
Vol.:(0123456789)1 3

Environmental Science and Pollution Research (2023) 30:95493–95506 
https://doi.org/10.1007/s11356-023-29082-8

RESEARCH ARTICLE

Enhanced arsenite removal in aqueous with Fe‑Ce‑Cu ternary oxide 
nanoparticle

Ying Liu1 · Leyi Li1 · Xuemei Huang1 · Yaochi Liu1 

Received: 6 January 2023 / Accepted: 27 July 2023 / Published online: 8 August 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Arsenite is both more harmful and challenging to get out of water than arsenate. For enhanced As (III) removal, a ternary 
oxide nanoparticle (FCCTO) mainly composed of iron(Fe), with a small proportion of cerium(Ce) and copper(Cu) was cre-
ated using a coprecipitation–calcination process. FCCTO was found to be effective in removing As (III) from water, with 
factors such as adsorbent dose, pH, temperature, and coexisting anions influencing its efficiency. The surface area of FCCTO 
reached 180.2  m2/g and the doping significantly increased its pore volume and diameter. The adsorption process on FCCTO 
was endothermic and spontaneous. Ce and Cu in FCCTO were able to efficiently oxidize 81.3% As (III) to As(V). Abundant 
sites were provided by surface hydroxyl groups for arsenic adsorption. The maximal As(III) adsorption capacity of this 
adsorbent under the synergistic impact of oxidation and adsorption was 101.5 mg/g. After five cycles, the FCCTO’s As(III) 
adsorption rate dropped to 60% as a result of tetravalent Ce consumption. Surface complexation, redox, and adsorption all 
had a significant impact on the adsorption process. Overall, FCCTO was an excellent adsorbent with benefits of being facile 
fabrication, environmentally, recyclable, and having a high As(III) adsorption capacity.
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Introduction

Arsenic (As) contamination mainly caused by geologic arse-
nic cycling and anthropogenic activities including pesticide 
applications, mining, and geothermal energy, and is critical 
concerned due to its carcinogenicity and high harmfulness 
(Masuda 2018). Trivalent As(III) and pentavalent As(V) 
are the two primary types of arsenic that are present in the 
environment (Ayub et al. 2022). As(III) is more prevalent in 
waterbodies than As(V) and is more hazardous because of 
its high mobility. The maximum allowed level of arsenic in 
drinking water has been set by the World Health Organiza-
tion (WHO) as 10μg  L−1 (WHO 2010).

Arsenic can be removed from water using a variety of 
technologies, including coagulation sedimentation (Lin 
et al. 2015), ion exchange (Koseoglu et al. 2011), adsorption 

(Sherlala et al. 2019; Ayub et al. 2020), membrane sepa-
ration (Çermikli et al. 2020), electrolysis (Nanseu-Njiki 
et al. 2007), and biochemical methods (Song et al. 2014). 
Sorption is a high efficiency, simple, and convenient arse-
nic treatment method. Metal oxide–based adsorbents had 
extensively employed to extract arsenic from water owing to 
the large number of surface functional groups (Gupta et al. 
2021; Luo et al. 2012; Yoon et al. 2016; Luo et al. 2013), but 
arsenite is difficult to attach onto metal oxide through elec-
trostatic interaction and its removal commonly needs oxida-
tion pretreatment by chlorine (Sorlini and Gialdini 2010), 
hydrogen peroxide (Shan et al. 2022), or ozone (Kim and 
Nriagu 2000). Adding oxidants (Dodd et al. 2006) or assist-
ing photocatalytic oxidation (Zhang et al. 2018) can realize 
the high efficiency removal of As(III); however, the process 
becomes complex. It is significant to develop materials with 
both adsorption and As(III) oxidation.

Metal oxide, especially iron (hydr)oxide and its modified 
materials, are environmentally friendly adsorbents and have 
significant affinity and good stability for arsenic. The com-
mercialized granulated ferric hydroxide (GFH) (Zhang et al. 
2010) has been used for As(III) removal under auxiliary 
oxidation (Siddiqui and Chaudhry 2017). Binary or ternary 
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oxides with dual effects of oxidation and adsorption (Han 
et al. 2022) have also been applied to arsenic removal, such 
as Fe-Mn (Zhang et al. 2007), Ce-Mn (Chen et al. 2018), 
Fe-Cu binary oxide (Wang et al. 2022), and Fe-Mn-Cu ter-
nary oxide (Wu et al. 2021). Multi oxides containing man-
ganese oxide has excellent arsenic oxidation performance, 
but it may lead to manganese pollution in acidic environ-
ments (Li et al. 2012; Yin et al. 2020). The investigation 
about Fe-Mn-Cu ternary oxide found that the addition of 
copper activated the redox effect of manganese oxide and 
greatly improved the removal performance. Copper oxides 
can exert fine oxygen exchange performance through the oxi-
dation–reduction cycle of Cu(II)/Cu(I) (Huang et al. 2018).

