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Abstract
Dye wastewater discharged from industries has caused serious environmental problems. The recent decade has witnessed 
adsorption technology emerging as an advanced dye wastewater treatment method with great potential Therefore, we fabri-
cated two kinds of magnetic porous adsorbents (HSF and HSVF) with different specific surface areas and activity sites. Both 
of which exhibit excellent performance with remarkable dye adsorption capacities, especially HSVF. We further investigated 
their adsorption kinetic and isotherm in detail. Therein, HSVF showed a nice desorption capacity, and it could be recycled 
rapidly by magnetism, which exhibited the advantages of effective, easy operation, and low cost. In addition, their adsorp-
tion kinetic and isotherm were further studied and compared in detail. The results revealed that introducing strong active 
sites could improve both the adsorption capacity and rate effectively even though sacrificing part of specific surface areas, 
indicating that active sites might play a dominant role during the dye adsorption process.
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Introduction

Nowadays, water pollution has attracted great attention world-
wide due to the high toxicity (Karaouzas et al. 2021; Naka-
mura 2010, 430; Xie et al. 2020), and the booming variety 
of contaminants with the development of industry, such as 
spilling oil, (Jin et al. 2019), organic pesticides (Bolukbasi 
et al. 2022; Kadirsoy et al. 2020, 6524; Yola 2022), antibiotics 
(Zhang et al. 2019, 39), and dyes (Yadav et al. 2021). Aiming 
at treating these contaminants, the development of detection 
(Kıran et al. 2019, H495; Pelin Böke et al. 2020, 105012; 
Karaman et al. 2021, 11222), separation (Naushad et al. 2019, 
112075; Md. Munjur et al. 2020, 114356; Salman et al. 2023b, 
157008), and degradation (Rajendran et al. 2022) methods 
is in urgent need. Among these contaminants, organic dye 

wastewater discharged from the textile and food industry has 
led to serious health and environmental crisis (Lv et al. 2019; 
Zhang et al. 2020). In order to separate dye-polluted waste-
water efficiently, lots of separation technologies have been 
developed, including membrane separation, chemical floccu-
lation, and adsorption (Cheng et al. 2018, 258; Pavithra et al. 
2019, 1; Verma et al. 2012; Wu et al. 2022), among which 
the adsorption technologies have become very popular due 
to their low-cost, convenient, and easy operation (Islam et al. 
2021, 105849).

