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Abstract
Nanotechnology is rapidly emerging and innovative interdisciplinary field of science. The application of nanomaterials in agri-
cultural biotechnology has been exponentially increased over the years that could be attributed to their uniqueness, versatility, and 
flexibility. The overuse of nanomaterials makes it crucial to determine their fate and distribution in the in vitro (in cell and tissue 
cultures) and in vivo (in living species) biological environments by investigating the nano-biointerface. The literature states that 
the beneficial effects of nanoparticles come along with their adverse effects, subsequently leading to an array of short-term and 
long-term toxicities. It has been evident that the interplay of nanoparticles with abiotic and biotic communities produces several 
eco-toxicological effects, and the physiology and biochemistry of crops are greatly influenced by the metabolic alterations taking 
place at cellular, sub-cellular, and molecular levels. Numerous risk factors affect nanoparticle’s accumulation, translocation, and 
associated cytogenotoxicity. This review article summarizes the contributing factors, possible mechanisms, and risk assessment 
of hazardous effects of various types of nanoparticles to plant health. The methods for evaluating the plant nanotoxicity param-
eters have been elaborated. Conclusively, few recommendations are put forward for designing safer, high-quality nanomaterials 
to protect and maintain environmental safety for smarter agriculture demanded by researchers and industrialists.

Keywords  Nanotoxicology · Factors affecting toxicity of nanoparticles · Reactive oxygen species · Phytotoxicity · 
Genotoxicity

Introduction

Nanotechnology deals with the study of nanoparticles having 
at least one dimension in 1 to 100 nm. Nanomaterials (NMs) 
can occur naturally, derived from anthropogenic sources or 

manufactured by the manipulation of matter, and present 
in aggregated or disintegrated forms. Nanoparticles (NPs) 
possess unique and tunable properties that make them distin-
guishable from their bulk counterparts (Khan et al. 2019a). 
The alteration of physicochemical features results in chang-
ing the reactivity of NMs by the presence of more or less 
reactive sites on the surface. Particles at nanoscale are being 
extensively used by the wide range of industries including 
pharmaceutical, electromagnetic, optoelectronics, dentistry, 
cosmetics, catalysis, biomedical, agricultural, and environ-
mental industries (Javed et al. 2022a). The wide-ranging 
applications of NPs in innumerable domains have enabled 
them to be utilized in developing novel tools, products, and 
processes at ultrafine level (Yaqoob et al. 2020).

Potential of nanotechnology has surged the investment 
to nanoresearch by which well-fabricated and well-char-
acterized NPs are applied in diverse fields of science (Ali 
et al. 2016). NPs can be broadly categorized into organic and 
inorganic NPs. Inorganic NPs include metal and metal oxide 
NPs, while organic NPs can be polymeric or carbon-based 
NPs. Regardless of the significant impact of NMs on plants 
to protect them against pathogens and for maintaining the 
soil health and cleaner environment, extensive employment 
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of NMs in agriculture and environment has provoked alarm-
ing concerns due to their rising adverse effects (Millán-Chiu 
et al. 2020). The study of such toxic or hazardous materials 
is known as “toxicology” and the term toxicity when coined 
with nanotechnology gives rise to a field of science termed 
“nanotoxicology.” It is a rapidly emerging field that eluci-
dates the potential risks of NPs, sometimes called nanopol-
lutants, in different biological systems by investigating the 
interplay between NPs and different biological processes 
(Jamil et al. 2018; Zia-ur-Rehman et al. 2018). The abiotic 
stress caused by NPs is the leading cause of nanotoxicity. 
Besides, the NPs’ use as pesticide or insecticide carrier can 
also cause toxicity to plants, soil, water, and air.

Exponential production and utilization of NPs lead to 
higher ecotoxicity risk. Plants being producers are vital for 
other trophic groups and provide a potential pathway for 
NPs’ transportation via food chain. Plants absorb essential 
and non-essential elements to carry out vital life activities 
(Ullah et al. 2020). NPs reach the plants either directly or 
through contaminated soil and result in toxicity in non-tol-
erant species. It is reported that NPs’ accumulation in soil is 
greater than air due to lesser mobility in the former. Though 
higher plants have defense systems such as enzymatic anti-
oxidants (superoxide dismutase, peroxidase, catalase, etc.) 
and non-enzymatic antioxidants (anthocyanins, vitamins, 
carotenoids, polyphenols, etc.) to overcome abiotic or oxida-
tive stress, but bioaccumulation in food chain is still threat-
ening (Hossain et al. 2020; Xiao et al. 2022). Nanotoxicity 
is very difficult to be eliminated if plants suffer from nano-
contamination; however, it can be minimized if used below 
the threshold level concentration to avoid abiotic chemical 
stress of NPs. Prior to commercialization of NPs, due to 
their lower-than-toxic concentration, a thorough assessment 
is needed to analyze their potential ecological and health 
impact (Jamil et al. 2018).

As the over-exposure of NPs to the soil, plants, humans, 
and environment leads to hazardous effects, there is need of 
a specified model that can screen the NPs from the step of 
production to elimination. Their life cycles start from the 
resources of development to final production, then utiliza-
tion (phase in which all types of environmental compart-
ments including soil, air, and water along with the plants 
and humans are exposed to NPs), and consequently elimina-
tion in the form of waste materials should be finely studied. 
“Safer by design” is the concept which involves development 
of such NPs that are most appropriate for a particular appli-
cation and do not inculcate toxicity via nan-biointeraction. 
This model ensures environmental safety by promoting risk 
assessment via toxicity testing and screening (Scimeca and 
Verron 2022; Sukhanova et al. 2018).

Toxicity of NPs to plants, humans, and environment 
is an area whose most facets are unexplored and these 
bio-nanointerfaces should be exploited using advanced 

experimentation. Many in vitro studies have been conducted 
to study the toxicity of NPs at early growth phases of plants 
and few in vivo studies have been reported to evaluate its 
impact on the whole life cycle of plants. Moreover, NMs’ 
transmission to next generation or transgeneration concept 
is least explored area. Although past studies have amplified 
our understanding of phytotoxicity induced by NPs, still lit-
tle is known about their cytotoxic and genotoxic effects. This 
article precisely reviews the research studies focusing on 
phytotoxic effect of NPs under in vitro and in vivo condi-
tions by inculcating the most recent data covering influence 
of different types of NPs on terrestrial and aquatic plant’s 
morphophysiology and their nutritional content, secondary 
metabolism, and antioxidative systems. Studies have proved 
metal and metal oxide NPs to be more toxic than polymeric 
and carbon-based NPs; hence, our focus is on the toxic 
effects of metal-based NPs. We have tried to fill the existing 
knowledge gaps and pitfalls regarding understanding of plant 
nanotoxicity ultimately affecting humans and environment, 
and placed a headlight on the research domains that need to 
be addressed by future studies.