Optimizing the mixture of multi-component oxides is 
required to provide an affordable, ecologically friendly 
adsorbent. Cerium oxide–containing adsorbents have 
strong catalytic oxidation performance and specific affin-
ity with arsenic (Li et al. 2021; Hoang et al. 2022). Ceria 
anchored on carbon nanotubes (Peng et al. 2005), cerium 
oxide nanoparticles loaded into silicon (Sun et al. 2012), 
and  CeO2–ZrO2 nanospheres (Xu et  al. 2013) showed 
excellent As(V) adsorption performance. Chitosan treated 
with cerium displayed performance for rapid oxidation and 
As(III) adsorption (Zhang et al. 2016). Fe-Ce oxide adsor-
bent (Fe/Ce=1:1.1) demonstrated significant As(V) and 
As(III) adsorption capacities (Zhang et al. 2003; Basu et al. 
2013). The combination of copper and cerium oxides also 
showed high catalytic oxidation performance (Moretti et al. 
2015). It is possible to predict that Fe-Ce-Cu ternary oxide 
will remove As(III) more effectively than Fe-Mn-Cu ternary 
oxide. At the same time, the problem of manganese leakage 
in the adsorbent containing manganese oxides is avoided.

Thus, a Fe-Ce-Cu ternary oxide (FCCTO) nanoparticle 
mainly composed of iron oxides was prepared by doping a 
small proportion of cerium and copper. Batch adsorption 
studies were used to examine the impacts of the adsorbent 
dose, initial pH value, reaction time, initial concentration, 
and adsorption temperature on the adsorption capacities 
of FCCTO. The mechanism of interaction between As(III) 
and FCCTO was discussed through the study of adsorption 
kinetics, isotherm, and thermodynamics.

Material and methods

Material and chemicals

Chemical reagents, such as Fe(NO3)3·7H2O and  NaAsO2, 
were acquired from Sinopharm Chemical Reagent Co. 
Ce(NO3)3·6H2O and NaOH were purchased in Macklin, and 
 CuSO4·5H2O was purchased from Kermel Chemical Rea-
gent Co. Ltd. (Tianjin, China), all of which were analytical 
grade. Purified deionized water was used during the solution 

preparation and equipment cleaning process. In order to 
make As(III) stock solution,  NaAsO2 was dissolved in Milli-
Q water. The necessary concentration was freshly attained 
by fractionally dilution with deionized water.

Preparation of adsorbents

Fe-Ce-Cu ternary oxide (FCCTO) was fabricated via copre-
cipitation–calcination process. 0.3mol/L Fe(NO3)3·7H2O, 
0.08mol/L Ce(NO3)3·6H2O, and 0.05mol/L  CuSO4·5H2O 
were dissolved in distilled water respectively, then mixed 
them slowly in one breaker. The combined solution was 
heated in a water bath at 40°C during 30 min of stirring. 
A 0.1mol/L NaOH solution was employed to raise pH of 
the solution to 11, then stirred for 2h. After aged for 12 
h, the precipitate was subsequently washed with Milli-Q 
water and finally vacuum dried at 353 K overnight. After 
being calcined in air at 473 K for 2 h, the obtained Fe-Ce-Cu 
ternary oxide was stored in desiccators for use. According 
to the above preparation process, Fe oxide (FO) and Fe-Ce 
binary oxide (FCBO) were prepared without Ce-Cu and Cu, 
respectively.

Characterization methods

The microscopic structures of adsorbents were measured 
using scanning electron microscopy measurement (FEG 250, 
FEI-Quanta, USA). A multilayer surface area and porosity 
analyzer (ASAP2460, USA) employing the BET technique 
was utilized to determine the particular surface area and pore 
characteristics of the adsorbents. The KBr disk method was 
used on a Fourier transform infrared spectrometer (Nico-
let iS20, USA) to record the surface functional groups of 
FCCTO. X-ray photoelectron spectroscopy (XPS) studies 
performed utilizing XPS microprobe (K-Alpha, Thermo Sci-
entific, USA) to investigate the surface chemistry. XRD pat-
tern observed by an X-ray diffractometer (Ultima IV, Japan) 
with Cu (Kα) radiation.

