
Vol:.(1234567890)

Environmental Science and Pollution Research (2023) 30:100562–100575
https://doi.org/10.1007/s11356-023-29132-1

1 3

RESEARCH ARTICLE

A geospatial approach for assessing urban flood risk zones  
in Chennai, Tamil Nadu, India

Murugesan Bagyaraj1  · Venkatramanan Senapathi2  · Sang Yong Chung3  · 
Gnanachandrasamy Gopalakrishnan4  · Yong Xiao5  · Sivakumar Karthikeyan2  · Ata Allah Nadiri6,7,8 · 
Rahim Barzegar9 

Received: 9 January 2023 / Accepted: 29 July 2023 / Published online: 28 August 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Chennai, the capital city of Tamil Nadu in India, has experienced several instances of severe flooding over the past two 
decades, primarily attributed to persistent heavy rainfall. Accurate mapping of flood-prone regions in the basin is crucial for 
the comprehensive flood risk management. This study used the GIS-MCDA model, a multi-criteria decision analysis (MCDA) 
model that incorporated geographic information system (GIS) technology to support decision making processes. Remote 
sensing, GIS, and analytical hierarchy technique (AHP) were used to identify flood-prone zones and to determine the weights 
of various factors affecting flood risk, such as rainfall, distance to river, elevation, slope, land use/land cover, drainage density, 
soil type, and lithology. Four groups (zones) were identified by the flood susceptibility map including high, medium, low, 
and very low. These zones occupied 16.41%, 67.33%, 16.18%, and 0.08% of the area, respectively. Historical flood events 
in the study area coincided with the flood risk classification and flood vulnerability map. Regions situated close to rivers, 
characterized by low elevation, slope, and high runoff density were found to be more susceptible to flooding. The flood 
susceptibility map generated by the GIS-MCDA accurately described the flood-prone regions in the study area.
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Introduction

Floods pose a significant threat to human life and proper-
ties, making them one of the most destructive calamities 
in nature (Ghosh and Kar 2018; Joy et al. 2019). Industri-
alization, urbanization and climate change (Detrembleur 
et al. 2015; Khosravi et al. 2020; Tabari 2020) have led 
to an increase in floods (Barasa and Perera 2018; Muth-
usamy et al. 2018). It is an unavoidable natural occurrence 
that is expected to worsen the human life in the future 
(Yukiko et al. 2021) and to threaten many regions around 
the globe. The present and future flood susceptibility 
scenarios require a large amount of spatial and temporal 
data on the prediction of prospective flooding risks (de 
Moel et al. 2015). Flood risk assessment, identification of 
flood-prone areas, and implementation of appropriate man-
agement and mitigation measures are critical to reducing 
flood-related vulnerability and losses. Flood susceptibil-
ity mapping is valuable for flood susceptibility reduction 
plans, early warning systems, and emergency response 
strategies (Vieri et al. 2020).

In flood risk analysis, numerical models are often used 
to measure flood risk (Kuldeep Garg and Garg 2016; Zhang 
and Chen 2019). Hydrological and hydrodynamic models 
have been widely used to determine flood magnitude, extent, 
and frequency (Ullah et al. 2016). For example, rainfall-
runoff modeling and flow routing modeling have been 
employed for predicting flooding (Sindhu and Durga Rao 
2017; Liu et al. 2018), along with the runoff yield model, 
a type of hydrological model, to analyze the flood pathway 
in the flow channels (Chomba et al. 2021). These models 
can handle large quantities of data and provide useful 
flood information. However,  Cabrera and Lee (2019) 
pointed out that hydro-meteorological data shortage is the 
most problematic and prevalent aspect of such systems. 
Furthermore, flood risk assessment is a difficult task in 
India due to  the  deficiency of quality data. As a result, 
the development of a robust flood risk analysis model is 
necessary to overcome this limitation.

Geographical information system (GIS) is widely used 
in flood risk assessment and management because of its 
ability to process and analyze large data sets, including 
hydrological and meteorological data, digital elevation 
model (DEM), and land use data. A key advantage of 
GIS for this purpose is its ability to allow the integra-
tion of multiple data sources, such as satellite imagery 
and topographic maps, and  to produce comprehensive 
flood susceptibility maps for decision making. In addition, 
GIS technology can be used to simulate flooding events 
and to predict their potential impacts. The effectiveness 
of flood control measures can also be evaluated using 
GIS. The integration of GIS into flood risk assessment 

and management has proven to be an effective approach 
to identify flood-prone areas, predicting potential flood 
scenarios, and evaluating the effectiveness of mitigation 
measures (Areu-Rangel et al. 2019; Dash and Sar 2020; 
Chomba et al. 2021; Kongeswaran and Sivakumar 2022).