The adsorbent is the core of adsorption technology. Dif-
ferent compositions and structures of adsorbents could gen-
erate different interactions with dye during the adsorption 
process, such as Van der Waals’ force, electrostatic inter-
action, and π–π interaction (Teo et al. 2022, 130039), thus 
impacting the adsorption performance. In general, porous 
structure and activity sites of adsorbents are considered the 
critical structural and compositional properties that have a 
great influence on adsorption behavior (Castaldo et al. 2021, 
129463). Therefore, many inorganic porous materials were 
chosen because of their intrinsic high specific surface areas 
and designable pore structure (Cheng et al. 2011; Zhu et al. 
2016, 239; El-Safty et al. 2011). Due to the lacking of activity 
sites, organic functionalization for inorganic materials were 
attempted to remove dye (Naushad et al. 2019, 112075). In 
recent years, organic porous materials were drawn to attention 
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in the adsorption field (Su et al. 2019, 17267; Wu et al. 2021; 
Xu et al. 2022; Zhang et al. 2021; Zhao et al. 2020, 123591). 
Hypercrosslinked polystyrene (HCP) was the most common 
organic porous material and received much attention in the 
adsorption field due to its remarkable structure and functional 
designability (Waheed et al. 2021). Recently, HCP with dif-
ferent structures was prepared, such as core-shell, yolk-shell 
(Zhou et al. 2019, 2924), and polymer brush (Guojun Xie 
et al. 2018, 8624). These structures with different specific 
surface areas displayed different adsorption performances 
further. In addition to the influence of specific surface areas 
on adsorption, another key factor is how the active sites affect 
adsorption performance. Introducing active sites could gener-
ate different interactions between adsorbents and adsorbates. 
Styrene had a robust copolymerization ability so that HCP 
could be modified by diverse functional monomers (Jiang and 
Huang 2016; Li et al. 2017, 109; Shi et al. 2020). The previous 
researches have proved that high specific surface areas and 
strong interactions were beneficial for improving adsorption 
performance. However, in most cases, high specific surface 
areas and strong active sites were not available simultaneously 
for HCP because the functional modification often results in 
the decrease of the specific surface areas (Castaldo et al. 2021, 
129463; Zhao et al. 2020, 123591). Therefore, it is necessary 
for designing adsorbents to discuss the influence degree of 
specific surface areas and active sites on adsorption perfor-
mance. In addition to the adsorption performance, secondary 
pollution of adsorbents was another noteworthy challenge for 
adsorption technology. So, lots of natural polymeric adsor-
bents were developed, such as chitosan (Salman et al. 2023b, 
157008), rice flour, graham flour (Md. Munjur et al. 2020, 
114356; Kubra et al. 2021b, 115541), turmeric powder (Kubra 
et al. 2021a, 115468), and wheat flour (Hasan et al. 2021, 
114587); these materials were innocuous and biodegradable 
(Yeamin et al. 2021, 125920). Besides, collecting adsorbents 
from the water was another key factor to reduce secondary 
pollution. Designing magnetic adsorbents could be an effec-
tive and facile method to collect adsorbents fleetly for further 
processing (Chen et al. 2020; Essandoh et al. 2020; Zhang 
et al. 2013). Therefore, combining the great designability 
of HCP and magnetic Fe3O4, the porous polymer magnetic 
adsorbents not only had a nice adsorption performance but 
also could be recycled easily when compared to other com-
posite materials.

Herein, two kinds of magnetic porous Fe3O4/HCP hybrid 
microparticles (HSF and HSVF) with different specific sur-
face areas and active sites were obtained by mature mini-
emulsion polymerization and Friedel-Crafts reaction. After 
that, sunset yellow (SY) which may cause lots of health 
crises was regarded as a model dye (Coros et al. 2020) to 
explore their different adsorption performances and mecha-
nisms affected by specific surface areas and active sites. The 
result revealed that both adsorption rates and capacity could 

be improved observably after introducing 10% of the molar 
fraction of strong positive active sites even though about 
30% of specific surface areas were sacrificed. So, it could be 
concluded that active sites played a dominant role during the 
dye adsorption process. Meanwhile, the adsorbent could be 
recycled by magnetism, which certified that it was an effec-
tive method to reduce secondary pollution.

Materials and methods

Materials

Styrene (St), 4-vinylpyridine (4VP), divinylbenzene (DVB), 
sodium dodecyl sulfate (SDS), anhydrous ferric chloride 
(FeCl3), ferrous sulfate heptahydrate (FeSO4•7H2O), rho-
damine B (RhB), and methyl blue (MB) were purchased 
from Aladdin Biochemistry Co. Ltd. St, 4VP, and DVB were 
filtered through the alkaline alumina column to remove the 
inhibitor for further use. Potassium persulfate (KPS) was 
purchased from Meryer Co. Ltd. and was recrystallized from 
water. 1,2-dichloroethane (DCE), ammonia (NH3•H2O), 
oleic acid (OA), dimethoxymethane (FDA), and N-hexa-
decane (HD) were purchased from Macklin Co. Ltd., and 
DCE was dried over CaH2 and distilled before use. Sunset 
yellow (SY) was purchased from Beijing Warwick Chemical 
Co. Ltd. Except for the indication, other reagents were used 
without further purification.