Adsorption and desorption experiments

A fixed weight of adsorbent (16mg) was used in 50-mL 
Erlenmeyer flasks for batch adsorption tests. The flasks were 
shaken at the design temperature (298K) for 12 h at a shak-
ing speed of 150 rpm in a thermostatic shaker (SHZ-82, 
China), after which the supernatant was put through a 0.45-
μm membrane filter. An inductively coupled plasma atomic 
emission spectroscopy (ICP-OES) was used to determine the 
portion of As(III) in the filtered solution.

The effects of different FCCTO dosages (0.1 to 1.5 g/L) 
on the adsorption capability and removal efficiency of 
As(III) were investigated to obtain the optimum dosage. By 
adjusting pH from 3.0 to 11.0, the effects of pH on removal 
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capacity were examined. The 0.1 mol/L HCl and 0.1 mol/L 
NaOH solutions were added to the starting solution until the 
set pH value was achieved. A batch adsorption experiment 
examining the effects of temperature was adjusted to 298, 
308, and 318 K. The adsorption kinetics were investigated 
by varying the contact time and measuring the solution con-
centration at intervals. The intervals for measurement were 
set at 5, 10, 30, 60, and 120 min.

With concentration values varying from 0.1 to 10 
mmol/L, the impacts of coexisting anions  (SO4

2−,  Cl− , 
 CO3

2−,  PO4
3−, and  SiO3

2−) on As(III) sorption were also 
investigated. Five sequential cycles of sorption and desorp-
tion experiments were conducted to synthesized FCCTO’s 
reusability. For the sorption test, 40 mL of 20 mg/L As(III) 
solution was added to a 50-mL conical flask with 16 mg 
of FCCTO. After shaken at 298 K, 150 r/min for 12 h, the 
adsorbents were collected, washed, and dried. For the des-
orption test, 0.5 mol/L NaOH solution was used as desorp-
tion agent. The adsorbed oxide was added to 40 mL NaOH 
solution and shaken at 298 K for 12 h. Determined the 
As(III) concentration and collected the regenerated oxide, 
washed with deionized water, and dried overnight in a vac-
uum drying oven at 353 K.

According to the following equation, the removal effi-
ciency E% and adsorption capacity Qe (mg/g) of As(III) on 
FCCTO were obtained:

where Co and Ce are the As(III) starting and the equilibrium 
concentrations (mg/L), respectively. m is the adsorbent’s 
weight (g) and V is the volume of solution (L).

Adsorption modeling

The pseudo-first order and pseudo-second order model equa-
tions were expressed as follows:

where Qe and Qt (mg/g) are the adsorption capacities of 
As(III) adsorbed onto FCCTO at equilibrium and time t; k1 
(1/min) and k2 (g/(mg min)) are the pseudo-first-order and 
pseudo-second-order rate constants, respectively.

The Weber and Morris theory–based intra-parti-
cle diffusion model (Eq. 5) was applied to evaluate the 

(1)E% =
(Co − Ce)

Co
× 100%

(2)Qe =
(Co − Ce) × V

m

(3)ln
(

Qe − Qt

)

= lnQe − k1t

(4)
t

Qt

=
1

k2Qe
2
+

1

Qe

t

rate-controlling stage of the adsorption course (Chen et al. 
2016).

where kpi is the rate constant of stage i and Ci is the constant 
derived from the intercept.

The Langmuir, Freundlich, Tempkin, and D-R kinetic 
models equations were expressed as follows:

where Qe (mg/g) and Qm (mg/g) are the saturation and maxi-
mal quantities of As(III) adsorbed. Ce (mg/L) is the equilib-
rium content in solution samples. The Kf (mg/g(L/mg)1/n) 
and n are the Freundlich constants and b (L/mg) represents 
the Langmuir constants. AT (L/ mg) is the maximal binding 
energy constant. BT is equal to RT divided by bT, where bT 
(J/mol) is the Tempkin constant linked to the adsorbed heat. 
Qs (mg/g) and ζ represent the saturation removal capabil-
ity and the Polanyi potential. Temperature and the univer-
sal gas constant abbreviated T (K) and R (8.314J/mol·K), 
respectively. The D-R constant, Ke  (mol2/KJ2), allows us to 
compute the average adsorption energy E (kJ/mol).

Adsorption related parameters

The dimensionless separation constant RL is usually 
employed to estimate the favorable degree of removal pro-
cess, which could be obtained by the following equation:

where C0 (mg/ L) is the initial concentration of As(III) and 
b (L /mg) is the Langmuir model constant.