Several research publications (Wu et al. 2015; Xiao et al. 
2017) have examined the impacts of variables affecting 
flooding through the utilization of multi-criteria decision 
analysis (MCDA) and GIS. The GIS-MCDA strategy, which 
combines the GIS’s geographic data processing capabilities 
with MCDA’s capacity to link realistic data (such as pre-
cipitation, slope, drainage density, soil, and land use) to 
decision-based information, has been shown to be effective 
(Kazakis et al. 2015; Gigovic et al. 2017; Seejata et al. 2018; 
Kongeswaran and Sivakumar 2022).

 The GIS-MCDA model was applied to investigate the 
difficult decision dilemmas under hierarchically grouped 
regulating factors (Rimba et  al. 2017). According to De 
Brito and Evers (2016), most studies involving GIS-based 
MCDA paired it with the analytical hierarchy process (AHP). 
The  AHP method allows many parameters to be broken 
down into a series of pairwise comparisons, following which 
the results can be combined (Saaty 2014). Several multi-
disciplinary studies on natural susceptibility assessment, such 
as flood susceptibility mapping, soil erosion susceptibility 
mapping (Kachouri et  al. 2015), landslide susceptibility 
mapping (Feizizadeh et al. 2013), and groundwater potential 
zonation studies, have proven that GIS with AHP can be 
accomplished effectively within MCDA (Feizizadeh et al. 
2013; Prabakaran et  al. 2020;  Arshad et  al. 2020). The 
effectiveness of this strategy (i.e., integrating GIS and AHP in 
the MCDA framework) in susceptibility mapping is primarily 
stems from its ability to deal with the limited amount of data 
available (Cabrera and Lee 2019). The most commonly used 
features in flood susceptibility mapping are precipitation, 
distance to the river, DEM, slope, land use/land cover (LULC), 
drainage density, soil, and lithology. These features are often 
chosen after thorough literature reviews, and their weighting 
is determined using AHP method, which relies on expert 
knowledge (Naghibi et al. 2015; Mallick et al. 2019; Arshad 
et al. 2020; Kumar et al. 2020).

The present study aims to develop a mesoscale regional 
flood risk map for the Chennai district in Tamil Nadu, India 
using remote sensing data and GIS-MCDA model. Chennai 
has been more frequently affected by floods due to cyclonic 
rainfall from the Bay of Bengal region. The Chennai cloud-
burst in 2015 was a severe weather event that caused wide-
spread flooding and damage, resulting in an estimated 250 
casualties. Therefore, creating a flood susceptibility map is 
important to manage future events. In this study, the GIS-
AHP technique is also used to include eight criteria: rainfall 
(mm), distance to river (km), DEM (m), slope (%), LULC, 
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drainage density (km/km2), soil type, and lithology. Based 
on the results of this study, managers and policy makers can 
gain a more comprehensive knowledge and specific recom-
mendations regarding early warning systems, emergency 
response, and flood risk reduction measures.

Study area

The study was carried out in Chennai, the capital city of 
Tamil Nadu in India. Chennai district, previously known 
as Madras district, one of the 38 districts in Tamil Nadu 
and has the highest population density in the state, despite 
having the smallest area. Moreover, it encompasses the 
majority of Greater Chennai, which was previously divided 
among the districts of Tiruvallur, Kanchipuram, and 
Chengalpattu. Chennai is located at latitudes (13.0° N and 
13.1° N) and longitudes (80.16° E to 80.3° E) (Fig. 1) with a 
total area of 426  km2. The region has the typical oppressive 
tropical climate, with most of the year being characterized 
by hot weather. The temperature in Chennai ranges from 26 
to 35 °C, and the average annual rainfall is 1400 mm. The 
northeast monsoon winds bring the most rainfall between 
September and December, usually triggered by cyclones in 
the Bay of Bengal. Rainfall during the southwest monsoon 
is highly erratic, and summer rains are barely noticeable 
(CCC&AR and TNSCCC 2015). The geology of the area is 
divided into four main lithological groups, including the 

Archean chornockite, sandstone with conglomerate, sand 
with silt, and younger sand deposits formed by coastal, 
alluvial, and eolian processes. Both the higher-lying soils/
alluvium and the eroded crystalline rocks in this region 
contain groundwater in the unconfined state. The maximum 
depth of drilled boreholes in the area is about 100 m.

