahead and multi-step-
ahead forecasting on the decomposed and reconstructed 
subsequents. In multi-step-ahead forecasting, the trans-
former model applies the autoregressive method to gen-
erate multi-step-ahead results (Graves 2013). Next, the 
model takes the previously generated prediction results 
as the input of the next prediction and then sums the 
prediction results of each subsequent. Finally, the final 
prediction results are obtained. Based on the determin-
istic prediction, the interval prediction of carbon price 
is made by using the quantile loss function to measure 
the uncertainty of the deterministic prediction.

(5) Comparison and analysis. In this study, different single mod-
els, including machine learning models (SVM) and com-
monly used deep learning models (LSTM, GRU, and TCN) 
and decomposition methods (EMD, EEMD, and CEEM-
DAN) are selected for comprehensive comparison with the 
proposed hybrid model under a variety of evaluation indica-
tors to prove the effectiveness of the proposed model.

Data collection and preprocessing

In this section, the original dataset of the carbon prices and 
its statistical features are described briefly. In addition, the 
results of the carbon price decomposition and reconstruction 
and hyperparameter optimization are presented.
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Data collection

The closing price of the five pilot carbon trading markets in 
China, namely, Guangdong, Hubei, Beijing, Shanghai, and 

Shenzhen, were selected as experimental subjects to verify the 
effectiveness of the proposed model in this study. The annual 
carbon quota in the Shenzhen carbon market is separated 
from the previous carbon quota, such as SZ2013 and SZ2014. 

Table 2  Statistical description 
of the experimental data

Markets Number Max Min Mean Median Std Kurt Skew ADF(p)

Guangdong 1819 95.26 8.1 29.3530 23.06 19.5789 4.0223 1.4236 0.6248
Hubei 1921 61.48 10.07 26.5407 25.50 8.5651 3.1186 0.7448 0.6446
Beijing 1281 107.26 24 61.0160 53.50 16.8594 2.2420 0.5695 0.2142
Shanghai 1234 63 4.2 35.5784 38 12.4960 3.8618 -0.3972 0.4977
Shenzhen 1909 130.90 3.03 33.7840 31.83 19.9392 3.8329 0.8746 0.0010

Fig. 2  Original and corrected series of five carbon markets
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Hence, the Shenzhen carbon price is represented by weight-
ing and averaging the closing prices of different carbon quotas. 
The date when the trading volume of the carbon market is 0 is 
excluded, and the selected period is from the establishment time 
of each market to September 2, 2022. The data are collected 
from http:// www. tanpa ifang. com/. The dataset of relevant 
statistical information (Table 2) selects several typical statisti-
cal indexes, including the max, min, mean, median, standard 
deviation, kurtosis and skewness, and ADFtest, to determine 

whether the Hubei carbon market is the most stable one among 
the aforementioned carbon markets. The standard deviation and 
the gap between the maximum and minimum values of all other 
carbon markets are relatively large, indicating that the carbon 
price series fluctuates dramatically. ADFtest shows that the P 
values of nearly all carbon markets, except Shenzhen carbon 
price, are much more significant than 0.05, indicating that the 
price data of these markets are non-stationary. The price series 
of these several carbon markets are shown in Fig. 2, where 

Fig. 3  Results of carbon price decomposition and reconstruction in Guangdong

Table 3  Sample entropy of 
each imf

Sample entropy

Retaining imf1 imf2 imf3 imf4
1.6215 1.9398 1.1880 0.9827

Component1 imf5 imf6 imf7 imf8
0.4954 0.3311 0.5786 0.3869

Component2 imf9 imf10 imf11 imf12 imf13 imf14 imf15 imf16 Resid
0.2007 0.2087 0.1291 0.1166 0.0823 0.0583 0.0406 0.0216 0.0135

http://www.tanpaifang.com/
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many sudden upward and downward fluctuations in price series 
are observed. For the convenience of comparison, the carbon 
price series after outlier identification and correction are shown 
in Fig. 2, and the comparison shows that the processed series 
eliminates some points of sharp fluctuations.

In the experiment, the first 70%, the middle 10%, and the last 
20% of the data are used as the training set, the validation set, and 
the test set, respectively. The training set is used to train the model, 
the validation set is used to optimize the model’s hyperparameters, 
and the test set is used to verify the model’s effectiveness.

Data decomposition and reconstruction

Guangdong carbon price is selected as an example to illus-
trate decomposition and reconstruction. According to the 

designed hybrid model, the carbon price series after remov-
ing outliers is decomposed into several imfs and a resid-
ual term through TVFEMD. Each imf represents different 
amplitude patterns in the original signal, as shown in Fig. 3. 
According to Fig. 3, 17 imfs significantly increase the cal-
culation amount of the hybrid model. Therefore, SE is used 
to identify the complexity of different imfs. In other words, 
the higher the SE, the higher the complexity, and imfs with 
high complexity are retained one by one. This phenomenon 
retains the complex features in time series to avoid repeti-
tive secondary decompositions while other imfs are recon-
structed according to their SE values. Other imfs are also 
reconstructed according to their SE values, which not only 
reduces the calculation of the model to avoid overfitting but 
also retains the fluctuating features with higher complexity. 