The following equation is utilized to compute the ther-
modynamic parameters, including standard free energy 

(5)Qt = kpit
1∕2 + Ci

(6)Langmuir model ∶
Ce

Qe

=
1

bQm

+
Ce

Qm

(7)Freundlich model ∶ lnQe = lnKf +
1

n
lnCe

(8)Tempkin model ∶ Qe = BT lnAT + BT lnCe

(9)D − R model ∶ lnQe = lnQs − Ke�
2

(10)� = RT ln

[

1 +
1

Ce

]

(11)E =
1

(

2Ke

)0.5

(12)RL =
1

1 + bC0
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change (∆G0), standard enthalpy change (∆H0), and stand-
ard entropy change (ΔS0).

where Kd is the distribution coefficient and R (8.314 J/
mol·K) is the universal gas constant.

(13)Kd =
Qe

Ce

(14)lnKd =
�S0

R
−

�H0

RT

(15)�G0 = �H0 − T�S0

Results and discussion

Characteristics of adsorbents

The surface appearance of FO, FCBO, and FCCTO were 
investigated by SEM (Fig. 1). All three metal oxides are 
composed of lots of agglomerated nanoparticles. Compared 
with pure Fe oxide FO, the doping of Ce and Cu significantly 
improved the fineness of nanoparticles, which were further 
proved by BET data (Table 1). The BET surface areas of 
three adsorbents are all around  180m2/g, but the pore vol-
ume and diameter of doping adsorbents are significantly 
improved. Large pore size and pore volume can speed up 
the mass transfer process and lower the diffusion resistance 
of contaminants, resulting in a rapid uptake of pollutants by 
materials (Wen et al. 2020).

The nitrogen adsorption–desorption isotherms of FO, 
FCBO, and FCCTO are depicted in Fig. 2 a–c, respectively. 
All three materials exhibit type IV adsorption isotherms, and 
the saturated adsorption plateaus on the isotherms indicate 
relatively uniform pore size distributions of the materials. 
The  H2(a) type hysteresis loops observed in FO and FCBO 

Fig. 1  SEM images of (a) FO; (b) FCBO; (c) FCCTO

Table 1  Porous structure parameters of FO, FCBO and FCCTO

Samples SBET  (m2/g) VT  (cm3/g) Dp (nm)

FO 180.0 0.198 4.360
FCBO 178.2 0.246 5.399
FCCTO 180.2 0.445 9.726

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

0 20 40 60 80

0.00

0.05

0.10

0.15

0.20

)
m

n
g/3

mc(
D

d/
V

d

Pore diameter(nm)

debrosd
A

e
mulo

V
(c

m
3

P
TS

g/
)

Relative Pressure(P/P0)

 Adsorption
Desorption

a

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

)
mn

g/3
mc(

Dd/
Vd

Pore diameter(nm)

Relative Pressure(P/P0)

Adsorption
Desorption

debrosd
A

e
mulo

V
(c

m
3

P
TS

g/
)

b

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

0 20 40 60 80 100

0.025

0.075

0.000

0.050

0.100

)
m

n
g/3

mc(
D

d/
V

d

Pore diameter(nm)

debrosd
A

e
mulo

V
(c

m
3

P
TS

g/
)

Relative Pressure(P/P0)

 Adsorption
Desorption

c

Fig. 2  N2 adsorption-desorption isotherms and pore size distributions of a FO, b FCBO, and c FCCTO
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suggest complex pore structures. The FCCTO exhibits an 
 H1-type hysteresia loop, indicating the presence of cylindri-
cal pores with uniform pore size distribution and open ends. 
This confirms that FCCTO is a mesoporous material with 
relatively narrow pore size distribution, primarily formed 
by the aggregation of uniformly sized spherical particles, 
providing abundant binding sites for As(III) adsorption.

Adsorbents’ phase and crystallinity were assessed using 
XRD (Fig. 3). All nanocomposites exhibit low crystallinity. 
 Fe2O3 can be well linked to the broad characteristic peaks 
at 2θ= 32.98° (Wei et al. 2017). The (111), (222), and (311) 
cubic planes of  CeO2 can be used to describe the peaks at 2θ 
= 28.66°, 47.69°, and 56.59° (Lashanizadegan et al. 2019). 
CuO mainly exists in amorphous form since no evident 
characteristic peak found. The amorphous structure of FO, 
FCBO, and FCCTO gives rise to a large amount of surface 
area and adsorption sites. Compared to FCCTO, there was 
no obvious change in the crystalline phase of FCCTO after 
As(III) adsorption.