Factors affecting toxicity of nanoparticles

Nanotoxicity is considerably affected by different risk fac-
tors that are all interdependent. The synergistic effects of 
these factors make the phenomenon of nanotoxicity more 
prominent (Ren et al. 2016). Therefore, the nanotoxicolo-
gists identify all the possible risk factors of NMs that could 
interfere in the protection of human health and environment. 
It is important to have an understanding about these contrib-
uting factors toward nanotoxicity because nano-security is 
mandatory to ensure biosafety of NMs in the global market 
(Hou et al. 2018; Jamil et al. 2018; Sukhanova et al. 2018). 
The possible risk factors contributing to nanotoxicity, par-
ticularly plant toxicity, are briefly summarized below and 
in Fig. 1.

Size

Size is the most important physicochemical characteris-
tics of NMs in determining their bio-reactivity and tox-
icity. The size of NPs can be controlled by choosing an 
appropriate synthetic route. Three major routes for fabri-
cation of NPs are physical, chemical, and biological; each 
containing numerous methodologies and techniques with 
their specific advantages and specifications. The choice of 
particular methodology depends upon the intended appli-
cation according to which protocols are optimized for get-
ting desirable size of NPs. The inverse correlation exists 
between NPs’ size and surface area-to-volume ratio. The 
uptake, penetration, and interaction of NPs in the cells 
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depends upon the size of NPs. The smaller the size, more 
easy is the internalization and vice versa (Naz et al. 2020). 
It has been reported that the NPs smaller than 5–20 nm 
can easily pass through the pores of plant cell wall and 
then through the plasma membrane. But if NPs of > 20 
nm have to penetrate, then the cell wall pores stretch for 
their entry (Nhan et al. 2015). However, the small-sized 
NPs can be more toxic due to their greater accumulation 
as well as higher intercellular and intracellular stability. It 
has been reported that the NPs of smaller size translocate 
easily and their reactivity is many folds higher than the 
large-sized NPs, hence, may result in cellular disruption 
via excessive bioaccumulation of reactive oxygen species 
(ROS) leading to toxicity (Sajid et al. 2015). The rationale 
behind is that the defensive system of plant cells activates 
or triggers after exposure to NPs. But when the NPs’ accu-
mulation exceeds, then tolerance to the NPs also decreases, 
ultimately damaging the physiological, biochemical, and 
metabolic reactions of the plant system.

Shape and charge

Shape of NMs plays crucial role in nano-biointeractions, 
also affecting the action mechanisms. More exposed sur-
faces are more reactive due to large surface area. Simi-
larly, an increased deformation of NPs also exposes the 

surfaces resulting in generation of ROS and toxicity. It 
has been observed by researchers that the substrates with 
which the NPs interact result in alteration of their phys-
icochemical properties to some extent. It results in chang-
ing their morphology and surface features resulting in 
change of charge (Ali et al. 2020). Anionic, cationic, and 
mixed charged NPs exist that attach to the plant cell wall 
via electrostatic and non-covalent bonding. The positively 
charged NPs are attracted to negatively charged surfaces 
and negatively charged NPs are bound toward the posi-
tively charged surface molecules. However, the NPs bear-
ing positive charge result in more toxicity because they 
can easily bind to the negatively charged DNA, proteins, 
and enzymes, resulting in cytotoxicity and genotoxicity 
(Nangia and Sureshkumar 2012; Singh et al. 2019).

Surface chemistry

The binding of NPs is dependent on their surface composi-
tion. If NPs are not stable, they may start to aggregate after 
interaction with particular substrates or ligands. Such physi-
cal and chemical reactions result in greater accumulation 
and hence toxicity of NPs. It has been reported that the non-
coated/uncapped NPs get aggregated by which their active 
surface sites become masked resulting in lower reactivity 
and more toxicity (Javed et al. 2020).

Fig. 1   Different factors affect-
ing the toxicity of NPs
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Coating/capping of NPs widely alter their role and effect 
on plants in growth media (López-Moreno et al. 2018). For 
instance, uncapped CeO2 NPs and CeO2 NPs capped with 
citric acid were applied to soil grown Lycopersicum escu-
lentum (tomato) plants. The aim of this study was to assess 
the impact of capped and uncapped CeO2 NPs on nutritional 
quality. It was observed that uncapped CeO2 NPs reduced 
essential elements like Ca, B, Fe, etc. However, capped 
CeO2 NPs lowered macromolecules like starch, reducing 
sugars, etc. (Barrios et al. 2017). In a recent study, Ag dop-
ing of SnO2 NPs resulted in increasing the toxicity induced 
by these NPs in Nicotiana tabacum (tobacco) cell cultures 
(Mahjouri et al. 2020). In contrary to this, a study conducted 
recently employed uncoated and organophosphate-coated 
CeO2 NPs to Lactuca sativa (lettuce) and the findings of this 
study stated that the surface modification of NPs reduced 
solubility, bioavailability, and hence phytotoxicity of NPs 
to lettuce plant (Zhao et al. 2021).

Solubility

The NPs are easily dissolved in the solvents because of 
release of metal ions compared to their bulk counterparts. 
The release of metal ions from NPs is an important factor in 
determining their solubility and toxicity (Naz et al. 2020). 
The greater surface area of NPs increases the dissolution 
and bioavailability which up-scales toxicity in the growth 
media. In other words, the greater the ionic dissolution of 
NMs, the higher is their toxicity (Gholami et al. 2020; Has-
sandoost et al. 2019).

Dosage and concentration

More dosage and concentration of NPs eventually lead 
to toxicity. Since these parameters play a critical role in 
determining NPs’ toxicity and changes in them increase 
or decrease nanotoxicity so these should be optimized to 
get good results and minimize negative outcomes (Orooji 
et al. 2019) applied anatase and rutile forms of TiO2 NPs 
to plants. It was revealed that anatase TiO2 NPs were more 
phytotoxic and the toxicity was found to be concentration 
dependent.

Exposure media and duration

Different media can be utilized for conducting toxicological 
studies on different plant species such as soil media, agar 
culture media, and aqueous media. Aqueous media can be 
Hoagland solution or deionized water. For example, Ag 
NPs dissolve greater in agar medium in comparison to soil 
medium. Different exposure media behave differently, and 
increased exposure duration leads to more accumulation of 
NPs and toxicity (Cox et al. 2016). Recently, it has been 

reported that the processes of root and shoot organogenesis 
of Stevia rebaudiana (candy leaf) occur differently in solid 
and liquid MS culture media. The results depicted highest 
yield obtained in liquid MS culture while highest steviol 
glycosides (rebaudioside A and stevioside) content in solid 
MS culture (Javed and Yücesan 2022). In another study, Zea 
mays (maize) exposed to Al2O3 NPs in hydroponic and soil 
culture media resulted in higher toxicity in hydroponic cul-
ture compared to soil media (Ahmed et al. 2022).