Material and methods

Selection of flooding susceptibility factors

To assess vulnerability to flooding, various factors that 
trigger and cause flooding, along with their interactions, 
should be studied (Radmehr and Araghinejad 2015; 
Sahana and Patel 2019). Previous studies that  mapped 
flood vulnerability have used a variety of flood regulatory 
elements, including precipitation, distance to river, elevation, 
slope, LULC, drainage density, soils, and lithology (Dou 
et al. 2018; Samanta et al. 2018; Das 2019). Despite the lack 
of consistency in the selection of flood regulating elements 
and their importance, researchers select the flood regulating 
factors based on physical and natural features. To create the 
flood susceptibility map, we used several satellite images 
and supplementary data sets from the Internet. The ArcGIS 
10.3.1 “Reclassify” feature in the Spatial Analyst tools was 
used to convert the layers to a raster format and classify 
them.

Fig. 1  Map showing research 
site, Tamil Nadu
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According to the literature review, the amount of 
precipitation plays an important role in flood formation. 
The annual mean rainfall for the study region from 2020 to 
2021 was obtained from the Climate Research Unit (https:// 
chrsd ata. eng. uci. edu/). A total of five rain gauge stations 
were located  at the following sites: (1) DGP Office, Mylapore; 
(2) Perambur Corporation Park; (3) Chennai collectorate 
building Pursawalkam V.O.C Nagar; (4) Sholinganallur; and 
(5) CD Hospital, Tondiarpet and were monitored. Using the 
“Conversion Tools”, “From Raster”, and “Raster to Point” 
options, the raster layer was converted to point values. 
The points were then loaded into “Spatial Analyst Tools”, 
“Interpolation”, and “IDW” to create the precipitation map 
of the watershed. We also considered the distance to rivers as 
a relevant criterion, given that floods are associated with the 
expansion of river networks. The Euclidean distance tool in 
ArcGIS 10.3.1 was used to calculate the distance to the river 
and divide the area into five zones.

Elevation serves as a fundamental representation of 
topographic features. DEM has been used as a critical 
evaluation criterion in several flood vulnerability assessment 
studies. Therefore, elevation constituted an important 
component of this study. DEM data of Chennai were acquired 
using EARTHDATA Search (https:// search. earth data. nasa. gov/ 
search), where the “Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) Global DEM V003” was 
selected. The 30-m resolution images were retrieved from the 
(ASTER) Global DEM data and subsequently mosaicked using 
ArcGIS 10.3.1. This unified map was then re-projected based 
on the appropriate UTM zone.

In the current study, slope—a measure of the difference 
in elevation between adjacent grid cells— was selected as 
another flood-triggering feature due to its influence on flow 
velocity (Wu et al. 2015). ASTER DEM data were used to 
determine the basin slope in ArcGIS 10.3.1.

The LULC process directly affects flood interception, 
infiltration, subsurface infiltration, and evapotranspiration 
(Yan et al. 2013; Deng et al. 2015) and also has indirect 
impact on flooding (Rahman et al. 2019). LULC was chosen 
as another key element in the hierarchy. LULC data were 
obtained from Earth Explorer land cover data (https:// earth 
explo rer. usgs. gov/). The “Land Cloud Cover” and “Scene 
Cloud Cover” criteria were set to less than 10% to obtain 
images with minimal cloud cover. These images were 
imported into ERDAS IMAGINE 2014 for processing 
and enhancement. For LULC classification, we used the 
supervised classification method in ERDAS IMAGINE. 
Maximum likelihood classification was utilized for land 
use mapping. This supervised classification process involves 
the selecting and digitizing polygons within an “area of 
interest” layer to create signature files. Multiple polygons 

were created for each LULC category for classification. 
Supervised classification takes longer than unsupervised 
classification, and the overall accuracy of the land use map 
is 80%.

The drainage density of a landscape affects the flow path 
and the probability of flooding, leading to an appropriate 
concentration time of runoff. In this study, the density tool in 
ArcGIS 10.3.1 was employed to calculate drainage density. 
Soil properties affect the water retention capacity of the 
region, subsequently impacting water infiltration and flood 
risk (Rahmati et al. 2016a, 2016b). Therefore, soil parameters 
were considered as an additional factor in the current study.

A soil map of the watershed was provided by the Food and 
Agriculture Organization (FAO) GeoNetwork Web Portal. 
The SWAT Soil Repository was also used to determine 
soil types. The soil map was then georeferenced in ArcGIS 
10.3.1 using the appropriate UTM coordinate system. It was 
then geocoded according to soil categories from SWAT. 
Flooding can be enhanced or reduced by lithology, as it 
affects water infiltration capacity and thus vulnerability to 
flooding. The GIS created a lithologic map of the study area 
at a 1/50,000 resolution based on the lithology present in 
the study area.