Effect of adsorbent dosage and initial solution pH

As(III) adsorption equilibrium was significantly impacted by 
the adsorbent’s dosage (Fig. 4). When the dose of FCCTO 
increased from 0.1 to 1.5g/L, the removal efficiency rose 
from 46.8 to 99.9%, while the adsorption capacity declined 
from 93.58 to 13.32 mg/g. The increase of removal rate was 
due to the increase of adsorption sites with the increase of 
dosage. At the same time, as the effective adsorption sites 
were decreasing, the excess of adsorption sites drove the 
decreasing adsorption capacity. The adsorbent dose in the 
subsequent experiment was adjusted at 0.4 g/L to simultane-
ously satisfy the needs of economic benefit and adsorption 

effect. As(III) was being removed from the system at a rate 
of 89.26%, while the adsorption capacity was 44.63 mg/g.

The As(III) adsorption capacity of FO, FCBO, and 
FCCTO were affected by an initial solution pH in the range 
of 3 to 11 (Fig. 5a). All adsorption showed similar pH 
dependence, attributed to the change of arsenic speciation 
in solution and adsorbents’ zeta potential (Fig. 5b) (Chen 
et al. 2013). The  pHPZC of FO, FCBO, and FCCTO can be 
obtained as 6.98, 6.70, and 6.57, respectively. While the 
pH raised from 8 to 11, the adsorption performance drops 
sharply, and there was a sharp increase from 3 to 4. All 
adsorbents showed good removal capability over a broad 
pH range of 4 to 8. Metal oxides often achieve their maxi-
mum capacity at pH similar to pKa1 of the acid, and the pKa1 
of arsenious acid is 9.2. However, the XPS results demon-
strated the presence of As(III) oxidation during the adsorp-
tion by FCBO and FCCTO (Fig. 14a), so the  HAsO4

2− in 
the solution gradually increases when pH > 7 (Fig. 6b). Due 
to the electrostatic repulsion between the arsenic ion and 
the surface charge of the material, the adsorption capac-
ity decreases continuously. At lower pH values, the As(III) 
exists as neutral molecules, such as H3AsO3. The adsorption 
capabilities of FCBO and FCCTO significantly decreased 
at pH 3 due to the partial dissolution of Ce metal oxides in 
acidic environment, which resulted in a reduction of surface 
active sites.

Adsorption kinetics

The sorption kinetics of FCCTO were explored by analyz-
ing the As(III) concentration of solution samples at different 
contact time (Fig. 7). The rate of As(III) sorption was quick 
for the first 30 min before slowing. FCCTO and FCBO have 
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As(III) adsorption
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similar trend, while FO’s rapid rising period only lasts for a 
short time (20 min). FCCTO have better adsorption perfor-
mance than binary oxide and unitary oxide due to synergistic 
effect (Zheng et al. 2020), which was also reported that the 
adsorption performance is optimal when the Cu:Fe ratio is 
1:3 for As(III) and 1:2 for As(V) (Zhang et al. 2013).

The pseudo-first-order and pseudo-second-order models 
were utilized to describe the As(III) adsorption behavior 
(Liu et al. 2021; Zhao et al. 2014). The calculated Qe of 
the pseudo-second-order model was much closely matched 
to the experimental value Qe (Table 2), and its correlation 
coefficient were 0.981, 0.996, and 0.992 for FO, FCBO, 
and FCCTO, respectively. Thus, the chemical adsorption is 
dominant in the procedure of As(III) adsorption on FCCTO.

The plots fitted by the intra-particle diffusion model 
showed piecewise linearity, and three stages will take place 
in the process: (1) rapid initial sorption of As(III) from the 

solution to sorbent surfaces, (2) sluggish diffusion into the 
adsorbent’s porous structure, and (3) As(III) adsorption 
on the surfaces of sorbents. The particle diffusion slowed 
down with the decreasing of As(III) concentration, which 
was consistent with the widely accepted adsorption pro-
cess. As shown by the sequence of diffused rate constants 
(Table 3), kp1>kp2>kp3, indicated intra-particle diffusion and 
film diffusion certificated the whole procedures. The highest 
rate constant of FCCTO revealed Fe-Ce-Cu ternary–doped 
metal oxide has different structural characteristics for boost-
ing As(III) adsorption.

Adsorption isotherms

Sorption isotherm experiments were conducted at 298, 308, 
and 318 K to evaluate the impact of the As(III) starting con-
centration on the removal capability (Fig. 8). The absorbed 
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As(III) on adsorbent were increased as gradient starting con-
centration rose from 10 to 200 mg/L.