Methods of exposure

The primary and secondary routes of exposure to humans 
and environment exist. Primary routes are the lab or indus-
trial environment where mishandling of instruments and raw 
materials result in exposure. Other than that, the exposure to 
NPs might take place during their packaging and transporta-
tion which is secondary route (Naz et al. 2020).

The routes of exposure of NPs to plant cells and tis-
sues also play an imminent role in determining their 
toxicity. There are three basic methods of NP exposure: 
foliar spray of NPs, direct injection of NPs in the plant 
parts, and direct injection of NPs in the soil (Jogaiah 
et al. 2021). All exposure routes have their own mer-
its and demerits. For example, it has been reported that 
TiO2 NPs disrupt microbial colonies of rhizosphere 
while infecting root surface of plants when applied to 
soil (Waani et al. 2021).

Encapsulation efficiency, delivery, and release 
kinetics

The NMs can be used itself as nanofertilizers, nanoherbi-
cides, and nanopesticides because of their nutrient enhanc-
ing, antibacterial, antifungal, and antiparasitic activities, and 
these can be used as nanocarriers for loading of chemical 
fertilizers, pesticides, herbicides, or plant hormones. In case 
of latter, the desired chemicals or hormones are encapsulated 
inside the NPs that act as carriers for their delivery into 
the plant system. All NPs exhibit differential efficiency of 
encapsulation. Once successfully delivered, the encapsulated 
NPs are monitored for the release of chemical substances. 
The main purpose of utilizing NPs as carriers is their tar-
geted and effective delivery along with the slow and sus-
tained release. The effectivity of NPs behaving as nanocar-
riers is different from one another due to their distinguishing 
behaviors and properties inside the plants (Guo et al. 2018; 
Mathur et al. 2022). Besides, the selection of nanocarriers 
is based on the particular applications for which they have 
been chosen. For instance, Ag NPs could be used as nano-
carriers for efficient delivery of pesticides having antibacte-
rial activity because Ag NPs are themselves extraordinar-
ily antibacterial and believed to work synergistically with 
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the commercial pesticides to protect crops against bacteria 
(Masum et al. 2019).

Plant species

Different plant species show different levels of phytotoxicity 
toward NPs leading to species-specific phytotoxicity (Cox 
et al. 2016). A comprehensive research study elucidated the 
effect of ZnO NPs on nine different crops, i.e., radish, maize, 
bean, tomato, pea, cucumber, beet, lettuce, and wheat. Soil 
amended with four ZnO NP concentrations in which 900 
mg/kg was highest concentration was compared with con-
trol to study its toxic effect on physiological and biochemi-
cal parameters. Biomass reduction was demonstrated by 
only beet, wheat, and cucumber. Seed germination of only 
tomato, beat, bean, and lettuce was affected. Photosynthetic 
pigments and oxidative stress markers also affected the dif-
ferent crops in different manners, i.e., affected only bean, 
maize, wheat, and pea. This study suggested plant species 
to be the key element that affected bioavailability and phy-
totoxicity of ZnO NPs (García-Gómez et al. 2018).

Types of nanoparticles affecting plants

The major types of NPs having influence on plant species 
are the following:

1.	 inorganic (metal and metal oxide NPs)
2.	 organic (polymeric and carbon-based NPs)

Inorganic nanoparticles

The inorganic NPs affecting different plants include metal 
NPs such as Ag and metal oxide NPs including ZnO, CuO, 
CdO, FeO, TiO2, SiO2, CeO2, SnO2, Fe2O3, Fe3O4, Al2O3, 
Cr2O3, La2O3, Y2O3 NPs, etc. (Ma et al. 2015; Ruttkay-Ned-
ecky et al. 2017). Table 1 represents various metal and metal 
oxide NPs and their detrimental effects on different plants 
based on their physicochemical properties, concentration, 
and route of exposure.

Organic nanoparticles

The organic NPs having influence on plants include poly-
meric NPs (such as chitosan NPs) and carbon-based NPs 
(such as mesoporous carbon NPs (MCN) and carbon nano-
tubes (CNTs), graphene oxide (GO), reduced graphene oxide 
(rGO), fullerenes) (Chichiriccò and Poma 2015; Jogaiah 
et al. 2021). Polymeric NPs have many advantages in agri-
cultural biotechnology, for example, these are used as carri-
ers of hormones, nutrients, pesticides, and fertilizers. Low 
concentrations of polymeric NPs produce positive influence 

on plant’s physiology and biochemistry. However, negative 
effects are produced at higher concentrations (Mukherjee 
et al. 2016). Table 2 presents the polymeric and carbon-
based NPs that produce detrimental effects on different plant 
species on the basis of their concentration, route of exposure, 
and physicochemical features.

Nanotoxicity assessment in plants: current 
paradigms

The naturally occurring NPs include forest fires, volcanic 
ash, etc., and incidental NPs are produced from combus-
tion of domestic heating, exhaustion of vehicle engine, 
etc. However, engineered NMs (ENMs) are manufactured 
intentionally to obtain desired properties. The nanotoxico-
logical studies are profoundly important to understand the 
impact of ENMs on different organisms in environment. It 
significantly quantifies the complex nano-biointeractions 
(Singh et al. 2022). The tracing of naturally produced and 
incidental NPs is very difficult. However, the man-made 
NPs can be screened using state-of-the-art approaches. 
The synthesis and characterization methods of NPs play 
crucial role in determining their toxicity. The physical syn-
thesis methods include laser ablation, sputtering, etching, 
etc. Mostly, hydrothermal, sonochemical, microwave, sol-
gel, and co-precipitation methods of chemical synthesis 
are used. Besides, green synthesis is a very environment-
friendly approach for the formation of hazard-free nano-
enabled products (Baig et al. 2021). Regarding characteri-
zation, scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), and atomic force microscopy 
(AFM) are mostly used to study the internalization of NPs 
in the plant cells. Furthermore, single particle–inductively 
coupled plasma–mass spectrometry (SP-ICP-MS), X-ray 
absorption spectroscopy (XAS), and X-ray absorption near 
edge spectroscopy (XANES) are the advanced techniques 
for separation of NPs in the suspensions in case of biologi-
cal and environmental samples (Mourdikoudis et al. 2018). 
In addition, labeling can determine the fate and behavior of 
NMs in biological system but the labeling materials should 
be biocompatible and biodegradable. Sometimes NMs get 
altered and transformed in context of their aggregation, 
dissolution, and surface chemistry. Hence, it makes their 
detection and quantification difficult. Such transformations 
mainly occur due to redox reactions and generation of ROS 
by Fenton-type reactions (Tarrahi et al. 2021).