Synthesis of porous adsorbent

Firstly, the OA-coated Fe3O4 (OA-Fe3O4) nanoparticle was 
synthesized by a facile coprecipitation method (the details 
were given in the supporting information). Then the hybrid 
microparticle was prepared through mini-emulsion polym-
erization. OA-Fe3O4 (1.5 g) was separated from water by 
the magnet and redispersed into a mixture of St (5 g, 48.1 
mmol), DVB (0.5 g), and HD (0.15 g) under ultrasonication 
as the oil phase of the following mini-emulsion polymeri-
zation. SDS (0.25 g) was dissolved in water (50 mL) as the 
water phase. Then the oil phase was added dropwise to the 
water phase under mechanical stirring (500 rpm) for 30 min 
to form a raw emulsion. After that, the system was homog-
enized by ultrasonication under ice-cooling for 20 min at 
225 W. The obtained emulsion was heated to 70°C, and KPS 
(0.05 g) was dissolved in 10 mL water and then joined to 
initiate the reaction. After 24 h, the hybrid microparticle 
(named SF) was collected by centrifugation at 8000 rpm 
for 15 min. For the functional microparticle (named SVF), 
0.5 g of St (4.81 mmol) was replaced with 0.5 g of 4VP 
(4.76 mmol), and then the same reaction was conducted. 
The target product, Fe3O4-incorporated magnetic microparti-
cles, could be collected and purified by magnetism; thus, the 
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polymeric by-product, microparticles without Fe3O4, could 
be removed conveniently.

The hypercrosslinked network was conducted by referring 
to the previous literature (Li et al. 2013; Li et al. 2016). The 
details were as the following: SF or SVF (0.5 g) was dis-
persed in DCE (20 mL) for 5 h to swell adequately under N2 
atmosphere, and then FDA (2 mL) and FeCl3 (3.65 g) were 
added into the mixture at 45°C for 5 h. Next, the Friedel-
Crafts reaction was heated at 80°C for 19 h. The resulting 
porous adsorbent was filtered and washed with methanol. 
After being washed in a Soxhlet with methanol for 24 h, 
the adsorbent was dried in a vacuum oven at 60°C for 24 
h. The obtained materials are denoted as HSF and HSVF, 
and the preparation procedures and the schematic structure 
of adsorbents are illustrated in the supporting information 
Scheme S1.

Characterization

The structure data of Fe3O4 was recorded by X-ray diffraction 
(XRD, D/max2550VB/PC). Fourier transform infrared (FT-IR) 
spectra were investigated by a Nicolet FTIR 5700 spectrometer. 
The morphology of the hybrid microparticle was observed by 
transmission electron microscope (TEM, JEOL JEM-2100). 
Hydrodynamic diameter (Dh) obtained via dynamic light scat-
tering (DLS) and zeta potential of adsorbents were measured 
on Malvern Zetasizer Nano ZS90. The specific surface area 
and porous structure of adsorbents were measured by nitrogen 
adsorption-desorption analysis (Micromeritics ASAP2460). The 
chemical composition of the SY and adsorbents after adsorp-
tion was obtained by X-ray photoelectron spectroscopy (Thermo 
Scientific ESCALAB 250Xi).

Batch adsorption experiments

The batch adsorption experiments were conducted in a con-
stant temperature rocker rotator at different concentrations, 
times, temperatures, pH, and the solid-to-liquid ratios. The 
concentrations of the dye solutions after adsorption were 
determined by UV-vis spectrophotometer (UV-2450/2550, 
Shimadzu). Then the adsorption capacity was calculated by 
the following equations:

(1)qt =

(

C
0
− Ct

)

× V

m

(2)qe =

(

C
0
− Ce

)

× V

m

(3)RE =
C
0
− Ce

C
0

× 100%

where C0 (mg/L), Ct (mg/L), Ce (mg/L), and Cd (mg/L) were 
the initial, time t, equilibrium, and desorption concentrations 
of SY solutions, respectively. qt (mg/g) and qe (mg/g) repre-
sent the adsorption capacity at time t and equilibrium. V and 
m were the volume of dye solution and mass of adsorbent. 
RE (%) was the dye removal efficiency. qd (mg/g) was the 
desorption capacity of each recycle. DE (%) represents the 
desorption efficiency, and qr (mg/g) was the residual adsorp-
tion capacity after desorption each time.