The sorption results were fitted with the Langmuir, Fre-
undlich, Tempkin, and D-R kinetic models (Fig. 9) (Hu 

and Zhang 2019), and the equilibrium data were obtained 
(Table 4).

The high correlation coefficients (R2 > 0.991) indicated 
that Langmuir isotherm model is more suited than other three 
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Table 2  Kinetic parameters of 
dynamic fit of As(III) on FO, 
FCBO, and FCCTO

Adsorbent Qe,exp Pseudo-first-order Pseudo-second-order

(mg/g) k1(1/min) Qe,cal (mg/g) R2 k2 (g/mg·min) Qe,cal (mg/g) R2

FO 29.591 3.661*10-3 22.205 0.966 3.664*10-4 30.684 0.981
FCBO 37.933 3.723*10-3 26.438 0.950 4.243*10-4 37.979 0.996
FCCTO 46.161 3.712*10-3 32.992 0.972 3.343*10-4 46.318 0.992

Table 3  Intra-particle diffusion 
model coefficients of As(III) on 
FO, FCBO, and FCCTO

Adsorbent Film diffusion Intra-particle diffusion Equilibrium stage

kp1 C1 R2 kp2 C2 R2 kp3 C3 R2

FO 2.797 −3.941 0.8424 1.305 1.337 0.9968 0.270 20.260 0.8712
FCBO 1.771 1.584 0.9373 1.675 4.860 0.9244 0.623 19.292 0.9602
FCCTO 3.016 0.018 0.9850 2.208 1.944 0.9868 0.623 26.929 0.9365
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models. The maximal adsorption capabilities at 298, 308, and 
318 K predicted to be 88.89, 94.70, and 101.5 mg/g, respec-
tively, which is superior to many sorbents (Table 5). The 
As(III) adsorption on FCCTO belonged to monolayer adsorp-
tion on the homogeneous surface. The fact that the adsorption 
capacity increases as the temperature does, indicating that the 
adsorption on FCCTO is an endothermic reaction.

The preferred degree of removal process is often esti-
mated using the dimensionless separation constant RL. When 
the RL is between 0 and 1, it certificates that the adsorption 
is beneficial. When the starting concentration varied from 
10 to 200 mg/L at 298, 308, and 318 K, the calculated RL 
values of FCCTO are 0.0394–0.2910, 0.0343–0.2621, and 
0.0340–0.2604, it shows that FCCTO is beneficial to As(III).

The adsorption thermodynamics of FCCTO adsorbing 
As(III) by changing the adsorption temperature is depicted 
in Fig. 10. Then, As(III) was adsorbing in greater quantities 
as the adsorption temperature was raised. To ascertain if the 
As(III) adsorption process on FCCTO is spontaneous and 
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Fig. 8  Adsorption isotherm of As(III) on FCCTO at different temper-
atures (dosage=0.4 g/L, pH=7.0)

Fig. 9  a The linear graphs of a Langmuir, b Freundlich, c Tempkin, and d D-R adsorption isotherm models (dosage=0.4 g/L, pH= 7.0, contact 
time=12 h)
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endothermic, the thermodynamic parameters standard free 
energy change (∆G0), standard enthalpy change (∆H0), and 
standard entropy change (ΔS0) were examined. The value 
of ΔS0 and ∆H0 was calculate through fitting each linear 
regression in Table 6.

The positive ∆H0 value verified that the As(III) removal 
on FCCTO was endothermic in essence. ∆G0 recorded nega-
tive value indicated that the interaction of As(III) adsorbed 
by FCCTO is spontaneous; furthermore, As(III) is more 
amenable to adsorption at higher adsorption temperatures. 
The positive ΔS0 values reflected the increased random-
ness in the adsorption process. The abovementioned con-
firmed there is a spontaneous and endothermic process in 
the adsorption of As(III) on FCCTO.

Effect of coexisting anions on arsenite adsorption

The effects of anions such as  SO4
2−,  Cl−,  CO3

2−,  PO4
3−, and 

 SiO3
2− coexistence on the As(III) sorption of FCCTO were 

investigated (Fig. 11). The presence of  SO4
2− and  Cl− has 

no significantly negatively impacted on As(III) removal 
while  CO3

2− only marginally inhibits while concentra-
tion was above 10 mmol/L. The presence of  PO4

3− and 
 SiO3

2− strongly inhibits As(III) sorption due to the fact that 
phosphatic, silicon, and arsenic ions have similar molecu-
lar structures, and  PO4

3− could form stable inner sphere 
complexes with the surface hydroxyl group of iron oxides 
(Sigdel et al. 2016).