NPs enter into the ecosystem via deliberate or acciden-
tal routes. The toxicity of plants makes the management of 
surrounding environment essential since both aquatic and 
agricultural plants are affected. NPs also act as carriers for 
attachment of different toxic molecules to their surface and 
their transportation within the plant cells. These hazardous 
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molecules might get bind to NPs’ surface from surrounding 
pollutant environment or plants’ internal cellular environment. 
According to literature, the nanotoxicity produces various 
effects on the plants including changes in plant length, height, 
and biomass; alterations in yield and development; early or 
late seed germination; elicitation of secondary metabolites; 
and cytotoxicity leading toward cell cycle disruption and 
genotoxicity, boosting of antioxidants, triggering of anti-
oxidative enzymes and gene-controlling NPs (abiotic) stress, 
etc. (Fig. 2). The cytotoxicity of plant cells is analyzed using 
different macroscopic and microscopic techniques, and the 
genotoxicity is detected using comet and ames assays, micro-
nucleus assays, chromosomal aberrations, and DNA ladder-
ing. It is said that NPs have the intrinsic or inherent ability of 
destroying the host cells by penetrating into them. Although 
the defense system of plants is activated, the excessive NMs 
trapped into the cells ultimately leads to killing of organisms 
(Conway et al. 2015; Deng et al. 2020; Singla et al. 2019).

Seed germination

Seed germination is the simplest and highly sensitive nano-
toxicity assessment test. In a comparative study, SiO2, Al2O3, 
TiO2, and ZrO2 NPs were exposed to Zea mays seedlings 
via cotton, Petri plate, and soil culture methods. The results 
revealed that only Al2O3 and TiO2, inhibited seed germination 
and the results obtained by all exposure routes were similar and 
significant (Karunakaran et al. 2016). Seeds of Brassica nigra 
(black mustard) were exposed to 53-nm-sized CuO NPs that 
resulted in significant decline in germination of seeds (Zafar 
et al. 2017). In a study, Rajput et al. (2018) applied CuO NPs 
to Hordeum sativum (barley) in hydroponic system. The find-
ings suggested significant inhibition in seed germination and 
decrease in rate and efficiency of germination. In another 
study, Ullah et al. (2020) reported the uptake and transloca-
tion of PdS NPs in Zea mays. Fifteen-nanometer-sized NPs 
were applied under hydroponic conditions in 5–50 mg/L of 
concentrations to Zea mays that revealed significant phyto-
toxicity. The inhibition of seed germination and reduction of 
biomass of roots and shoots was observed. The detrimental 
effects of 41-nm-sized ZnO NPs exposed to Brassica rapa 
(wild turnip) in a synthetic soil culture media were estimated. 
It was found that seed germination was adversely affected by 
the ZnO NP treatment (Zafar et al. 2020). In a recent study, 
Cu NPs prepared by plant-mediated green synthesis resulted 
in inhibition of seed germination in soil grown Triticum aes-
tivum (wheat). The NPs were spherical in shape and 23 nm in 
size. It was found that seed germination was adversely affected 
beyond 50 mg/L concentration of Cu NPs (Kausar et al. 2022).

Morphophysiology

The prime factors to investigate the toxicity of NPs are 
growth and development of plants (Movafeghi et al. 2018). 
The core phytotoxicity evaluating morphological and 
physiological indices including leaf number and area, bio-
mass, root and stem elongation, etc. (Rafique et al. 2018) 
observed that at 60 mg/kg concentration of TiO2 NPs, the 
chlorophyll content in Triticum aestivum raised to 32.3% 
as compared to control, whereas at 100 mg/kg concentra-
tion of TiO2 NPs, the chlorophyll content decreased to 
11.1% as it was impossible for the plant to tolerate NP 
concentrations above 60 mg/kg. A study was performed 
using nano-chitosan/tripolyphosphate (TPP) applied to 
in vitro grown Capsicum annuum (bell pepper) in 5, 10, 
and 20 mg/L of concentrations. The concomitant results 
were obtained suggesting inhibition of growth and devel-
opment by the capped chitosan NPs’ exposure (Asgari-
Targhi et al. 2018). Another study using 15 mg/L of NiO 
in nano- and bulk form was performed on in vitro grown 
cultures of Lycium barbarum (wolfberry) in MS medium 
which showed that phytotoxicity depends on metal source. 
Shoots grown in nano-form showed significant reduc-
tion in growth and photosynthetic pigments as a result 
of oxidative stress as compared to shoots grown in bulk 
form (Pinto et al. 2019). Another study was conducted to 
elucidate impact of Ag NPs on Physalis peruviana (cape 
gooseberry) grown under in vitro conditions. It was dem-
onstrated that phytotoxicity is concentration dependent as 
low concentration promoted germination and increased 
seedling biomass, while the concentration as high as 15.4 
mg/L led to decrease in seedling size and the rooting sys-
tem of the plant (Timoteo et al. 2019).

Study of Ag NPs on Landoltia punctata (duckweed) 
showed toxic effect of these NPs. Prominent influence on 
photosynthetic system was evident with decrease in photo-
synthetic pigments. Similarly, different physiological and 
morphological changes were observed by the accumulation 
of Ag NPs in the plant leaves (Lalau et al. 2020). In another 
study, CuO NPs given to the natural soil culture in 75, 150, 
300, and 600 mg/kg concentrations to different varieties of 
Brassica rapa reduced leaf biomass and chlorophyll content 
of the treated plants because of the onset of phytotoxic-
ity in a phenotype-dependent manner (Deng et al. 2020). 
Similarly, Zafar et al. (2020) applied 47-nm-sized CuO NPs 
and 41-nm-sized ZnO NPs to the synthetic soil in which 
Brassica rapa was allowed to grow. The results revealed 
significant concentration-dependent decrease in primary 
root length of the plant. Altogether, detrimental effects of 
both ZnO and CuO NPs on the plant growth and yield were 
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observed. In a recent study, phytotoxic effect of Y2O3 NPs 
was observed on the growth and translocation of seedlings 
of Lycopersicum esculentum. In hydroponic culture, Y2O3 
NPs of 20–30 nm size and 1–100 mg/L of concentration 
were applied to the tomato seedlings and reduction in shoot 
and root elongation as well as their biomass was elucidated. 
Overall, the morphology and physiology of crop were 
adversely affected (Wang et al. 2022).