Adsorption selectivity experiments were conducted at 
298 K, pH = 2, and the mixing dye solutions were prepared 
by mixing the same volume of 200 mg/L of a single dye 
solution.

According to the batch adsorption experiments, the 
adsorption kinetics, isotherms, and adsorption mechanisms 
were investigated further.

Results and discussion

Synthesis and characterization of adsorbents

The Fe3O4 nanoparticle was prepared and modified by OA 
successfully (Figure S1). As for the hybrid microparticle, 
obvious cladding structures have appeared (Fig. 1a, b and 
Figure S2), and the hydrodynamic diameter of the hybrid 
microparticle was about 78.8 nm measured by DLS. Fur-
thermore, according to the FT-IR spectrogram (Fig. 1c), the 
peaks at 2923 cm−1 and 3024 cm−1 were from stretching 
vibration of saturated and unsaturated C-H respectively, 
which demonstrated the successful preparation of SF. 
Besides, the characteristic peak at 1412 cm−1 was observed 
on the curve of SVF on account of the stretching vibration 
of the C=N bond from the pyridine ring.

The zeta potentials of these two adsorbents were 
researched (Fig. 1d). The general trend of the potentials 
of both HSF and HSVF decreased with the increase of 
pH values. The zeta potentials were positive at low pH 
and dropped to negative at higher pH values. When pH 
= 2, H+ was adsorbed on the surface of HSF easily in 
such strong acid aqueous; therefore, HSF showed a posi-
tive value (8.12 mV). With the increase in pH value, the 
concentration of H+ decreased, and when the aqueous 
solution became basic, the surface of HSF was occupied 

(4)qd =
Cd × V

m

(5)DE =
qd

qe
× 100%

(6)qr = qe − qd



97150	 Environmental Science and Pollution Research (2023) 30:97147–97159

1 3

by more OH−, resulting in its potential decrease. As for 
HSVF, in addition to the adsorption of H+ on the surface, 
its pyridine structure could be protonated, leading to a 
much higher positive potential than that of HSF at pH = 2. 
This also resulted in the higher potential values of HSVF 
than that of HSF at each pH across the entire pH range. 
When the pH value increased, deprotonation of the pyri-
dine ring also contributed to the decrease of the potential.

For adsorbents, their specific surface area and porous 
structure were studied by N2 adsorption-desorption analy-
sis (Fig. 1e). From the curves, before hypercrosslinking, 
SF did not present the capacity of N2 adsorption, while 
HSF had rapid N2 adsorption at low relative pressure 
which demonstrated the existence of micropores in HSF. 
Furthermore, obvious hysteresis loops appeared on the 
curves of HSVF, but the hysteresis loops of HSF were 
almost suppressed revealing that adsorbent HSVF had a 
more mesoporous structure. According to Fig. 1f and g, 
the pores in HSF were micropores mainly, but there were 
more mesopores and macropores in HSVF so its specific 
surface area decreased by about 30% compared with that of 
HSF after substituting 10% molar fraction of St with 4VP.

When part of St was replaced by 4VP, the reactive sites 
were reduced for Friedel-Crafts reaction due to the strong 
polarity of the pyridine rings. In addition, the introduction 
of the pyridine rings to the molecular chain resulted in the 

increase of the distance between the benzene rings, so it 
was more difficult for HSVF to form micropores than HSF. 
The detailed information about the specific surface areas is 
listed in Table 1.