Fig. 4  Sample entropy and reconstruction results for the rest of the carbon market

Table 4  Comparison results 
before and after reconstruction

Guangdong Hubei Beijing Shanghai Shenzhen

Running time(s) Unreconstructed 2150.0437 2580.9971 1729.7639 2082.0854 3996.0947
Reconstructed 798.3508 982.7669 885.4591 1168.1885 1569.1607

MAE Unreconstructed 0.2534 0.3126 1.6902 0.4770 2.9084
Reconstruction 0.2363 0.2947 1.5034 0.466 2.5681
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SE division does not follow stringent rules and regulations, 
and it is divided by the overall distribution of SE (Zhou 
et al. 2022; Wang et al. 2022; Sun et al. 2021). According 
to Table 3 and Fig. 3, the complexity of imfs has a decreas-
ing distribution, and imfs can be roughly divided into three 
parts. The SE values of imf1–imf4 are almost all over 1 and 
fluctuate sharply. Hence, these imfs are retained separately. 
In contrast, the SE values of imf5–imf8 are relatively small 
and concentrated between 0.3 and 0.5. Thus, these imfs are 

combined into a component, while the SE values of the 
remaining imfs are almost all below 0.2, combining these 
remaining imfs into another component. The reconstructed 
results are shown in Fig. 3. The rest of the carbon markets 
are also reconstructed based on similar division criteria for 
imfs, as shown in Fig. 4.

In this subsection, simple experiments are conducted 
to illustrate the effectiveness of the adopted decomposi-
tion–reconstruction method in terms of running time and 
forecasting accuracy. The optimized transformer model 
from “Interval forecasting” is used as the benchmark 
model. Running time and MAE are chosen as the criterion, 
and the results of the experiments are shown in Table 4. 
Table 4 demonstrates that a significant amount of running 
time is saved after reconstruction, without compromising 
its prediction accuracy. Thus, this decomposition–recon-
struction method is used for all decomposition techniques 
in the following multi-step-ahead and interval prediction 
experiments.

Table 5  Factor-level table for 
the Transformer model

Factors Levels
1 2 3 4

bn 1 2 3 4
nn 16 32 64 128
ts 15 20 25 30
bs 16 32 64 128
hs 1 2 3 4

Table 6  Range analysis of the 
transformer model

Row no. bn nn ts bs hn RMSE

1 2 32 20 32 1 1.2753
2 2 128 25 16 3 1.1889
3 1 32 25 128 2 1.2017
4 3 64 25 64 1 1.1428
5 1 16 15 16 1 1.2047
6 1 128 20 64 4 1.1176
7 3 16 20 128 3 1.2121
8 1 64 30 32 3 1.2494
9 4 64 20 16 2 1.2499
10 2 64 15 128 4 1.1580
11 3 128 15 32 2 1.2272
12 2 16 30 64 2 1.2479
13 4 16 25 32 4 1.2447
14 3 32 30 16 4 1.1743
15 4 128 30 128 1 1.1160
16 4 32 15 64 3 1.3356
Rlevel1 4.7734 4.9094 4.9255 4.8178 4.7388
Rlevel2 4.8702 4.9868 4.8550 4.9966 4.9267
Rlevel3 4.7563 4.8002 4.7781 4.8440 4.9859
Rlevel4 4.9463 4.6498 4.7875 4.6878 4.6947
Mlevel1 1.1933 1.2273 1.2314 1.2045 1.1847
Mlevel2 1.2175 1.2467 1.2137 1.2491 1.2317
Mlevel3 1.1891 1.2000 1.1945 1.2110 1.2465
Mlevel4 1.2366 1.1624 1.1969 1.1719 1.1737
Lowest RMSE 1.1891 1.1624 1.1945 1.1719 1.1737
Height RMSE 1.2366 1.2467 1.2314 1.2491 1.2465
Range 0.0475 0.0843 0.0369 0.0772 0.0728
Importance nn > bs > hn > bn > ts
Best level Level3 Level4 Level3 Level4 Level4
Suggested optimal values 3 128 0.3 128 4 1.1075
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Hyperparameter optimization

In deep learning, the setting of hyperparameters plays a 
crucial role in determining the experimental results. In this 
study, OATM is used to optimize the model’s hyperpa-
rameters. OATM can effectively balance the optimization 
time and accuracy through a representative subset. In con-
sideration of relevant studies (Meka et al. 2021; Vaswani 
et al. 2017; Zhang et al. 2019a), five hyperparameters in 
the transformer model, including the number of blocks 
(bn), the number of neurons (nn), the time step (ts), the 
batch size (bs), and the number of heads (hn), are selected 
as factors for the OATM. Each factor contains four lev-
els, as shown in Table 5. The carbon price in Guangdong 
is selected as the experimental data. All experiments are 
conducted using TensorFlow 2.7.0 under Python 3.8.8, 
and the number of cycles is set to 1000. To prevent overfit-
ting, an adaptive reducing learning rate Adam optimizer 
is used, along with the early stop mechanism. The drop-
out rate is set to 0.2, and the activation function is Relu. 

The hyperparameter orthogonal array is constructed, and 
the experimental results are shown in Table 6. This table 
includes the validation set RMSE for 16 experiments. In 
comparison with the grid search method, which requires 
1024  (45) experiments, OATM can save 98.43% of the 
computational time.