Callus induction and in vitro regeneration

Different tissue culture studies conducted in plants have 
shown the adverse influence of NPs supplemented to nutri-
ent medium purposed either for organogenesis, embryogene-
sis, callus induction, or genetic modification. In vitro cultur-
ing systems like cell suspension culture, tissue culture, and 
hairy root cultures offer controlled conditions to study the 
effects of NPs on metabolic activities and molecular altera-
tions taking place in plants without an interference of other 
environmental components which are otherwise problematic 
in case of in vivo experiments (Kim et al. 2017).

Toxic effects of Ag NPs and Ag+ ions (AgNO3 salt) were 
analyzed on callus cells of two Triticum aestivum varieties. 
Microscopic observations showed deformed cells after treat-
ment with high levels of Ag NPs’ concentrations. Authors 
stated that naturally elongated callus cells upon exposure 
to Ag NPs and Ag+ ions treatment undergo swelling and 
reduction; however, no differences between wheat varieties 
were observed. These visible deformations showed that Ag 
employed in both forms might act as stress factor (Barbasz 
et al. 2016). In another study, Solanum tuberosum (potato) 
grown under in vitro conditions was augmented with Ag 

NPs. The results indicated decrease in glutathione and 
ascorbate, while increase in superoxide dismutase (SOD) 
and catalase (CAT) attributed to the phytotoxicity induced 
at 2 mg/L and above concentrations of Ag NPs (Bagher-
zadeh Homaee and Ehsanpour 2016). Callus induction of 
Trigonella foenum-graecum (fenugreek) was conducted 
on MS medium supplemented with CuO NPs impregnated 
with PVP and PEG. The results depicted increase in total 
phenolic content, total flavonoid content, total antioxidant 
capacity, total reducing power, and DPPH-free radical scav-
enging activity attributed to CuO NPs’ toxicity (Ain et al. 
2018). In a study, the cell suspension culture of Arabidopsis 
thaliana (thale cress) was exposed to Au NPs and Ag NPs 
that resulted in alteration of pH of growth media, i.e., the Ag 
NPs made the media acidic, while Au NPs made it alkaline. 
The protein composition of cell culture was also changed. 
Moreover, respiratory activity of cells of suspension cul-
ture was reduced as elucidated by the MTT assay (Selivanov 
et al. 2017).

In another study, Ag NPs supplemented to the MS liquid 
medium for in vitro regeneration of Vanilla planifolia (vanilla 
creeper) at concentrations of 25, 50, 100, and 200 mg/L resulted 
in growth reduction at 100 and 200 mg/L concentrations. 
Besides, lipid peroxidation and non-enzymatic antioxidant 
activities were significantly risen due to toxicity (Spinoso-
Castillo et al. 2017). CuO NPs supplemented to the cell suspen-
sion culture of Nicotiana tabacum revealed significant toxicity 
as evidenced by an increase in the production of antioxidant 
enzymes and malondialdehyde (MDA) as well as loss of cell 
viability (Mahjouri et al. 2018). In another study, Stevia rebau-
diana leaf explants grown in MS medium for callus induction 
were exposed to ZnO and CuO NPs at concentrations of 0.01, 

Fig. 2   Parameters for assess-
ment of nanotoxicity
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0.1, 1, 100, and 1000 mg/L. Highest inhibition of callus induc-
tion occurred at 100 mg/L and 10 mg/L of ZnO and CuO NPs, 
respectively. The results of this study revealed CuO NPs to be 
more toxic than ZnO NPs (Javed et al. 2018). Recently, Iqbal 
et al. (2022) exposed in vitro callus cultures of Vigna radiata 
(mung bean) to ZnO (37.8 nm in size) and CuO NPs (11.5 nm 
in size) at 0.5 mg/L of concentration on MS growth medium. 
The NPs acted as nano-stress-elicitors and resulted in signifi-
cant enhancement of phenolic and glycosidic content.

Nutritional quality

Ag NPs of 2 nm size were applied to Raphanus sativus 
(radish) seedlings by germination paper method and 
resulted in decrease of macronutrients, i.e., Ca and Mg 
elements and micronutrients, i.e., Mn, B, Cu, and Zn 
(Zuverza-Mena et al. 2016). In another study, CeO2 NPs 
capped with citric acid and uncapped CeO2 NPs were 
employed to soil-raised Lycopersicum esculentum plant. 
The results indicated that citric acid capped CeO2 NPs low-
ered macromolecules (total sugars, reducing sugars, and 
starch). Whereas, uncapped CeO2 NPs reduced the essen-
tial elements (Mn, B, Fe, and Ca) (Barrios et al. 2017). 
Yang et al. (2018) studied the effect of Ag NPs on the 
Triticum aestivum raised in soil culture having 20, 200, 
and 2000 mg/kg dosage of NPs. Results indicated severe 
phytotoxicity evidenced by the significant reduction of 
micronutrients, viz., Zn, Cu, and Fe. Moreover, histidine 
and arginine contents were also decreased by 11.8% and 
13%, respectively. In another study, the effect of CuO NPs 
on Organum vulgare (oregano) was studied in soil culture. 
CuO NPs led to decrease in total sugar, reducing sugar, and 
starch in leaves. Moreover, micro- and macro-elements (B, 
Zn, Mn, Ca, Mg, P, and S) were significantly reduced in 
shoots (Du et al. 2018). ZnO NPs of 20 nm size and spheri-
cal morphology when exposed to Setaria italica (foxtail 
millet) by foliar spray under field conditions resulted in 
decrease of total proteins. The NPs were given in 0 and 2.6 
mg/L concentrations to the plant (Kolenčík et al. 2019).

In a study, TiO2 NPs employed to Triticum aestivum 
produced significant alterations that were elucidated at 
the metabolomics level besides physio-biochemical mani-
festations. TiO2 NPs at 0, 5, 50, 150 mg/L of concentra-
tions triggered the production of sugars, tocopherol, and 
the signaling pathways of tryptophan and phenylalanine 
in leaves. Whereas, in roots, the tyrosine metabolism was 
boosted in addition to the upregulation of azelaic acid and 
monosaccharides. Moreover, serine, valine, and alanine 
metabolism and biosynthesis of glycolipids were acti-
vated. Hence, multiple metabolic pathways were triggered 
by TiO2 NPs’ oxidative stress (Silva et al. 2020). Lung 
et al. (2021) studied the impact of 25-nm-sized CuO NPs 
on nutritional content of Triticum aestivum and found that 

CuO NPs applied via soil culture completely inhibited 
the accumulation of seventeen elements and the content 
of Na, Cl, Ba, and Sr was significantly decreased because 
of the negative effect of NPs. In another study, TiO2 NPs 
employed to the soil culture of Triticum aestivum caused 
reduction in its elemental composition. The Na, Fe, Mn, 
Ba, As, Sb, and Sr contents were badly affected in the 
wheat plant (Soran et al. 2021).