Adsorption behavior of HSF and HSVF

The whole adsorption process is present in Fig. 2a. On 
account of the existence of Fe3O4, the extra merits clearly 
that the adsorbent could be facilely recycled by magnetic 
separation to avoid secondary pollution. There were lots 
of factors to affect the adsorption behavior of adsorbents. 
Firstly, pH had great influences on the existence of forms 
of contaminants (Hasan et al. 2023c, 134795) or adsorbents 
(Liu et al. 2021) and then affected the adsorption behaviors. 
Figure 2b indicates that the adsorption capacity of these two 

Fig. 1   a, b TEM images and hydrodynamic diameter (measured by DLS) of a SF and b SVF, c the FT-IR spectra of SF and SVF, d zeta poten-
tials of HSF and HSVF, N2 adsorption and desorption curves of SF, HSF, and HSVF, f, g the pore size curves of f HSF and g HSVF

Table 1   Summary of the specific surface area of HSVF and HSF

a BET specific surface area of adsorbents; bt-plot micropore area of 
adsorbents; cpore volume calculated from the nitrogen isotherm

Adsorbent SBET
a

m2/g
Smb

m2/g
PVc

cm3/g

HSF 685.95 343.43 1.0058
HSVF 471.88 201.42 0.4593
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adsorbents was reduced by the increase in pH values. This 
was because SY was a kind of anionic dye stabilizing in an 
acid solution (its composition and structure are illustrated in 
Figure S3), its negative potential would make it diffuse into 
adsorbents easier because of the positive surface potential of 
adsorbents in the strong acid environment. What’s more, the 
pyridine structure in HSVF could be protonated and produce 
strong electrostatic attraction with the sulfonate of SY mol-
ecule, making the incorporation stabler. With the increase 
in pH, the nanoparticle surface potential transformed from 
positive to negative; thus, electrostatic-interaction-caused 
dye diffusion would be limited by the resulting electrostatic 

repulsion, and then the diffusion depended only on concen-
tration gradient.

The solid-to-liquid was another important condition for 
the removal operation. From Fig. 2e, the removal efficiencies 
of HSVF and HSF reached the maximum when the ratio was 
1 g/L, increasing the ratio would even make the efficiencies 
descend slightly. As for HSVF, nearly all of the dye mol-
ecule was adsorbed at 1 g/L, increasing the ratio might lead 
adsorbents to agglomerate because of the hydrophobicity, a 
corresponding increase in the diffusion path length further 
(Zou et al. 2013, 111). And the similar tendency occurred for 
HSF even though it did not reach saturation at 1g/L; it might 

Fig. 2   a Photographs of adsorption and magnetic separation pro-
cesses, b the influence of pH on adsorption capacity qe, e the influ-
ence of solid-to-liquid ratios on removal efficiencies at 100 mg/L, d, 

e the influence of dye solution initial concentration on c HSVF and d 
HSF adsorption capacity qe and removal efficiency RE 
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be caused by the low concentration gradient apart from the 
hydrophobicity.

Furthermore, the effect of initial concentration on dye 
adsorption was studied (Fig. 2d and e). For both of them, 
their adsorption capacity (qe) enhanced with the increase 
in dye initial concentration and reached equilibrium at last. 
This could be explained that with the increase of initial 
concentration, a higher concentration gradient was gener-
ated, and dye molecules could diffuse into the pores of the 
adsorbent easier; therefore, the probability of adsorption was 
higher, and the qe could be improved. However, when all the 
adsorption sites were occupied entirely by dye molecules, 
the adsorption capacity reached equilibrium. As for HSF, 
its removal efficiencies for SY solution decreased with the 
increase of initial concentration because of a disproportion-
ate increase in the SY concentration versus the adsorbed SY 
molecules. When concentration rose from 500 to 800 mg/L, 
adsorption capacity almost achieve equilibrium, increasing 
concentration constantly result in a decline in the removal 
efficiency (Tang et al. 2021). Noticeably, the removal effi-
ciency of HSF toward SY increased as the initial dye con-
centration rose from 100 to 200 mg/L and then decreased 
at a higher initial concentration. It could be stated that the 
HSF relied on concentration gradient more compared with 
HSVF; when the initial dye concentration rose to 200 mg/L, 

its adsorption capacity increased greatly so that its removal 
efficiency had an obvious increment.