The range analysis enables us to determine the optimal 
level and the most critical factor according to Table 6. Rleveli 
and Mleveli are the sum and mean of RMSE at different lev-
els, respectively. The difference between the max Mleveli and 
the min Mleveli is used to calculate range, which is used to 
represent the importance of different factors. The greater 
the range is, the greater the importance of the factor will 
be. That is, the more sensitive the Transformer model is 
to this factor. The number of neurons is the most sensitive 
factor expressed in terms of RMSE, followed by the batch 
size, number of heads, number of blocks, and the time step. 
The optimal level under each factor is determined by the 
lowest Mleveli, from which the optimal hyperparameter com-
bination of the Transformer model can be obtained (bn = 3, 

Table 7  Evaluation indicators of comparison models and the proposed model in one-step-ahead forecasting

HI-SVM HI-LSTM HI-GRU HI-TCN HI-transformer HI-EMD-
transformer

HI-EEMD-
transformer

HI-CEEM-
DAN-trans-
former

HI-
TVFEMD-
transformer

GD MAE 2.5738 1.1227 1.5120 2.0968 0.9525 0.8356 0.6629 0.4869 0.2151
RMSE 3.5037 1.6094 2.0520 2.8663 1.5204 1.3852 1.2485 1.0263 0.4596
MAPE 0.0455 0.0185 0.0240 0.0305 0.0161 0.0140 0.0103 0.0077 0.0036
R2 0.9617 0.9919 0.9868 0.9743 0.9928 0.9940 0.9951 0.9967 0.9993
TSS 0.9801 0.9939 0.9917 0.9846 0.9937 0.9940 0.9957 0.9968 0.9993

HB MAE 1.5238 0.9158 0.9177 0.9590 0.7627 0.4979 0.4877 0.4364 0.1542
RMSE 1.9624 1.4286 1.4097 1.4306 1.2484 0.7435 0.7507 0.7767 0.4306
MAPE 0.0411 0.0237 0.0238 0.0244 0.0200 0.0131 0.0127 0.0116 0.0041
R2 0.9320 0.9640 0.9649 0.9639 0.9725 0.9902 0.9901 0.9894 0.9967
TSS 0.9535 0.9656 0.9665 0.9653 0.9731 0.9904 0.9907 0.9894 0.9968

BJ MAE 7.4643 6.0155 6.0476 5.9804 5.9106 3.5075 3.3378 3.4090 0.7582
RMSE 9.1927 8.1469 8.1943 8.0369 8.0701 4.9323 4.7006 4.7668 1.9730
MAPE 0.1182 0.0968 0.0971 0.0974 0.0950 0.0540 0.0517 0.0531 0.0110
R2 0.7820 0.8288 0.8268 0.8334 0.8320 0.9373 0.9430 0.9414 0.9900
TSS 0.7734 0.8364 0.8367 0.8372 0.8400 0.9348 0.9407 0.9391 0.9872

SH MAE 2.4002 1.0634 0.9509 0.8855 0.7993 0.7306 0.5076 0.4743 0.3814
RMSE 2.8363 1.4692 1.4554 1.4103 1.3777 1.1675 0.8774 0.8533 0.4317
MAPE 0.0473 0.0220 0.0203 0.0194 0.0175 0.0157 0.0108 0.0103 0.0077
R2 0.9157 0.9774 0.9778 0.9792 0.9801 0.9857 0.9919 0.9924 0.9980
TSS 0.9505 0.9797 0.9784 0.9791 0.9803 0.9857 0.9920 0.9924 0.9994

SZ MAE 4.7057 4.5306 4.3546 4.2990 4.2138 3.4482 3.1897 3.2412 1.7639
RMSE 7.5539 7.4815 7.4793 7.2251 7.4225 6.7375 6.3657 6.5823 2.9226
MAPE 0.4171 0.4494 0.3664 0.4077 0.3658 0.3124 0.3021 0.3184 0.1439
R2 0.7313 0.7365 0.7366 0.7542 0.7406 0.7863 0.8092 0.7960 0.9598
TSS 0.7354 0.7619 0.7671 0.7592 0.7530 0.7989 0.8174 0.8117 0.9592
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nn = 128, ts = 25, bs = 128, bn = 4). Finally, the obtained 
optimal hyperparameter combinations are experimented, 
and the RMSE is obtained as 1.1075, which is better than 
the optimal result of 1.1160 in the orthogonal array, indi-
cating that the OATM method can obtain the approximate 
global optimal solution of the hyperparameter to ensure 
the robustness of the model structure. All other models 
included in the comparison use OATM to determine their 
optimal structure. In other words, all models in the experi-
ment are optimized by OATM.

Experimental analysis

Deterministic forecasting

The deterministic forecasts of carbon prices in the five car-
bon markets, including one-step, three-step, five-step, and 
ten-step-ahead forecasting, are analyzed. In addition, dif-
ferent graphs are used to compare the forecasting results 

more visually. For example, histograms are used to repre-
sent MAPE and R2, radar chart is used to represent MAE 
and RMSE, and Taylor diagram is used to show the predic-
tion results of these models. The forecasting results of each 
model are shown in Tables 7, 8, 9, and 10 (the optimal model 
is marked in bold, for presentation purposes, these tables 
only contain the results after using HI) and Figs. 5, 6, 7, 8, 
and 9 (containing the results of the model with and without 
HI). According to the results in Tables 7, 8, 9, and 10 and 
Figs. 5, 6, 7, 8, and 9, the fitted curves of the proposed HI-
TVFEMD-transformer model are the closest to the actual 
values. More importantly, the RMSE, MAE, and MAPE of 
this model are significantly lower than those of other models, 
whereas their R2 and TSS are almost always the highest, 
indicating that the forecasting performance of the proposed 
model is better than those of other benchmark models.

The following comparison was made according to 
Tables 7, 8, 9, and 10 and Figs. 5, 6, 7, 8, and 9.