Secondary metabolites

There is an utmost need to study the plants’ secondary metab-
olism in response to NPs’ exposure as they play an important 
role in plant’s performance, adaptation, and communication 
processes. Recent studies have depicted that plant growth, 
physiology, and development are highly affected by NPs, but 
the effect of NPs on plant’s secondary metabolism is quite 
vague (Khan et al. 2019c). The interaction of NPs with plants 
often leads to the production of ROS that has an ultimate 
impact upon secondary signaling messengers and transcrip-
tional regulation. This could be noted during induced acti-
vation of secondary metabolites where ROS play their role 
as signaling molecules (Marslin et al. 2017). Recently, Javed 
et al. (2022b) documented that plant secondary metabolism is 
modulated by NPs via MAPK phosphorylation pathway, Ca2+ 
flux, and ROS generation, ultimately affecting redox reactions 
and gene expression (Fig. 3).

Employing signaling molecules as elicitors has been one of 
the useful technique to produce biotechnologically and phar-
maceutically important bioactive compounds in plants. Sec-
ondary metabolites in plants are of different kinds including 
terpenoids, alkaloids, flavonoids, and phenolic compounds. 
These compounds act as important mediators for interacting 
with biotic and abiotic elicitors and removal of ROS while 
battling with different stresses (Hatami et al. 2016; Movafeghi 
et al. 2018). The production of secondary metabolites has 
been observed in few studies employing ENPs as abiotic or 
oxidative stress elicitors. For instance, Hussain et al. (2017) 
observed enhancement of total flavonoid content (TFC) and 
total phenolic content (TPC) in the seeds of Artemisia absin-
thium (wormwood) when exposed to Au, Ag, and Cu NPs 
grown under in vitro conditions in MS growth medium. In 
another study, treatment with 3 mg/L of CuO NPs under 
in vitro conditions in agar-free MS medium resulted in great-
est yields of gymnemic acid (GA), phenolic compounds, and 
flavonoids in Gymnema sylvestre (gurmar) plant (Chung et al. 
2019). A study done on hairy roots of 4-week-old leaves of 
Dracocephalum kotschyi Boiss (a herbaceous plant) inocu-
lated with Agrobacterium rhizogenes strain was found to be 
influenced by SiO2 NPs at 24 h and 48 h treatment times. 
Researchers found that the TPC and TFC were improved by 
SiO2 NP treatment that was time and concentration dependent. 
Anticancer flavonoids including xanthomicrol, crisimaritin, 
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and isokaempferide indicated 13-, 13.4-, and 10-fold incre-
ment as compared to control (Nourozi et al. 2019).

Enzymatic and non‑enzymatic antioxidants

Various studies have reported metal and metal oxide NP-
mediated oxidative stress. When ROS production crosses 
threshold limit, it leads to lipid peroxidation which causes 
formation of MDA. Amino acid particular site modifica-
tion, aggregation of reaction products (cross-linked), and 
peptide chain fragmentation occur causing membrane dam-
age and protein degradation. Certain plant organelles like 
mitochondria, peroxisomes, and chloroplasts contribute to 
lethal oxygen intermediate scavenging by using antioxidant 
defense system in plants. This defense system comprised 
both enzymatic (peroxidase (POD), glutathione reductase 
(GR), ascorbate peroxidase (APX), glutathione peroxidase 
(GPX), glutathione S-transferase (GST), SOD) and non-
enzymatic (glutathione (GSH), thiols, phenolics, and ascor-
bate) components. Antioxidant enzymes and non-enzymatic 
antioxidants function in scavenging of ROS and defending 
the plants from toxicity. In extreme cases, progressive DNA 
damage, electrolyte leakage, and protein oxidation lead to 
cell death (Ma et al. 2015; Movafeghi et al. 2018).

In an experiment, different concentrations of Ag, Au, and 
Cu NPs were supplemented in MS medium in which Arte-
misia absinthium seeds were allowed to grow. The stress 
induced by NPs produced defensive compounds; SOD 
activity was significantly enhanced besides the increased 
DPPH-free radical scavenging activity and antioxidant 
capacity (Hussain et  al. 2017). In another study, Al2O3 
NPs applied via in vitro culturing to Trigonella faenum-
graceum led to oxidative stress-related responses such as 
significant decrease in GSH content and increased activity 
of CAT and APX (Owji et al. 2019). A comparative study 
showed higher efficiency of Se NPs compared to bulk Se to 
stimulate organogenesis and growth in Momordica charan-
tia (bitter melon) seedlings. However, the higher concentra-
tions of nano-Se resulted in upregulation of CAT and POD 
activities because of abiotic stress and toxicity induced by 
Se NPs (Rajaee Behbahani et al. 2020). Recently, Banerjee 
et al. (2021) determined activation of antioxidant defense 
enzymes, i.e., CAT, SOD, and GSH, by the induction of oxi-
dative stress of CdSe quantum dots (QDs) in 12.5, 25, and 
50 nM concentrations in the roots of Allium cepa (onion).

Molecular alterations

Plants are key models to assess toxicity of NPs at gene 
level. Using different plant models, screening and monitor-
ing of mutagens can be done. It is very cheap and efficient 
as single mutation can be detected with no requirements of 

ethical regulations. Nonetheless, very little is known about NPs’ 
induced genotoxicity. NPs’ induced oxidative stress leads to 
mutagenesis like DNA lesions which ends in causing inhibi-
tion of plant growth and other alterations. Baskar et al. (2015) 
observed dose-dependent genotoxicity of Ag NPs in Bras-
sica rapa seedlings that resulted in DNA damage. Moreover, 
triggering of genes involved in the production of secondary 
metabolites such as anthocyanin and glucosinolates took place 
at 500 mg/L.