To further confirm the electrostatic attraction between 
HSVF and SY, the two kinds of adsorbents after adsorption 
at pH = 2 were characterized by XPS. As shown in Fig. 3b, 
the N 1S peak belonging to the azo structure of SY molecu-
lar was at 400.2eV; it also appeared in Fig. 3c and d. There 
was a peak at 402.3eV in HSVF which was attributed to the 
protonation of pyridine (Muglali et al. 2011) (Fig. 3d); the 
strong electrostatic attraction could generate between HSVF 
and SY, but there was no obvious change in HSF.

Study of adsorption kinetic

Investigation of the kinetic process could provide lots of 
information about adsorption systems. HSVF and HSF were 
tested at initial concentrations of 200 mg/L and 100 mg/L 
respectively. From Fig. 4a and b, HSVF and HSF reached 
equilibrium at about 12 h and 6 h. The adsorption rates 
of them exhibited tendencies to go fast and then slow; it 
could be explained that the adsorption capacity was extreme 
because of the sufficient adsorption sites and a high con-
centration gradient at the initial of the adsorption process 
(Hasan et al. 2023b, 131794; Awual et al. 2023, 124088). 
Compared to other nonporous adsorbents, their porous 

Fig. 3   a XPS spectra of HSF 
and HSVF, b N 1s core-level 
spectra of SY, c HSF after 
adsorption, and d HSVF after 
adsorption
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structure endows them with higher adsorption capacity; thus, 
their equilibrium time was always longer than nonporous 
analogues (Tang et al. 2021; Tran et al. 2017). Furthermore, 
the pseudo-first-order model (PFO) and the pseudo-second-
order model (PSO) were used to fit the whole adsorption 
process and investigate the adsorption mechanism. In gen-
eral, the adsorption process could be divided into three 
stages: (1) liquid film diffusion (external diffusion), (2) 
internal diffusion, and (3) adsorption on active sites. Stage 
(3) occurred very quickly, so stages (2) and (3) could be 
regarded as occurring simultaneously (Wang and Guo 2020). 
The fitting results displayed that PSO was the better model 
for both of them, which indicated that there was chemisorp-
tion for HSVF and HSF during the adsorption processes 
(Arabkhani and Asfaram 2020).

Generally speaking, as long existed electron transfer or 
electron pair sharing in the adsorption process, it would be 
considered chemisorption (Tran et al. 2017). On the one hand, 
the pyridine structure in HSVF could be protonated and pro-
duce strong electrostatic attraction with the sulfonate of the 
SY molecule, and a hydrogen bond could be formed between 
the phenolic hydroxy of SY and the pyridine group (Urakawa 
and Yasue 2019). Besides, π–π stacking could be also gener-
ated in the hydrophobic skeleton (Li et al. 2021, 105018). 
On the other hand, a high chemical potential generated by 
electrostatic interaction and concentration gradient made dif-
fusion easier, whether external diffusion or internal diffusion.

As for HSF, its aromatic group was electron-rich because 
of the C-C backbone, and the aromatic group of SY was 
electron-deficient due to the strong polar group, so the main 
interaction between SY and HSF was only π–π stacking 
(Tran et al. 2017). Therefore, the interactions between dyes 
and HSF were weaker than that between dyes and HSVF.

Furthermore, the intra-particle diffusion model was used 
to investigate the different stages of adsorption (Fig. 4c and 
d). The detailed fitting data is listed in Table S1. The whole 
adsorption process could be divided into three stages. In the 
first stage, SY molecules diffused through the liquid film; in 
the second stage, the dye molecules diffused into the pores 
of the adsorbent and produced the interaction with the active 
sites at the same time, and in the last stage, the adsorption 
tended to equilibrium. During the diffusion process, the Kp 
value of HSVF was always higher than HSF because of the 
higher chemical potential. Besides, the pore diameter of 
HSVF was larger than HSF so the influence of sterically 
hindered effect was reduced during the internal diffusion. 
However, HSVF needed a longer equilibrium time than HSF 
because the relatively sufficient adsorption sites needed to 
be occupied for adsorbate at a higher initial concentration 
(Chen et al. 2020; Fila et al. 2022, 137245; Zhang et al. 
2022, 133604). When decreasing the initial concentration 
to 100 mg/L for HSVF (Figure S4), its equilibrium time was 
shorter even though HSF had a higher specific surface area 
which could provide more contact probability. This could be 