Analytic hierarchy process (AHP)

In the present work, remote sensing and GIS data are 
collected in order to generate a flood susceptibility map. 
This map is created based on eight regulatory criteria. Using 
the thematic maps of these components based on normalized 
weights, the AHP method was used to estimate flood 
susceptibility maps for the Chennai district. Assessing matrix 
consistency, scientific knowledge, and persuasive evidence 
are all fundamental to the implementation of AHP (Saaty 
2014). The AHP technique follows the approach of Ghosh 
and Kar (2018), in which flood susceptibility variables are 
selected, relative scores are assigned, a pairwise comparison 
matrix is generated, and the matrix consistency is verified.

The pairwise comparison matrix was established 
following  Saaty (1980), and the accuracy of the matrix   
was validated using the following formulas (Eqs. 1 to 5). 
Table  2 provides the  standardized principal eigenvector. 
The scalar factor modifications resulting from  a linear 
transformation affecting a vector are generally described 
by the eigenvalue (λ). Equation 4 was used to calculate the 
greatest estimated eigenvalues across all layers. Ci is the 
consigned indication value. The weight Wi is assigned to each 
measure in the pairwise comparison matrix. The consistency 
judgment factor is denoted as Cj. The largest eigenvalue is 
calculated using the formula λmax. In total, there are n criteria. 
The consistency index, random index, and consistency ratio 

https://chrsdata.eng.uci.edu/
https://chrsdata.eng.uci.edu/
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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of the derived weights are abbreviated as CI, RI, and CR, 
respectively (Saaty 1980). The generated RI was followed as 
proposed by Saaty (1980) ( Brunelli 2015; Agastheeswaran 
et al. 2021).

Pairwise comparison matrix

A range of professionals was surveyed in this study, 
including hydrologists, geomorphologists, remote sensing 

(1)
Wi =

∑n

i=1

�

Ci
∑n

i=1
Ci

�

n

(2)Cj =

∑n

i=1
[Ci ×Wi]

Wi

(3)�j =

∑

Cj

n

(4)CI =
�max − n

n − 1

(5)CR =
CI

RI

specialists, and engineers. The tabular questionnaires 
were given to all experts to record their risk assessments 
of flood danger. Experts were requested to evaluate 
individual parameters (e.g., rainfall) against the others 
(which parameter is more  significant?). Using the Saaty 
scale (Table 1), each parameter was scored based on its 
importance. Table 2 outlines eight factors contributing 
to floods (i.e., rainfall, lithology, drainage density, DEM, 
LULC, slope, soil, and distance to the river). Goepel 
(2013) merged these tables into an Excel template (https:// 
bpmsg. com/ new- ahp- excel- templ atewi th- multi ple- inputs/). 
The flood susceptibility mapping template generates a 
pairwise comparison matrix (8 × 8) for AHP-based flood 
susceptibility mapping (Table 2). A CR of 1.4% (less than 
10%) is deemed acceptable for conducting the weighted 
overlay calculations to incorporate the weighted parameters.

Identification of flood susceptibility zones

Weighting values were assigned to the levels and classes 
based on their significance to flood risk. The levels/classes 
were weighted according to expert knowledge (Tables 2 and 
3). The final score was calculated by simply weighing the 
classes. Each pixel of the output map (Hi) is calculated using 
the following equation (Das 2019):

where Wj is j parameter weight and Xij is class rank.

Results and discussion

Flood susceptibility mapping by AHP

Eight thematic layers (e.g.,  rainfall, distance to river, 
elevation, slope, LULC, drainage density, soil, and 
lithology) were established to depict flood susceptibility 

(6)Hi =
∑

(Wj × Xij)

Table 1  The significance of variables on a scale of 1–9 (Saaty 1980)

Strength of importance Explanation

1 Equal significance
3 Medium significance
5 Strong
7 Very strong significance
9 Maximum significance
2, 4, 6, and 8 Intermediate between 

two adjacent values

Table 2  A (8 × 8) pairwise 
comparison matrix for the 
AHP-based flood susceptibility 
mapping

* RF, rainfall; DR, distance to river; DEM, digital elevation model; SP, slope; LULC, land use/land cover; 
DD, drainage density; SL, soil; LY, lithology; NPEV, normalized principal eigen vector