A study conducted on Triticum aestivum revealed 
molecular alteration upon Al2O3 NPs’ exposure. Induc-
tion of DNA fragmentation revealed by agarose gel elec-
trophoresis results confirmed the genotoxicity triggered 
by Al2O3 NPs (Yanık and Vardar 2015). In a study con-
ducted by Wang et al. (2015), 200 and 300 mg/L of ZnO 
NP concentrations when employed to Arabidopsis thaliana 
induced toxicity leading to reduced growth and chlorophyll 
a and b contents of the plant. It also decreased the net 
photosynthesis rate, and the expression studies done by 
real time-polymerase chain reaction (RT-PCR) revealed 
that the expression levels of chlorophyll synthesis genes 
and photosystem structure genes were significantly low in 
treated plants compared to the control plants. According to 
Zhang et al. (2018), Cu NPs were applied to Triticum aes-
tivum and the genetic expression of roots of wheat plants 
exposed to Cu NPs was studied. The 15.6 μM concentra-
tion of nano-Cu induced decrease in root cell proliferation 
and cell death as a result of oxidative stress. It was made 
evident by the expression of genes that were involved in 
apoptosis of root cells.

Fig. 3   Diagrammatic illustration of elicitation of secondary metabo-
lism
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A morphological, metabolomics, and proteomics study 
on Phaseolus vulgaris (common bean) exposed to CeO2 NPs 
at the concentrations of 0, 250, 500, 1000, and 2000 mg/L 
by foliar spray and soil culturing showed dose-dependent 
membrane disruption as evidenced by an oxidative stress and 
increase in electrolyte leakage. Metabolic and proteomic dam-
ages were observed at higher dosages. Additionally, this study 
elucidated that spraying of NPs produced stronger impact than 
their soil application (Salehi et al. 2018). In another study, ZnO 
NPs in 0, 10, 25, 50, and 100 mg/L dosages were applied to 
Vicia faba (broad bean) during germination of seeds and devel-
opment of plants from seedlings. Higher concentrations (100 
and 200 mg/L) of ZnO NPs induced phytotoxicity. Moreover, 
genotoxicity evaluated from root meristems showed substan-
tial chromosomal aberrations and increase in DNA lesions. In 
addition, polyacrylamide gel electrophoresis (PAGE) results 
confirmed alterations in the expression patterns of all enzymes 
(Youssef and Elamawi 2020).

Mechanism of phytotoxicity

The NMs if provided to soil culture are absorbed and 
internalized into the plant roots, entering from root tips or 
wounds, from here they are taken up to the plant tissues 
via inter- and intra-cellular mobility in a bottom up manner. 
Symplastic or apoplastic pathways translocate NPs in differ-
ent parts of plant through plasmodesmata. In case of aerial 
exposure by foliar spray of NMs, these are taken up by the 
cuticle, stomata, hydrathodes, lenticels, or trichomes, from 
here distributed all over the plant body in a top down manner 
(Murali et al. 2022). The mechanism of phytotoxicity was 
reported by Nair and Chung (2017) in Arabidopsis thaliana 
after ZnO NPs and Zn+ ion exposure. They found that the 
toxicity mechanisms of NPs and ions were different from 
each other and the release of metal ions is also an important 
contributing factor in causing toxicity to plants.

The physical interaction of NPs with cell wall pores dis-
rupts it, and after passing through the cell membrane, they 
penetrate into the cell cytoplasm via endocytosis. NPs when 
present in cytoplasm interact physically with endoplasmic 
reticulum, ribosomes, mitochondria, chloroplast, etc. In a 
similar fashion, DNA and histone proteins interact with NPs 
after their entry to the nucleus after passing through the 
nuclear membrane. Different ROS molecules like hydrogen 
peroxide (H2O2), hydroxyl radical (OH−), molecular oxy-
gen (O2), and anionic oxygen (O−2) are produced in plant 
cells via Fenton-type reactions that are all very lethal, and 
the generation of ROS plays critical role in determining 
phytotoxicity of NMs. In response to ROS production, dif-
ferent enzymatic (CAT, POD, SOD, GR, GST, GPX) and 
non-enzymatic (phenols, flavonoids, thiols, GSH, ascorbic 
acid (AA), quercetin, anthocyanin) antioxidants as well as 

hormones (salicylic acid, abscisic acid) are produced under 
normal physiological conditions for the scavenging of ROS 
by the process of detoxification (Ma et al. 2015). However, 
the over-production of ROS results in the formation of toxic 
intermediates responsible for electrolyte leakage, lipid per-
oxidation, protein degradation, mitochondrial deterioration, 
DNA injury, malfunctioning of biomolecules, ultimately 
collapsing the plant’s defense system, and finally ending in 
apoptosis or necrosis causing cell death (Nhan et al. 2015; 
Ranjan et al. 2021; Yang et al. 2017) (Fig. 4).

Cytotoxicity

The NMs induce cellular toxicity either directly by stimula-
tion of ROS generation or indirectly by boosting the cel-
lular redox system that eventually activates ROS formation 
by a Fenton-type reaction. The ROS accumulation impairs 
cellular redox state as it disrupts translation, compromises 
mitochondrial respiratory system by interfering with elec-
tron transport chain (ETC), inactivates photosystems I and II 
by impairing the chloroplast, and triggers NADPH-depend-
ent enzymatic systems that ultimately mortalizes the cell 
(Jomova et al. 2012; Karami Mehrian and De Lima 2016; 
Regoli and Giuliani 2014).

The cytotoxicity of Al2O3 NPs of < 50 nm size was stud-
ied in the root tip cells of Allium cepa. The NPs were applied 
at 0.01, 0.1, 1, 10, and 100 μg/mL concentrations that gen-
erated an oxidative stress. Results elucidated decrease in 
mitotic index from 42 to 28%. Moreover, assessments of 
fluorescence, optical, and confocal laser scanning micros-
copy revealed different chromosomal aberrations (Rajesh-
wari et al. 2015). In another study, cytotoxicity of ZnO NPs 
was elucidated by the meristematic cells of root tips. These 
cells revealed loss of membrane integrity and damages con-
firming cytotoxicity in Allium cepa, Nicotiana tabacum, and 
Vicia faba (Ghosh et al. 2016). The cell suspension culture 
of Corylus avellana (European filbert) was exposed to Ag 
NPs (2.5, 5, and 10 ppm concentration) by Jamshidi et al. 
(2016) that resulted in significant decrease of cell viabil-
ity. In a study, higher concentrations of CeO2 NPs given to 
Nicotiana tabacum (tobacco BY-2 cells) resulted in induc-
tion of cytotoxicity. Recently, generation of ROS and mito-
chondrial dysfunctioning was revealed by dihydroethidium 
(DHE) staining and spectrofluorimetric quantitation (Sadhu 
et al. 2018). In another study, biosynthesized Ag NPs were 
applied to the roots of Allium cepa at different concentra-
tions and exposure durations. The results revealed cytotox-
icity measured by macroscopic techniques and spectropho-
tometry. Ag NPs (20 mg/L) elucidated maximum death of 
cells of root tips (Heikal et al. 2020). For elucidation of cyto-
toxicity by different concentrations of CdSe QDs in Allium 
cepa, mitotic frequencies and cell viability analyses were 
used. The results demonstrated that 25 nM concentration 
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of QDs induced cytotoxicity by oxidative stress (Banerjee 
et al. 2021).