Fig. 4   a, b Adsorption kinetic 
curves of HSVF and HSF fitted 
with PFO (pseudo-first-order-
model, red curves) and PSO 
(pseudo-second-order-model, 
azure dashed curves), and c, d 
intra-particle diffusion model of 
HSVF and HSF
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explained that HSVF had a higher chemical potential for SY 
diffusion resulting from the strong electrostatic interaction at 
the same initial concentration; meanwhile, adsorbates might 
be more likely to be adsorbed on HSVF due to various inter-
actions. What’s more, the weak interaction for HSF might 
lead to desorption easier because the whole adsorption was 
a dynamic adsorption-desorption process.

Study of adsorption isotherm

Adsorption isotherm was the relationship between Ce and 
qe at a certain temperature. In this study, the isotherms of 
HSVF and HSF at 298 K, 308 K, and 318 K were investi-
gated, respectively, and Freundlich, Langmuir, and Temkin 
models were used to fit the isotherm dates, respectively. The 
detailed fitting dates are listed in Table S2 and Table S3. 
Generally, both HSVF and HSF preferred to work at low 
temperature, which illustrated that the adsorption processes 
were exothermic. As was clearly observed in Fig. 5a, b, and 
c, the Langmuir model had better fitting results than the 
other two models for HSVF at each temperature. What’s 
more, the maximal adsorption capacity of the Langmuir 
model was 343.90 mg/g, which was close to the experimen-
tal values (qe = 331.37 mg/g). This declared that the adsorp-
tion on the HSVF was monolayer adsorption, and active 
sites were distributed uniformly on the surface of HSVF 
(Hasan et al. 2023b, 131794). Meanwhile, the separation 
factors of Langmuir model RL values of each temperature 

were between 0 and 1; thereby, this process was a favorable 
adsorption (Essandoh et al. 2020). Temkin models were suit-
able for HSF at each temperature and demonstrated that the 
chemical adsorption positively participated in the adsorption 
process (Guo et al. 2014, 3081). This result was consist-
ent with the kinetic experiment. In addition, the maximal 
adsorption capacity of HSVF (331.37 mg/g) was greater 
than HSF (203.92 mg/g) even though HSF had larger spe-
cific surface areas. It could be stated that introducing strong 
interactions with adsorbates could provide better adsorp-
tion performances, because the strong interactions may be 
favorable for a stable incorporation mechanism between 
adsorbents and adsorbates (Hasan et al. 2023a, 121125; 
Salman et al. 2023a, 135259) and improve the adsorption 
capacity effectively even though high specific surface areas 
could supply more nanospace (Fu et al. 2022, 8784).

Study of adsorption selectivity

The study of adsorption selectivity for different dye mol-
ecules was meaningful for understanding the adsorption 
mechanism. Therefore, the anionic SY solution was mixed 
with cationic rhodamine B (RhB) and another anionic 
methyl blue (MB) for separation testing respectively. In the 
SY/RhB-mixed dye solution (Fig. 6a), not only the SY dye 
but also the cationic RhB were removed effectively by HSVF 
simultaneously. It could be explained that the adsorption of 
dye molecules by HSVF depends on various interactions. 