Matrix RF DR DEM SP LULC DD SL LY NPEV

RF 1 3 8 2 9 3 7 8 35.23%
DR 1/3 1 3 8 2 5 5 5 23.79%
DEM 1/8 1/3 1 1 3 7 3 3 10.90%
SP 1/2 1/8 1 1 3 7 3 5 12.28%
LULC 1/9 1/2 1/3 1/3 1 7 3 2 7.81%
DD 1/3 1/5 1/7 1/7 1/7 1 4 2 4.36%
SL 1/7 1/5 1/3 1/3 1/3 1/4 1 2 3.02%
LY 1/8 1/5 1/3 1/5 1/2 1/2 1/2 1 2.61%
SUM 100%

https://bpmsg.com/new-ahp-excel-templatewith-multiple-inputs/
https://bpmsg.com/new-ahp-excel-templatewith-multiple-inputs/
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zones in the Chennai area. These eight layers were 
explored and digitally mapped using ArcGIS. The layers 
were used to demonstrate the following: precipitation 
as the primary source of water; distance to the river, 
determining effective infiltration zones; elevation, 
influencing overflow direction and water table depth; 
slope, controlling water flow intensity; LULC, impacting 
recharge processes; drainage density, governing runoff 
partitioning and infiltration rate; and soil properties 
affecting runoff partitioning and infiltration rate.

Factors influencing flood susceptibility 
zoning

Rainfall

Floods become more frequent as rainfall intensifies, particu-
larly flash floods. The overall pattern of mean annual rainfall 
in the basin exhibits its highest values (300–700 mm per year) 
in the southern sections, gradually increasing in a southern 
gradient toward the sea. Rainfall, strongly linked to river 

Table 3  Assigned weight and 
rank scores for the layer/class of 
the Chennai district

Parameter (unit) Class Flood susceptibility Parameter 
weight (%)

Class rank

Rainfall (mm/year) 100–200 Very low 35.23 1
200–300 Low 2
300–400 Moderate 3
400–500 High 4
 > 500 Very high 5

Distance to the river (km)  < 20 Very high 23.79 5
20–40 High 4
40–60 Moderate 3
60–90 Low 2
 > 100 Very low 1

Elevation (m)  < 5 Very high 10.90 5
5–10 High 4
10–12 Moderate 3
12–15 Low 2
 > 15 Very low 1

Slop (%) 0–2 Very high 12.28 5
2–5 High 4
5–8 Moderate 3
8–15 Low 2
 > 15 Very low 1

Land use/land cover Urban land High 7.81 4
Forest land Low 2
Agriculture land Moderate 3
Water bodies Very high 5

Drainage density (km/km2)  < 1 Very low 4.36 1
1–2 Low 2
3–3 Moderate 3
3–4 High 4
 > 4 Very high 5

Soil Sand Extremely low 3.02 1
Silty clay Very high 4
Sandy clay High 3
Clay Extremely high 5

Lithology Quaternary marine deposits Low 2.61 1
Quaternary alluvium/fluvial Moderate 2
Charnockite High 3
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flow, stands as the primary precipitation element contribut-
ing to flooding (Subbarayan and Sivaranjani 2020; Das 2019). 
Floods can occur in semi-arid regions when a substantial 
amount of rain falls in a short period of time (Chakraborty 
and Mukhopadhyay 2019; Das 2019; Liuzzo et al. 2019; Paul 

et al. 2019). Thus, five rainfall classes were categorized in the 
study region according to flood susceptibility factors as very 
high, high, moderate, low, and very low (Table 3). Flooding 
is more likely to occur in the southern parts of the research 
area compared to the northern parts (Fig. 2 a).

Fig. 2  The study area’s a annual rainfall, b distance to rivers, c digital elevation model (DEM), and d slope map
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Distance to the river

During floods, areas in close proximity to the rivers are 
more susceptible to the flooding risk (Xiao et al. 2017). The 
flooding risk increases due to the overcapacity of drainage 
channels, leading to their overflow and subsequent flooding. 
Areas adjacent to drainage canals are more likely to flood 
compared to areas farther away. Thus, locations near riv-
ers were identified as more prone to flooding in the assess-
ment (Fig. 2 b). Distances exceeding 20 km and ranging 
between 20 and 40 km from rivers are associated with a sig-
nificant flooding risk. However, areas located at distances of 
40–60 km, 60–90 km, and over 100 km from rivers are less 
likely to experience flooding.

Elevation

Flooding is more prevalent in low-lying areas when runoff 
changes from the high ground to the low ground. Rahman 
et al. (2019) claimed that low-lying areas are more vulnera-
ble to flooding because even small floods can inundate them. 
Thus, the area with the lowest elevation (0–10 m above sea 
level) is the most vulnerable to flooding (Fig. 2 c). In con-
trast, some locations situated at elevations  exceeding 15 m 
above sea level are less susceptible to flooding.