Table 4  Isotherm parameters of As(III) on FCCTO at different tem-
peratures

Isotherm model Parameters 298 K 308 K 318 K

Langmuir Qm (mg/g) 88.89 94.70 101.52
b (L/mg) 0.1218 0.1407 0.1420
R2 0.9933 0.9937 0.9910

Freundlich Kf (mg/g (L/mg) 
1/n)

26.42 33.09 38.29

n 4.024 4.701 5.180
R2 0.9584 0.9868 0.9426

Tempkin AT (L/mg) 7.06 22.22 49.17
BT (J/mol) 12.23 11.06 10.62
R2 0.9909 0.9869 0.9634

D-R Qs (mg/g) 68.80 72.544 79.161
Ke  (mol2/kJ2) 3.608E-7 8.596E-8 6.522E-8
E (kJ/mol) 1177 2412 2769
R2 0.8005 0.7578 0.8540

Table 5  Comparison of the 
maximum adsorption capacity 
of As(III) on FCCTO with 
various adsorbents published  
in literatures

Adsorbents Conditions Qm(mg/g) Ref.

Ceria nanoparticles T=323K, pH=7.0, D=5.0g/L 18.15 Feng et al. (2012)
CuO nanoparticles T=298K, pH=8.0, D=2.0g/L 26.9 Martinson and Reddy (2009)
Ce-Fe metal oxides with CNT T=298K, pH=7.5, D=0.2g/L 28.7 Chen et al. (2013)
Cu-doped  Fe3O4 T=298K, pH=5.0, D=0.5g/L 37.97 Wang et al. (2015)
Iron(III)–cerium(IV) oxide T=303K, pH=7.0, D=0.4g/L 86.29 Basu et al. (2013)
Cerium-manganese binary oxide T=298K, pH=7.0, D=0.2g/L 97.7 Chen et al. (2018)
Fe-Mn binary oxide T=298K, pH=5.0, D=0.2g/L 100.4 Zhang et al. (2007)
Fe-Ti-Mn composite oxide T=298K, pH=7.0, D=0.2g/L 119.6 Zhang et al. (2018)
Fe-Mn-Cu ternary oxide T=298K, pH=7.0, D=0.3g/L 204.79 Wu et al. (2021)
FCCTO T=323K, pH=7.0, D=0.4g/L 101.5 This study
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Fig. 10  Thermodynamics graph for As(III) removal on FCCTO (dos-
age=0.4 g/L, C0=20mg/L, pH=7)

Table 6  Thermodynamics parameters for adsorption of As(III) on 
FCCTO

T (K) △G0 (kJ/mol) △H0 (kJ/mol) △S0 (J/mol)

298 −5.613 61.244 224.352
308 −7.856
318 −10.100
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Reusability and stability

The reusability was evaluated through five consecutive 
recycling cycles (Fig. 12a). With an increase in cycles, the 
adsorption and desorption capacities gradually reduced. And 
the close values of adsorption and desorption capacities may 
mean that the pore blockage during regeneration is not obvi-
ous, which is conducive to the formation of good regenera-
tion performance. The adsorption rate remained above 60% 
after five cycles and NaOH solution was a simple way to 
renew FCCTO. According to the XPS data (Fig. 14), the 
content of hydroxyl group and tetravalent cerium decreased 
after five cycles result in the decrease of arsenic binding 

sites and cerium oxidation ability. The generation of a large 
amount of lattice oxygen proved that there is a transfer of 
oxygen electrons in the adsorption process.

To investigate the stability of FO, FCBO, and FCCTO, 
the dissolved concentration of metal ions during adsorption 
process is measured (Fig. 12b). The dissolution concentra-
tion of Fe and Ce ions was below 0.11mg/L and 0.04mg/L, 
and the dissolved amount of heavy metal copper was in trace 
level. Thus, the prepared materials all have good stability 
and will cause very little pollution.