Fig. 5   Isothermal model fitting curves at different temperatures of (a–c) HSVF and (d–f) HSF
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Although there was no electrostatic attraction due to the 
same charge, the cationic RhB could be adsorbed by π–π 
stacking and hydrogen bond by HSVF. As for HSF, it could 
also generate adsorption capacity for anionic and cationic 
dye in the mixture solution, but the adsorption capacity for 
RhB was higher than it for SY obviously; the reason might 
be that the cationic dye molecules tend to aggregate in the 
protic polar solvents (Sarkar et al. 2008); therefore, the RhB 
was easy to be adsorbed in abundance. In Fig. 6b, the molec-
ular weight of the dye did not have an obvious influence 
on adsorption selectivity, the concentrations of SY and MB 
were decreased, and the adsorption sites were occupied by 
SY and MB simultaneously. The great adsorption selectivity 
always came from the unique interactions between adsor-
bents and adsorbates (Kubra et al. 2023, 131415; Shahat 
et al. 2015, 286); as for SY and MB, they had similar inter-
actions with adsorbents by sulfonate groups and aromatic 
rings; therefore, the adsorption selectivity was not obvious. 
But the adsorption performance of HSVF was better than 
that of HSF. Therefore, it could be concluded that a nice 
adsorption performance for both cationic and anionic dye 
could be realized which relies on various interactions, while 
more interactions also provided better adsorption capacity. 

HSVF could be a promising adsorbent for the multifarious 
dye wastewater treatment with great potential.

Study of desorption mechanism

The desorption capacity of HSVF and HSF was investigated 
with 1 M NaOH as a desorption solution. From Fig. 7a, the 
desorption efficiency of HSVF was increased gradually and 
tended to balance at last, but the HSF showed an opposite 
trend. This could be explained that the NaOH solution would 
change the surface potential of the adsorbent and destroy the 
interaction between the adsorbent and SY molecules. The 
strong electrostatic attraction was the dominating interac-
tion between HSVF and SY; it could be influenced greatly 
by NaOH, so the desorption efficiency of HSVF could reach 
85.49% after serval times of desorption. As for HSF, there 
was no strong electrostatic attraction between HSF and SY. 
Therefore, less desorption of SY molecules could happen. 
This result reflected the different electrostatic interactions of 
HSVF and HSF with SY. What’s more, the balance residual 
adsorption capacities of HSVF and HSF (Fig. 7b) were 5.21 
mg/g and 10.76 mg/g respectively; this ratio was in accord-
ance with their pore volume, so it could be inferred that the 

Fig. 6   a The UV-vis spectra 
of SY/RhB mixture solution 
before and after adsorption, b 
the UV-vis spectra of SY/MB 
mixture solution before and 
after adsorption

Fig. 7   a Desorption efficiency 
of HSVF and HSF, b residual 
adsorption capacity of HSVF 
and HSF
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molecules which were hard to be desorbed were anchored 
in the pore of adsorbent by steric hindrance. HSVF had a 
nice desorption capacity so that it could be reused easily by 
combing the magnetism. Besides, it was composed of St, 
4VP, and Fe3O4, which were all at low cost. So HSVF could 
be an effective, practical, and economic adsorbent.

Conclusions

In this study, two kinds of magnetic adsorbents HSF and 
HSVF were synthesized facilely, and their different adsorp-
tion behaviors, kinetic, isotherm, selectivity, and desorption 
behaviors were thoroughly studied. The hybridization with 
Fe3O4 showed a great character of easy operation, which was 
meaningful to control secondary pollution. In the adsorption 
experiments, low pH values (pH = 2), low temperature (298 
K), and modest solid-to-liquid ratio (1 g/L) were the opti-
mum removal condition. The adsorption experimental result 
showed nice adsorption capacities for SY (203.92 mg/g and 
331.37 mg/g); the comparison with other studies is shown 
in Table 2. What’s more, the adsorption rate and capacity 
were improved for HSVF compared with HSF because of 
the existence of stronger active sites even if it has a lower 
specific surface area. This reflected that the strong interac-
tions between the active sites and dyes played a dominant 
role during the dye adsorption process. In addition, both 
HSVF and HSF showed universal adsorption performances 
for both anionic and cationic dyes, and the unique interaction 
between adsorbents and adsorbates might be a key factor 
for great selectivity. Therefore, it could be concluded that 
introducing strong active sites was an effective method to 
improve adsorption performances. This research conduces 
to understand the adsorption process in porous adsorbent 
system, which could provide some references for the design 
of future porous adsorbents.
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