Slope

The slope of the ground influences the velocity and concen-
tration of overland runoff. As the slope of a region increases, 
the likelihood of floods also rises, rendering it a valuable 
indicator of flooding vulnerability (Rahman et al. 2019). 
In general, steep slopes accelerate runoff, whereas gentle 
slopes can result in water stagnation and potential flooding 
(Dash and Sar 2020). According to Fig. 2 d, the study area 
was divided into five slope categories. Flood susceptibility 
is classified as very high (0 ~ 2%), high (2 ~ 5%), moderate 
(5 ~ 8%), low (8 ~ 15%), and very low (> 15%) (Table 3). 
Given that a significant portion of the basin lies within the 
floodplain (5%), the slope is fairly low. This type of slope, 
present throughout the area, characterized by the lowest 
slope and topographic elevation, holds the greatest impor-
tance among the variables contributing to flooding.

Land use/land cover

There are a variety of factors that influence LULC in the gen-
eration of surface runoff and flooding in a watershed (Siva-
kumar et al. 2017; Areu-Rangel et al. 2019; Khosravi et al. 
2020). Infiltration rates, surface and groundwater interactions, 
evapotranspiration, and surface runoff formation are all influ-
enced by LULC (Kazakis et al. 2015; Samanta et al. 2018; 

Das 2019). Water bodies are particularly susceptible to flood-
ing (Ogato et al. 2020), and in the current study, they were 
classified as having very high potential flood risk. Impervi-
ous land cover reduces infiltration capacity, and runoff from 
such areas contributes significantly to total runoff. Flooding 
is more likely in urbanized areas due to reduced lag time and 
increased total runoff resulting from urbanization. Rainfall 
affects bare soil in forested areas, making them more prone 
to flooding. A reaserch by Katie et al. (2010)  has shown that 
raindrops can dissolve soil layers and create a surface crust, 
reducing infiltration rates and hydraulic conductivity, thereby  
increasing runoff and flood risk (Katie et al. 2010). Plant den-
sity and flooding are negatively correlated (Mojaddadi et al. 
2017), implying that vegetated areas are less susceptible to 
flooding and therefore have lower flood risk scores. The degree 
of water and sediment flow facilitation at the pedon, slope, and 
watershed scale is termed connectivity (Keesstra et al. 2018). 
Agricultural fields have low connectivity due to their high 
roughness and high infiltration rates. According to Cerda et al. 
(2021), increased roughness results in a low runoff coefficient. 
Consequently, agricultural land has the lowest runoff coeffi-
cient and thus the highest susceptibility to flooding (Table 3). 
The urban land type is the most prevalent LULC type in the 
region, constituting over 90% of the study area (Fig. 3 a) and 
posing a significant flood risk.

Drainage density

The flood susceptibility is proportionate to drainage density, 
where increased drainage leads to higher runoff and greater 
flood vulnerability (Subbarayan and Sivaranjani 2020). 
There are five categories of drainage density in the area 
based on their impact on flood susceptibility: “very low” 
(> 1 km/km2), “low” (1–2 km/km2), “moderate” (2–3 km/
km2), “high” (3–4 km/km2), and “very high” (< 4 km/km2). 
Accordingly, the majority of locations have low runoff den-
sity, indicating a minimal risk of flooding (Fig. 3 b).

Soil features

Figure 3 c shows a soil map of the study area, divided 
into four categories: sand, silty loam, sandy loam, and 
clay. In the northern part of the region, sand, silty loam, 
and sandy clay soil types are prevalent, constituting about 
10% of the soil composition. Distinct soil types exhibit 
varying infiltration rates. Flooding becomes more likely 
when the infiltration capacity of the soil decreases, result-
ing in greater runoff. When rainfall exceeds the infiltration 
capacity of the soil, the excess rain runs down a slope and 
causes flooding (Lei et al. 2020). Soil pore size distri-
bution, porosity, and pore connectivity can affect water 
movement. According to the results of the study, clay soils 
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account for more than 90% of the soil types in the study 
area and are classified as being at high or very high risk 
of flooding (Table 3).