Adsorption mechanism

The FTIR (Fig. 13) and XPS (Fig. 14) spectra of FCCTO 
before and after adsorption were obtained to explore the 
mechanisms. The broad band between 3000 and 3600  cm−1 
were related to the stretching vibrations peak of the O–H 
groups including lattice and adsorbed water (Wen et al. 
2018). After As(III) adsorption, the signal from the −OH 
group is slightly weaker, indicating that there is complexa-
tion between the As(III) and −OH groups. And the Ce–OH 
bending vibrations at 1059 and  1533cm−1 became weaker 
than before As(III) adsorption (Guo et  al. 2011). The 
adsorbed  CO2 in the atmosphere may be responsible for the 
1364  cm−1 peak of  CO3

2− vibration (Li et al. 2014). Carbon-
ate and hydroxyl groups on FCCTO can displace by arse-
nate attributed to ion exchange. As(V) adsorption band and 
the stretching vibration As-O in the range of 650–800  cm−1 
prove that As is adsorbed and redox reaction occurs dur-
ing the adsorption procedure (Lin et al. 2017; Mohan et al. 
2007). The emergence of As-O-Ce vibration at 829  cm−1 
shows the inner sphere mechanism of As(III) adsorption.

XPS was applied to certify the oxidation–redox pro-
cess, the binding energy of As-3d, O-1s, Ce-3d, and Cu-2p 
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Fig. 11  The impacts of coexisting anions on the As(III) removal by 
using FCCTO (dosage=0.4 g/L, C0=20mg/L, pH=7, contact time=12 
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core-level photoelectron spectra. The binding energy 
(B.E.) at 44.3 and 45.2 eV are associated with As(III) and 
As(V), respectively. FCCTO showed the excellent oxida-
tion performance than the binary oxide FCBO, and 81.3% 
trivalent arsenic was definitely oxidized to pentavalent 

arsenic. The oxidation performance of low-dose copper 
doping oxides is also quite big different from that of binary 
oxides as reported.

The O-1s spectra in Fig.14b could be divided into 
three peaks of adsorbed water  (H2O), hydroxyl (−OH), 
and lattice oxygen  (O2−). By comparing the spectra of 
oxygen elements before and after As(III) sorption, it can 
be observed that hydroxyl groups take up an prominent 
position in the adsorption process, which is similar to the 
FTIR results. It was certified that  O2− are origin from oxy-
gen molecules, which are adsorbed on the FCCTO surface 
and function as electron transport, and have the ability to 
oxidize and adsorbed arsenic and dissolve arsenic capably.

By fitting Ce-3d spectra in Fig. 14c, the valence state 
was examined. Fe-Ce-Cu ternary oxide contains primarily 
 CeO2 as Ce oxide. The reduction degree of Ce(IV) is not 
obvious after first adsorption and its content decreased 
after repeated adsorption. Cu plays a greater role in the 
oxidation-reduction process. Cu(I) increases from 30.2 to 
38.6% while Cu(II) decreases from 69.8 to 61.4% after 
interaction with As(III). The oxidized As(V) from As(III) 
was explained to the decrease of Ce(IV) and Cu(II) atoms, 
related to the catalytic oxidation performance of Ce-Cu 
oxides (Jin et al. 2020).
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Fig. 13  FTIR spectra of Fe-Ce-Cu ternary oxide before and after 
As(III) adsorption (dosage=0.4 g/L, C0=20mg/L, pH=7)
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Thus, the following As(III) adsorption mechanisms by 
Fe-Ce-Cu ternary oxide can be inferred from the discus-
sion above: (i)As(III) species would first be transported 
from solution phase to the interface between solid and 
water, and formed complexes. (ii) Cu(II) and Ce(IV) are 
used as oxidants in the adsorption process to conveniently 
oxidize As(III) to As(V).

Conclusions

Fe-Ce-Cu ternary oxide with a Fe/Ce/Cu molar propor-
tion of 3:0.8:0.5 was effectively prepared by a coprecipi-
tation–calcination technique. The manifested synergistic 
effect and catalytic oxidation performance of three oxides 
greatly improves the treatment capacity of As(III) in aque-
ous. The maximum As(III) adsorption capacity of FCCTO 
is 101.5mg/g. The adsorbent dosing amount, solution ini-
tial pH, contact time, starting As(III) concentration, ambi-
ent temperature, and ionic strength were found as critical 
influence factor for As(III) sorption. The adsorption pro-
cess of FCCTO was pseudo-second-order kinetic, and the 
Langmuir model was matched by the adsorption isotherm. 
Adsorption of As(III) was mediated through surface com-
plexation, redox, and adsorption. After sorption, As(III) 
was transformed into As(V) in an amount of 81.3%. It was 
simple to renew the spent Fe-Ce-Cu ternary oxide employ-
ing NaOH solution. The Fe-Ce-Cu ternary oxide would 
be a useful and alternate adsorbent for As(III) adsorption 
from aquatic ecosystems owing to its convenient synthesis 
technique, strong arsenic removal efficiency, and simple 
regeneration.
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