Genotoxicity

Genotoxicity can be determined at the whole genome, chromo-
some, and single nuclei level by an evaluation of DNA ladder-
ing, chromosomal aberrations, and comet assay, respectively. 
Previous reports reveal that comet assay, ames assay, micro-
nucleus assays, chromosomal aberrations, and DNA laddering 
techniques are widely accepted tests for assessment of geno-
toxicity in plants. Moreover, RT-PCR and random amplified 
polymorphism DNA (RAPD)-PCR are used to analyze the 
gene expression (Mahaye et al. 2017; Marmiroli et al. 2022). 
There exists a positive correlation between ROS generation 
and damage of DNA. The DNA damage elicits the signaling 
pathways by which cellular death occurs (Watson et al. 2014). 
It has been reported that NMs damage DNA via two path-
ways, i.e., direct and indirect pathways. In direct pathway, NPs 
directly penetrate through nuclear pores and associate with the 
DNA strands, disrupting their replication and transcription. 
But in case of indirect pathway, NPs approach DNA molecules 
after induction of oxidative stress and generation of ROS. The 
oxidative burst enables NPs to penetrate into the nucleus and 
evoke a cascade of cellular events that break the nuclear pro-
teins and mitotic spindles, subsequently arresting the cell cycle 
and damaging the DNA, finally ending in cell apoptosis. In 
this way, antioxidative defense mechanism is prohibited via 
genotoxicity (Magdolenova et al. 2014).

ZnO NP-induced genotoxicity was evaluated in Allium 
cepa, Nicotiana tabacum, and Vicia faba by 85-nm-sized ZnO 

NPs’ exposure. Detailed assessment showed chromosomal 
aberrations, DNA strand breaks, and cell cycle arrest in G2/M 
phase (Ghosh et al. 2016). Abdelsalam et al. (2018) observed 
the genotoxic effects of Ag NPs on the root tip cells of Triti-
cum aestivum. Increase in dose concentration and exposure 
time resulted in reduction of mitotic cells and induced mitotic 
abnormalities. Mitotic index was decreased and various types 
of chromosomal aberrations were analyzed. Additionally, the 
comprehensive report about the genotoxicity induced by dif-
ferent NPs in higher plants was presented in which the geno-
toxicity was assessed in model plants, viz., Nicotiana, Allium, 
and Vicia species using advanced analytical techniques such 
as comet assays, micronucleus, and chromosomal aberra-
tions (Ghosh et al. 2019). In another study, biogenic Ag NPs 
applied to Allium cepa root tips at 40 mg/L concentration for 
4 h were found to cause genotoxicity that was confirmed by 
comet assay which detected DNA damage in toxic cells (Hei-
kal et al. 2020). Recently, genotoxicity of CdSe QDs caused 
by oxidative stress was elucidated in the plants of Allium cepa. 
The intact roots of onion bulb were exposed to different con-
centrations, viz., 12.5, 25, and 50 nM concentrations of QDs. 
Chromosomal aberrations, micronucleus, and DNA lesions 
were used for assessment of genotoxicity that demonstrated 
the 50 nM concentration of QDs to be genotoxic (Banerjee 
et al. 2021).

Conclusions and future directions

Plants make an integral part of ecosystem and NMs have 
great influence on them. Hence, it is essential to trace the 
movement of NMs from outside environment to the terres-
trial and aquatic plants. The different factors influencing the 
toxicity of NPs are size, shape, surface charge, surface chem-
istry, solubility, concentration, exposure media and duration, 
methods of exposure, encapsulation efficiency, delivery, 
release kinetics, and plant species. Various inorganic and 
organic NPs affect plants; however, the organic NPs have 
been found to elucidate less detrimental impacts on plants. 
The nanotoxicity produces alterations at cellular and molec-
ular levels such as seed germination, morphophysiology, 
in vitro regeneration, callus induction, nutritional quality, 
secondary metabolites, and enzymatic and non-enzymatic 
antioxidants. Phytotoxicity including cytotoxicity and gen-
otoxicity can be assessed using different macroscopic and 
microscopic techniques, comet and ames assays, micronu-
cleus assays, chromosomal aberrations, and DNA laddering. 
The mechanism of phytotoxicity mainly involves the genera-
tion of ROS that eventually leads to apoptosis of plant cells.

Currently, the knowledge is limited regarding deep under-
standing of nanotoxicological mechanisms and the detrimen-
tal effects of NMs on living organisms and environment. Till 
date, very few studies have been published in the context of 

Fig. 4   Diagrammatic representation of mechanism of phytotoxicity 
(cytotoxicity and genotoxicity) of NPs
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the fate, effect, and ultimate consequences of NPs. Hence-
forth, researchers must exploit this area of research by using 
the advanced omics approaches, i.e., proteomics, metabo-
lomics, and genomics. Life cycle studies should be con-
ducted to evaluate the cumulative impact of NMs in the food 
chain. More and more field experiments should be performed 
because these are environment relevant. Also, investigation of 
the interaction of NPs with the soil and soil microbes should 
be done. Moreover, transgenerational influence of NPs should 
be evaluated. Most importantly, improvements in analysis 
and assessment techniques of nanotoxicity should be made 
and real-time in situ methods should be devised because of 
the transient nature of NMs. Novel microscopic tools should 
be introduced in the market. Standard guidelines should be 
approved for in vitro and in vivo nanotoxicity assessment that 
is robust and accurate. In order to assure the progress in this 
domain, steps must be taken by policy makers and adminis-
trators to provide proper funding to apply NPs in agriculture 
sector. Furthermore, all NMs must be ensured of being non-
hazardous prior to their release by industrialists in the mar-
ket. This can only be done if NMs are fabricated, keeping in 
mind of their possible application, i.e., their design must be 
in synergy to their applicability. In addition, stability of NPs 
is immensely important to preserve their inherent characteris-
tics which can only be maintained if NPs are fabricated using 
stabilizers or capping agents. It also confirms the long-term 
employment of NMs without the risk of being changed by the 
environmental factors.

In a nutshell, the risk and safety assessment of NPs should 
be taken into utmost consideration during their development 
and employment in agriculture and environment to shut 
down the rising toxicity concerns in this regard and to pro-
tect human health. Researchers from various domains must 
work together through collaboration and capacity building by 
adopting multidisciplinary approach for setting the direction 
of possible future research toward mitigation of nanotoxicity.
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