Lithology

Three lithologic units are represented on the thematic 
map of Chennai district lithology: Quaternary marine 

Fig. 3  The study area’s a LULC, b drainage density, c soil type (dominant grain sizes), and d lithology map
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deposits, Quaternary alluvium and fluvial rocks, and 
charnockite igneous rocks (Fig. 3 d). The lithology of a 
site affects its capacity for infiltration and runoff (Dash 
and Sar 2020). Permeable lithology facilitates water 
penetration, while impermeable lithology contributes 
to surface runoff, potentially resulting in flooding. The 
region’s eastern portions are covered by marine deposits, 
primarily composed of unconsolidated sediments from 
the Quaternary. The high porosity and permeability of 
these sediments render them as  extremely low flood 
susceptibility zones. The majority of the western area is 
covered by Quaternary alluvium and river sedimentary 
strata, mainly  representing the fluvial sediments of the 
Tigris and Euphrates Rivers, along with their tributaries. 
Due to their high porosity and permeability, these sediments 
are considered to have a very low flood risk (Table 3). 
Metamorphic and igneous rocks in the southernmost 
region have limited porosity and permeability, resulting 
in high runoff potential. These lithologies are classified as 
high to extremely high in the lithologic subclassification 
for flood risk. (Nasir et al. 2018; Kanagaraj et al. 2019) 
(Table 3). Conversly, evaporates are often associated with 
low porosity and permeability, as well as significant runoff 
potential (Earle 2019), and are ranked as very high in the 
lithologic subclassification for flood risk.

Flood susceptibility zoning

Using the eight flood susceptibility mapping factors, a 
flood susceptibility map was created with four distinct 
classes (zones) (Fig.  4). The area represents high, 
moderate, low, and extremely low vulnerability to flood 
hazards, occupying 16.41%, 67.33%, 16.18%, and 0.08% 
of the total area, respectively. In general, regions prone to 
flood hazards and areas with high runoff exhibit a wide 
range of contributing factors. High flood risk zones are 
primarily  located in the southern part, while moderate 
flood risk areas are concentrated in the centeral portion 
of the study area. Regions with the lowest and very low 
flood risk are predominantly found in the northwest and 
north (Fig. 4). For locations classified as having “high 
susceptibility”,  favorable factors include  DEM, slope, 
and drainage density. Proximity to rivers, low DEM, and 
high drainage density contribute to increased vulnerability 
to flood hazards. In the southern paerts of the area, low 
drainage density and high DEM mitigate most rainfall, 
leading to transformation of high flood risk areas  into 
moderate ones. In contrast, the western and northwestern 
regions face the least flood risk due to their low rainfall, 

drainage density and their distance from rivers, elevation, 
and slope. Consequently, runoff per unit area decreases 
with increasing slope length due to the combined effects 
of  infiltration and runoff from ponding (Zhao et  al. 
2018; Cerda et al. 2021). Runoff from the upper slopes 
of dry regions does not reach river channels due to 
infiltration,  resulting in its isolation from the drainage 
system. As a consequence, only runoff generated during 
specific events in areas around the channels reaches the 
river channel and triggers flooding (Cerda et al. 2021).

Limitation of the study and suggestion

There are several factors contributing to more frequent 
and intense flooding in the Chennai watershed, including 
significant changes in runoff across the district. The AHP 
technique created a mathematically structured ranking of 
options. This strategy decomposed a complex selection 
problem into three components: a target, criteria, and 
options. Given that flooding cannot be prevented or stopped, 
it is best to minimize its impact and destruction and select 

Fig. 4  Map showing final flood susceptibility zones, Chennai, India
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options. Expert comments from a consultation questionnaire 
are then used to make pairwise comparisons between each 
parameter and its alternatives to assess the relative relevance 
of each parameter (Elkhrachy 2015). However, flood hazard 
vulnerability assessments are based on direct measurements 
in the area (Lyu et al. 2020). In the context of flood risk 
assessment, this may not be practical because researchers 
have focused on the lack of use of data in AHP (Danumah 
et al. 2016; Gigovic et al. 2017; Cabrera and Lee 2019). As 
a measure, this study used remote sensing-GIS and AHP 
approach to provide an effective method for appropriate 
identification of flood risk zones. This study confirmed that 
AHP is able to accurately predict flood hazards and map risk 
zones, in the Chennai area. The flood risk map produced was 
an effective choice for reducing flood risk in flood-prone 
areas. As the outcome of AHP relies on expert judgment, 
it can be susceptible to intellectual limitations arising from 
subjectivity and ambiguity.

The basic AHP uses a single number to reflect the 
decision maker’s preference for one of the options in a 
pairwise comparison. On the other hand, a concise value 
may not adequately reflect the decision maker’s point 
of view. In addition, it is time-consuming for the AHP 
approach to solicit ratings from numerous experts using its 
standard questionnaire. The evaluation matrix often contains 
inconsistencies as individuals’ subjective preferences are 
considered in pairwise comparisons (Lyu et  al. 2020). 
Considering the results of this study, flood damage to people 
and infrastructure can be prevented in the future. Although 
the AHP method for determining the relative importance 
of components has some advantages, it also has some 
disadvantages. The typical AHP approach may be sufficient 
for differentiating development opportunities in the early 
stages of the planning process.