Comparison I: the comparison of single model. Sin-
gle model is the basis for hybrid models to achieve high 

Table 8  Evaluation indicators of comparison models and the proposed model in three-step-ahead forecasting

HI-SVM HI-LSTM HI-GRU HI-TCN HI-transformer HI-EMD-
transformer

HI-EEMD-
transformer

HI-CEEM-
DAN-trans-
former

HI-
TVFEMD-
transformer

GD MAE 3.2670 3.0199 2.9434 2.1075 1.5736 0.9683 1.1403 0.7613 0.4776
RMSE 4.4541 4.2378 4.1527 2.8744 2.9148 1.3650 2.0079 1.4223 0.7587
MAPE 0.0493 0.0453 0.0464 0.0306 0.0253 0.0157 0.0174 0.0123 0.0083
R2 0.9379 0.9438 0.9460 0.9741 0.9734 0.9942 0.9874 0.9937 0.9982
TSS 0.9630 0.9635 0.9653 0.9846 0.9739 0.9959 0.9878 0.9938 0.9982

HB MAE 1.8135 1.4200 1.6819 1.6414 1.2937 0.7447 0.5680 0.8719 0.5088
RMSE 2.5900 2.3406 2.5843 2.6687 2.2439 1.0230 0.9190 1.3580 0.6848
MAPE 0.0441 0.0358 0.0413 0.0415 0.0334 0.0190 0.0148 0.0222 0.0129
R2 0.8811 0.9029 0.8816 0.8738 0.9108 0.9815 0.9850 0.9673 0.9917
TSS 0.9045 0.9091 0.8974 0.8759 0.9146 0.9850 0.9856 0.9684 0.9936

BJ MAE 10.1693 9.5036 9.7706 9.5026 9.4384 4.8003 4.3384 4.8267 2.4346
RMSE 13.3139 12.9573 13.0996 12.6158 12.8502 6.4583 5.8488 6.4674 3.4405
MAPE 0.1723 0.1598 0.1683 0.1592 0.1582 0.0757 0.0701 0.0798 0.0372
R2 0.5418 0.5660 0.5564 0.5886 0.5732 0.8922 0.9116 0.8919 0.9694
TSS 0.5622 0.6035 0.5763 0.6075 0.6171 0.8906 0.9071 0.8887 0.9697

SH MAE 2.7538 1.5926 1.4752 1.4763 1.2254 0.7862 0.6504 0.6242 0.4114
RMSE 3.4919 2.4283 2.3833 2.3307 2.1254 1.1009 1.0756 1.0548 0.5819
MAPE 0.0558 0.0333 0.0315 0.0315 0.0272 0.0167 0.0140 0.0136 0.0086
R2 0.8723 0.9382 0.9405 0.9431 0.9527 0.9873 0.9879 0.9883 0.9965
TSS 0.9176 0.9408 0.9429 0.9451 0.9521 0.9871 0.9878 0.9883 0.9965

SZ MAE 6.3385 5.5242 5.3552 5.3089 5.3335 4.2079 4.1057 3.7910 3.1638
RMSE 8.8349 8.5532 8.4282 8.2661 8.3336 7.1768 6.8049 6.0630 5.2237
MAPE 0.5012 0.4384 0.4320 0.4620 0.4543 0.3621 0.3786 0.3157 0.2757
R2 0.6333 0.6563 0.6663 0.6790 0.6737 0.7580 0.7825 0.8273 0.8718
TSS 0.6230 0.6972 0.6976 0.6930 0.6855 0.7704 0.7872 0.8277 0.8679
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accuracy. Therefore, this study selects several single 
models that are commonly used in the mainstream of car-
bon price forecasting. These models include a machine 
learning model (SVM) and three deep learning mod-
els (e.g., LSTM, GRU, and TCN) that can address the 
time sequence problem. A comprehensive comparison 
of Tables 6, 7, 8, and 9 and Figs. 5, 6, 7, 8, and 9 shows 
that the deep learning model outperforms the machine 
learning model in all five metrics (e.g., MAE, RMSE, 
MAPE, R2, and TSS), suggesting that the deep learning 
model is more suitable for carbon price forecasting than 
the machine learning model. Among the deep learning 
models, the performance of LSTM, GRU, and TCN var-
ies in different situations. Their respective strengths and 
weaknesses are shown in the histogram, radar chart, and 
Taylor diagram of each carbon market. For example, the 
MAPE of one-step-ahead prediction LSTM in Guang-
dong and Hubei are 0.0185 and 0.0237, respectively, 
which are better than GRU’s 0.0240 and 0.0238. Mean-
while, in Guangdong and Hubei, the MAPE of LSTM in 

the five-step prediction is 0.0776 and 0.0506, respec-
tively, which is inferior to 0.0701 and 0.0500 of GRU. In 
the ten-step-ahead prediction in Shanghai, TCN is better 
than LSTM and GRU, and its MAPE is 0.0480, which 
is better than GRU’s 0.0584 and LSTM’s 0.0662. How-
ever, in most cases, the metrics for the transformer are 
the best among the single models, indicating that in the 
experiments, transformer’s learning ability is better than 
those of SVM, LSTM, GRU, and TCN for capturing the 
complexity and nonlinearity in the carbon price.

Comparison II: the comparison of the efficacy of HI. The 
validity of HI is evaluated by comparing the model’s predic-
tive performance with and without the use of HI. Accord-
ing to Figs. 5, 6, 7, 8, and 9, the radar chart is in the inner 
circle without HI after using HI. Among the 180 (5 × 9 × 
4) experiments, the number of experiments in which HI has 
improved all evaluation indicators is 113, and approximately 
62.78% of the experiments have been improved while the 
remaining experiments have improved a few indicators. We 
calculated the average improvement rate of HI on MAE, 

Table 9  Evaluation indicators of comparison models and the proposed model in five-step-ahead forecasting

HI-SVM HI-LSTM HI-GRU HI-TCN HI-transformer HI-EMD-
transformer

HI-EEMD-
transformer

HI-CEEM-
DAN-trans-
former

HI-
TVFEMD-
transformer

GD MAE 6.4257 5.1009 4.6058 4.7375 4.3889 2.2112 1.1854 1.0837 0.5364
RMSE 7.7316 6.6878 6.1519 6.5092 6.5946 2.7013 2.2334 1.6703 0.8988
MAPE 0.1044 0.0776 0.0701 0.0695 0.0649 0.0376 0.0182 0.0174 0.0090
R2 0.8130 0.8601 0.8816 0.8675 0.864 0.9772 0.9844 0.9913 0.9975
TSS 0.9333 0.9277 0.9357 0.9201 0.9071 0.9896 0.9844 0.9918 0.9975

HB MAE 2.2369 2.0287 2.0383 2.0080 1.8263 0.9898 0.7591 1.1168 0.5483
RMSE 3.1514 3.2540 3.0454 2.9649 2.8399 1.3735 1.1502 1.8460 0.7210
MAPE 0.0542 0.0506 0.0500 0.0491 0.0459 0.0253 0.0197 0.0285 0.0141
R2 0.8240 0.8123 0.8356 0.8442 0.8571 0.9666 0.9766 0.9396 0.9908
TSS 0.8643 0.8238 0.8550 0.8653 0.8764 0.9672 0.9763 0.9460 0.9914

BJ MAE 12.7391 12.0009 12.3936 12.1031 11.0786 6.1981 5.7118 6.0340 3.2400
RMSE 16.3706 15.5445 16.3819 16.0117 13.7315 8.0682 7.6197 7.8158 4.4684
MAPE 0.2235 0.2055 0.2118 0.2088 0.1900 0.0979 0.0948 0.0998 0.0496
R2 0.3073 0.3754 0.3063 0.3373 0.5126 0.8317 0.8499 0.8421 0.9484
TSS 0.4161 0.4437 0.4424 0.4675 0.4912 0.8345 0.8394 0.8327 0.9489

SH MAE 3.2780 2.0868 1.7643 1.7643 1.6039 0.9198 0.9124 0.8510 0.5057
RMSE 4.1335 3.1460 2.9624 2.9499 2.7886 1.3253 1.3322 1.2185 0.6873
MAPE 0.0666 0.0433 0.0383 0.0382 0.0357 0.0195 0.0199 0.0178 0.0108
R2 0.8210 0.8963 0.9081 0.9089 0.9186 0.9816 0.9814 0.9844 0.9951
TSS 0.8923 0.9007 0.9084 0.9123 0.9193 0.9818 0.9828 0.9850 0.9953

SZ MAE 7.2551 6.4302 6.3367 6.3720 6.3434 4.4167 4.5961 4.0707 3.3132
RMSE 9.5872 9.2676 9.1529 9.1218 9.0928 6.6028 6.6636 6.2980 5.3436
MAPE 0.5583 0.5654 0.5246 0.5331 0.4971 0.3590 0.3757 0.3309 0.2773
R2 0.5682 0.5965 0.6064 0.6091 0.6116 0.7952 0.7914 0.8137 0.8659
TSS 0.5448 0.6225 0.6167 0.6164 0.6188 0.7915 0.7806 0.8133 0.8619
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RMSE, MAPE, R2, and TSS in the Guangdong experiment 
(the value was obtained by averaging the improvement rates 
in each experiment), and HI improved by 20.56%, 11.95%, 
19.77%, 1.54%, and 0.44%, respectively. The average 
improvement rate of HI at different steps in the Guangdong 
experiment was also calculated. HI improved the one-step-
ahead forecast by 19.2959%, 1.2028%, 19.2068%, 0.1511%, 
and − 0.0558%, respectively; three-step-ahead forecast by 
28.65%, 21.55%, 28.23%, 1.93%, and 0.90%, respectively; 
for the five-step ahead forecast by 12.40%, 9.52%, 11.53%, 
1.01%, and 0.29%, respectively; and for the ten-step-ahead 
forecast by 21.89%, 15.55%, 20.13%, 3.06%, and 0.62%, 
respectively. HI improves MAE, RMSE, and MAPE more 
significantly. However, it does not improve R2 and TSS sig-
nificantly or even negatively. The reason is that the outliers 
in the series are identified and corrected by HI to elimi-
nate the abnormal fluctuations, which make the fluctuation 
characteristics more obvious and reduce the model error. 
Meanwhile, MAE, RMSE, and MAPE are the metrics 
used to measure the error between the prediction and the 
actual models. R2 and TSS are metrics that are based on 

the proportion of variance in the true values that can be 
explained by the model, the presence of outliers leads to 
increased variance in the series, and the model cannot learn 
this information after outliers are identified and corrected. 
Yet, by retaining these outliers, the model does not learn 
more useful information either. This instance prevents the 
model from fitting this part of the variance, which leads to 
no significant difference in R2 and TSS before and after out-
lier processing. The above analysis demonstrates that outli-
ers in carbon prices can negatively affect the training of the 
model, and, therefore, HI can improve the prediction ability 
of the model to some extent.