More complex methods, on the other hand, are preferable 
when calculating the specific area of the desired growth 
region. The fuzzy method has been used for more detailed 
analysis of flood susceptibility (Radmehr and Araghinejad 
2015; Sahana and Patel 2019). The combination of AHP 
with the fuzzy method has been used for land use planning 
(Mosadeghi et  al. 2015), groundwater potential zone 
modeling (Mallick et al. 2019), and geohazard vulnerability 
assessment (Zheng et  al. 2021). It is believed that the 
AHP fuzzy method can also increase the accuracy of flood 
vulnerability mapping.

The weights of the AHP parameters are determined 
by the experience of the experts and might lead to 
potential errors. Therefore, optimization methods or 
artificial intelligence (AI) methods are required for 
objectively determining the weights of the AHP parameters. 
Hybrid AI methods and metaheuristic optimization methods 

have been used for flood vulnerability modeling (Bui 
et al. 2016). Integration of swarm optimization with deep 
learning neural networks was used for flood susceptibility 
mapping (Bui et al. 2020). Coupling an adaptive neuro-
fuzzy inference system (ANFIS) with a genetic algorithm 
and a differential evolution method was also used for flood 
susceptibility assessment (Hong et al. 2018). For future 
planning efforts, the AHP strategy needs to be used in 
conjunction with fuzzy methods, optimization methods, or 
AI methods to obtain a more accurate assessment of flood 
vulnerability in the study area. This study was a preliminary 
assessment of flood-prone areas in a watershed for which a 
standard AHP approach was used.

Recommendations

GIS-MCDA is a valuable flood risk management tool 
because it can help identify flood-prone areas, evaluate 
the effectiveness of flood control strategies, and assess 
the vulnerability of different populations to flooding. 
By providing decision makers with comprehensive 
information on the potential impacts of flooding and 
the effectiveness of various strategies, GIS-MCDA 
can support the development of effective and efficient 
flood risk management plans. In general, here are some 
suggestions for effective flood risk management based 
on previous findings and this study: (1) Identify the most 
vulnerable areas by mapping land use, population density, 
and other geospatial data. This information can be used 
to set priorities for implementing flood management 
strategies. (2) Develop a comprehensive understanding 
of the potential impacts of flooding, including potential 
loss of life, damage to infrastructure and property, 
and disruption to transportation and commerce. This 
information can be used to evaluate the effectiveness of 
various flood management strategies and prioritize actions. 
(3) Implement flood management strategies tailored to 
the specific needs of different populations, such as low-
income households or people with limited access to 
transportation. Targeted actions can help reduce flood 
risk and mitigate the impact of flooding on vulnerable 
populations. (4) Use GIS-MCDA to regularly evaluate the 
effectiveness of flood management strategies and adjust 
them as needed. This model can help ensure that resources 
are used efficiently and effectively to reduce flood risk. 
(5) Encourage collaboration among various stakeholders, 
including government agencies, community organizations, 
and private businesses, to develop and implement effective 
flood management strategies.
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Conclusions

The MCDA framework, combined with AHP approach 
applied at the watershed level, proved useful for identifying 
vulnerable zones to flood hazards in the Chennai area, India. 
For flood hazard vulnerability mapping, an assemblage of 
datasets encompassing rainfall, topography, geology, soils, 
land use, and drainage density were compiled and inserted 
into the MCDA framework for the purpose of assigning 
weights to each contributing factor in flood susceptibility 
mapping. The resulting map showed that the southern parts 
of Chennai are particularly vulnerable to flooding. The 
upstream and downstream parts of the area are often less 
susceptible to flooding. The results showed that locations 
near rivers, low elevation and slope, and high runoff density 
are particularly vulnerable due to their higher probability of 
flooding. The optimal weighting of components contributing 
to flood risk was calculated based on expert judgments and 
expertise using AHP technique. AHP method was found to 
be accurate by comparing the results with historical flood 
data and flood models. Because the technique is versatile, 
easy to use, and inexpensive, it can be realistically applied, 
especially to case studies with limited information and 
data. Despite its advantages, the traditional AHP also has 
some disadvantages. Considering the history of floods in 
the study area, the traditional AHP technique is sufficient. 
However, it is suggested to combine the AHP method with 
fuzzy methods, optimization methods, or AI methods to 
obtain more successful results for future planning. This 
study provides a preliminary flood risk prediction for local 
emergency management authorities, planners, researchers, 
and agencies interested in flood hazard management.
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