Comparison III: the comparison of different decompo-
sition methods. According to Figs. 5, 6, 7, 8, and 9, the 
fitted curves for each carbon market demonstrate a closer 
fit to the actual values after incorporating the decomposi-
tion algorithm. Notably, EMD, EEMD, CEEMDAN, and 
TVFEMD all improve the prediction accuracy of the trans-
former model. However, the comparison of TVFEMD 
suggests that it has a more significant improvement than 
EMD, EEMD, and CEEMDAN. According to Table  7, 

Table 10  Evaluation indicators of comparison models and the proposed model in ten-step-ahead forecasting

HI-SVM HI-LSTM HI-GRU HI-TCN HI-transformer HI-EMD-
transformer

HI-EEMD-
transformer

HI-CEEM-
DAN-trans-
former

HI-
TVFEMD-
transformer

GD MAE 9.0425 6.1958 5.781 6.9974 3.4316 1.6663 1.5623 1.6110 0.7812
RMSE 10.8861 8.0314 8.1871 9.1274 5.9156 2.5773 2.4168 2.3849 1.2325
MAPE 0.1432 0.0972 0.0997 0.1045 0.0547 0.0269 0.0252 0.0259 0.0133
R2 0.6288 0.7980 0.7901 0.7391 0.8904 0.9792 0.9817 0.9822 0.9952
TSS 0.8578 0.8936 0.8936 0.8545 0.9056 0.9801 0.9825 0.9850 0.9954

HB MAE 4.2611 2.5055 3.5641 2.8745 2.4839 2.2862 1.5603 2.2082 0.8479
RMSE 5.5580 3.9389 4.8511 4.1105 3.7714 3.0184 2.1589 2.9660 1.1986
MAPE 0.0982 0.0609 0.0831 0.0688 0.0614 0.0547 0.0391 0.0553 0.0215
R2 0.4504 0.7240 0.5813 0.6994 0.7470 0.8379 0.9171 0.8435 0.9744
TSS 0.6450 0.7518 0.6973 0.7603 0.7869 0.8528 0.9254 0.8946 0.9756

BJ MAE 14.6715 15.3538 15.3522 15.1229 14.7375 9.1432 8.9363 13.3105 5.0567
RMSE 18.8293 20.9114 21.4275 19.3549 18.7053 11.6185 11.6938 17.6211 6.5018
MAPE 0.2698 0.2650 0.2830 0.2687 0.2672 0.1559 0.1383 0.2177 0.0784
R2 0.0817 −0.1326 −0.1892 0.0297 0.0937 0.6504 0.6458 0.1958 0.8905
TSS 0.2301 0.2651 0.222 0.2651 0.2496 0.6313 0.6956 0.5036 0.8912

SH MAE 4.2691 3.4307 2.9327 2.3130 2.250 1.1532 1.1111 0.9699 0.8969
RMSE 5.2073 4.6453 4.2042 3.7082 3.6801 1.7475 1.6695 1.4465 1.2072
MAPE 0.0852 0.0662 0.0584 0.0480 0.0475 0.0252 0.0246 0.0214 0.0194
R2 0.7160 0.7740 0.8149 0.8560 0.8582 0.968 0.9708 0.9781 0.9847
TSS 0.8570 0.8227 0.8566 0.8757 0.8769 0.9694 0.9714 0.9782 0.9868

SZ MAE 8.9157 8.3254 7.5796 7.8806 7.8557 4.888 5.5744 4.5682 3.7176
RMSE 11.321 11.2627 10.5551 10.4368 11.0522 7.0452 7.6386 6.7684 5.7451
MAPE 0.6491 0.6105 0.546 0.6052 0.5681 0.3754 0.3956 0.3672 0.3231
R2 0.3994 0.4056 0.478 0.4896 0.4276 0.7674 0.7266 0.7853 0.8453
TSS 0.3900 0.4539 0.5118 0.4852 0.4948 0.7620 0.7124 0.7751 0.8426



95708 Environmental Science and Pollution Research (2023) 30:95692–95719

1 3

Fig. 5  Deterministic forecasting results of the Guangdong market. 
The upper part corresponds to the histogram and radar plot; the mid-
dle part of the histogram is the starting value of MAPE and R2; M1, 
M2, M3, M4, M5, M6, M7, M8, and M9 represent SVM, LSTM, 
GRU, TCN, transformer, EMD-transformer, EEMD-transformer, 

CEEMDAN-transformer, and TVFEMD-transformer, respectively; 
the left side represents the plot without HI; and the right side repre-
sents the plot with HI. The middle part is the fitted curve. The part 
below it is the Taylor chart
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HI-TVFEMD-transformer has an average MAPE of 0.0341 
in one-step-ahead forecasting, whereas HI-EMD-transformer 
is 0.0818, HI-EEMD-transformer is 0.0775, and HI-CEEM-
DAN-transformer is 0.0802. The average MAPE of the 
transformer model is 0.1121. Comparing the different met-
rics in the predictions of various ahead steps, TVFEMD also 
exhibited the best performance, thereby proving the superi-
ority of the TVFEMD method and improving the prediction 
accuracy of the proposed model.

Comparison IV: the comparison of different carbon mar-
kets. According to the Taylor diagram in Figs. 5, 6, 7, 8, 
and 9, the forecasting results of the Guangdong, Hubei, and, 

Shanghai carbon markets are more concentrated than those 
of Beijing and Shenzhen carbon markets, indicating that the 
carbon price fluctuations in these three carbon markets are 
more regular, thereby making the performance of various 
models less different. Consequently, the price series for the 
Beijing and Shenzhen carbon markets are more volatile, 
which better reflects the differences in the performance of 
various models. The HI-TVFEMD-transformer is closer to 
the actual point in the Taylor diagram in different carbon 
markets. Its performance is almost always optimal, indicat-
ing that it has strong robustness and can be adapted to dif-
ferent datasets.

Fig. 6  Deterministic forecasting 
results of the Hubei market



95710 Environmental Science and Pollution Research (2023) 30:95692–95719

1 3

Fig. 7.  Deterministic forecasting results of the Beijing market
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Fig. 8  Deterministic forecasting results of the Shanghai market
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Fig. 9.  Deterministic forecasting results of the Shenzhen market
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Table 11  Indicator results of interval forecasting

One-step Three-step Five-step Ten-step

α = 0.1 α = 0.2 α = 0.3 α = 0.1 α = 0.2 α = 0.3 α = 0.1 α = 0.2 α = 0.3 α = 0.1 α = 0.2 α=0.3

GD AW 3.7517 2.9950 1.3256 7.4639 5.3737 3.4211 8.8214 5.7713 3.5696 12.4418 8.5105 5.1686
PINAW 0.0636 0.0508 0.0225 0.1265 0.0911 0.0580 0.1495 0.0978 0.0605 0.2109 0.1443 0.0876
PICP 0.9552 0.9356 0.8095 0.9859 0.9042 0.8310 0.9663 0.9494 0.7331 0.9268 0.8845 0.8169

HB AW 2.7403 2.2124 1.5805 4.4639 2.9647 2.3842 5.8143 4.2485 3.2502 9.7962 6.1739 4.2321
PINAW 0.0800 0.0646 0.0461 0.1303 0.0865 0.0696 0.1697 0.1240 0.0949 0.2859 0.1802 0.1235
PICP 0.9472 0.9367 0.8575 0.9656 0.9206 0.8519 0.9894 0.9471 0.8968 0.9920 0.9072 0.7613

BJ AW 16.2249 8.6393 8.5923 21.9262 15.4160 10.5396 27.6073 12.1699 11.5617 37.4047 26.1416 14.1968
PINAW 0.1949 0.1038 0.1032 0.2633 0.1852 0.1266 0.3316 0.1462 0.1389 0.4493 0.3140 0.1705
PICP 0.9799 0.9639 0.9719 0.9355 0.8508 0.8548 0.9435 0.8226 0.8105 0.9555 0.8583 0.7126

SH AW 5.1689 3.3875 2.5800 7.0595 4.9152 3.4536 8.5376 6.0468 4.5218 11.7828 8.3761 6.2185
PINAW 0.1503 0.0985 0.0750 0.2052 0.1429 0.1004 0.2482 0.1758 0.1314 0.3425 0.2435 0.1808
PICP 0.9750 0.9667 0.9458 0.9833 0.9750 0.9625 0.9958 0.9833 0.9707 1.0000 0.9874 0.8361

SZ AW 16.3022 11.1420 8.4882 21.3452 14.0983 10.1807 21.1311 14.9308 11.7690 25.8867 21.9949 14.1140
PINAW 0.3049 0.2084 0.1588 0.3993 0.2637 0.1904 0.3953 0.2793 0.2201 0.4842 0.4114 0.2640
PICP 0.9440 0.9120 0.8613 0.9467 0.9200 0.8693 0.9412 0.9037 0.8743 0.9517 0.9223 0.8445

Fig. 10.  Interval forecasting results of the Guangdong market
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Comparison V: the comparison of different step-ahead 
interval forecasting. The comparison results in Figs. 5, 6, 7, 
8, and 9 and Tables 6, 7, 8, and 9 show that as the forecasting 
step increases, the forecasting accuracy of the model gradu-
ally decreases because of the lack of information required 
for forecasting. A single model often experiences varying 
degrees of forecasting lag. As the number of forecasting 
steps increases, a single model tends to consider the current 
price as the best forecast and learns only a simple mapping, 
thereby failing to capture the relevant features in the data. 
Conversely, the decomposition algorithm extracts the fea-
tures of different carbon price time scales by decomposition. 
Thus, the model can learn smoother features, thereby effec-
tively eliminating this phenomenon. As observed from the 
fitted curves in Figs. 5, 6, 7, 8, and 9, the prediction results 
of the hybrid forecasting model for the one-step and three-
step-ahead forecasts will contain the fluctuation character-
istics of the rapid oscillation in the sequence. In contrast, 
for the five-step and ten-step-ahead forecasts, the prediction 
results are smoother because learning the features in the 
high-frequency imfs for the larger span of steps is difficult 

for the model. These characteristics are almost unpredict-
able in large time step gaps because high-frequency imfs 
represent the characteristics of the short-term fluctuations 
of carbon price with strong volatility and sharp fluctuations. 
In this situation, the model can only learn the characteris-
tics of medium- and low-frequency imfs, which represent 
the low frequency of the medium- and long-term trends in 
carbon prices. These imfs are more periodic and regular, 
which leads to smoother prediction results in one-step and 
three-step-ahead forecasts compared with five-step and ten-
step-ahead forecasts.

Interval forecasting

Interval forecasts of carbon prices hold significant relevance 
in capturing carbon price uncertainty. They serve as valuable 
tools for assessing the future volatility of carbon prices, thus 
providing decision-makers insights that deterministic fore-
casts alone cannot provide. This study is based on the HI-
TVFEMD-transformer and utilizes the quantile loss function 

Fig. 11  Interval forecasting results of the Hubei market
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for interval forecasting of carbon prices. The significance 
level α plays a crucial role in determining the width and 
coverage of the interval forecasting. To compare the perfor-
mance of interval forecasting at various significance levels, 
this study considers different levels of α (α = 0.1,0.2,0.3) for 
conducting interval forecasting. Table 11 and Figs. 10, 11, 
12, 13, and 14 show the results of the interval forecasting 
for each carbon market.

We can draw the following conclusions from Table 11 
and Figs. 10, 11, 12, 13, and 14. The prediction results will 
change with α. Guangdong is taken as an example, α = 0.1, 
AW = 3.7517, PINAW = 0.0636, PICP = 0.9552; α = 0.2, 
AW = 2.9950, PINAW = 0.0508, PICP = 0.9356; and α = 
0.3, AW = 1.3256, PINAW = 0.0225, PICP=0.8095. With 
the increase in significance level, the interval width and cov-
erage of the interval prediction gradually decreases, indicat-
ing that the trade-off between width and coverage is needed 
during interval forecasting, wherein high coverage but large 
width or small width but low coverage result in less informa-
tion contained in the prediction interval. Further comparison 

reveals that the AW of one-step-ahead interval forecast for the 
Beijing and Shenzhen carbon markets exceeds 15, whereas 
for other carbon markets, it hovers around 5. Additionally, 
when considering ten-step-ahead forecasts, the AW for the 
two aforementioned carbon markets exceeds 25, while for 
other carbon markets, it remains around 10. The interval fore-
cast needs a larger width to cover the fluctuations of these 
two carbon markets, indicating that their volatility is signifi-
cantly greater than those of other carbon markets. The AW of 
the Hubei carbon market is the smallest in almost all cases, 
thereby indicating a stable trend of low volatility. Moreover, 
the AW gradually increases with the same confidence interval 
as the forecasting step expands. For example, AW = 5.1689 
for one-step-ahead and AW = 11.7828 for ten-step-ahead in 
Shanghai at α = 0.1. As the forecasting steps increase, the 
carbon price will have more significant fluctuations relative 
to the current price, thereby resulting in a larger estimation 
interval. The interval prediction based on HI-TVFEMD-
transformer can explain the volatility of the carbon price well, 
indicating that the result is good and credible.

Fig. 12  Interval forecasting results of the Beijing market
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Conclusion

A hybrid forecasting model that combines HI, TVFEMD, 
and transformer is proposed to improve the accuracy of car-
bon price forecasting. First, HI is used to identify and cor-
rect any outliers present in the carbon price series. Then, 
the original carbon price series is decomposed into multi-
ple imfs using TVFEMD to reduce non-stationarity, and the 
imfs are reconstructed by SE to reduce the time consumed 
by the model while retaining its complex features. Further, 
OATM optimized the hyperparameters of the transformer 
deep learning technique to select a reasonable hyperparam-
eter configuration. Finally, Transformer and quantile loss 
functions are used for the multi-step-ahead and interval 
forecasting of carbon prices. To verify the validity of the 
proposed model from several aspects, five real carbon price 
data and four different forecasting steps were selected, and 
multiple models and decomposition methods were com-
pared. Subsequently, interval forecasting was performed for 
each carbon market to measure carbon price uncertainty. 

The main conclusions drawn from this study are presented 
as follows:

(1) On the one hand, the experimental results indicate that 
transformer outperforms SVM, LSTM, GRU, and TCN 
because of its excellent ability to extract long-term 
dependence and global features in sequences. On the 
other hand, TVFEMD exhibited better performance in 
characterizing the multiscale time–frequency features of 
carbon price sequences than EMD, EEMD, and CEEM-
DAN. Moreover, the prediction accuracy achieved by 
the proposed HI-TVFEMD-transformer hybrid forecast-
ing model was better than most forecasting models, and 
its robustness and stability are demonstrated in multi-
step-ahead forecasting. In most of the experiments, HI 
improves the prediction accuracy. In contrast, the effects 
of HI in a small proportion of the experiments are not 
evident, because although the outliers in the sequence can 
be eliminated to make the sequence more regular, they 
will make the sequence lose some fluctuation features.

Fig. 13  Interval forecasting results of the Shanghai market
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(2) The proposed hybrid model exhibits a high level of pre-
cision in forecasting carbon prices at multiple levels, 
encompassing deterministic and uncertain. Therefore, 
it can provide practical information for investors and 
policymakers. In the near future, investors can for-
mulate investment strategies based on the results of 
multi-step-ahead forecasting and understand the pos-
sible risks through interval forecasting to avoid them. 
Meanwhile, policymakers can monitor the changes in 
carbon price fluctuations through the forecasting results 
in time and take corresponding measures to stabilize 
the prices when fluctuations are large.

Although the proposed hybrid forecasting model in 
this paper has shown excellent forecasting ability during 
the experiments, it still has room for improvement. First, 
the use of outlier identification and correction techniques 
can be considered. Also, more advanced outlier testing or 
denoising techniques can be used to process carbon prices 
in future research. Second, determining the SE threshold is 
based on the distribution and prior experience. However, 

it is considering whether a more scientific method can be 
used to determine the threshold of SE. Finally, carbon 
prices are affected by several factors, such as fossil fuel 
prices and economic development levels. Hence, studying 
how to model these factors is also worthwhile.
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