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Abstract
The quantitative assessment of the spatial and temporal variability and drivers of fine particulate matter  (PM2.5) fraction 
concentrations are important for pollution control and public health preservation in China. In this study, we investigated 
the spatial temporal variation of  PM2.5 chemical component based on the  PM2.5 chemical component datasets from 2000 to 
2019 and revealed the driving forces of the differences in the spatial distribution using geodetector model (GD), multi-scale 
geographically weighted regression model (MGWR), and a two-step clustering approach. The results show that: the  PM2.5 
chemical fraction concentrations show a trend of first increasing (2000–2007) and then decreasing (2007–2019). From 2000 
to 2019, the change rates of  PM2.5, organic matter (OM), black carbon (BC), sulfates (SO2– 4), ammonium (NH+ 4), and 
nitrates (NO– 3) were −0.59, −0.23, −0.07, −0.15, −0.02, and 0.04μg/m3/yr in the entirety of China. The secondary aerosol 
(i.e., SO2− 4, NO− 3, and NH+ 4; SNA) had the highest fraction in  PM2.5 concentrations (55.6–68.1% in different provinces), 
followed by OM and BC. Spatially, North, Central, and East China are the regions with the highest  PM2.5 chemical component 
concentrations in China; meanwhile, they are also the regions with the most significant decrease in  PM2.5 chemical fraction 
concentrations. The GD and MGWR model shows that among all variables, the number of enterprises, disposable income, 
private car ownership, and the share of secondary industry non-linearly enhance the differences in the spatial distribution 
of  PM2.5 component concentrations. Electricity consumption has the strongest influence on NH+ 4 emissions in Northwest 
China and BC and OM emissions in Northeast China.
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Introduction

Fine particulate matter  (PM2.5) is a complex mixture of mul-
tiple sources, including sulfates (SO2– 4), nitrates (NO– 3), 
ammonium (NH+ 4), black carbon aerosols (BC), organic 
carbon (OC), Organic matter (OM), crustal elements, and 
water (Sun et al. 2015). Long-term exposure to high concen-
trations of  PM2.5 not only entails potential risks to socioeco-
nomic development and population health (Apte et al. 2018), 
but some components of  PM2.5 (e.g., sulfate, organic carbon, 
and black carbon) affect global climate change by contribut-
ing to global energy emission systems (Cohen et al. 2017; 
Jbaily et al. 2022; Liu et al. 2009; Xu et al. 2022). Further-
more, high  PM2.5 concentrations may also trigger visibil-
ity degradation or lead to extreme haze events (Lelieveld 
et al. 2015; Ming et al. 2017).

Measuring the spatial and temporal evolution and histori-
cal trends of  PM2.5 fractions is the basis for exploring popu-
lation health risks and future control policy assessment. In 
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the past decades, numerous studies on the characteristics and 
historical trends of  PM2.5 fractions in China have typically 
relied on measured data from several sites or regional simu-
lations based on chemical transport models (CTMs) (Zheng 
et al. 2021). For example, Liang et al. (2019) evaluated the 
seasonal dynamics of  PM2.5 composition and chemical char-
acteristics in Zhuhai from 2015 to 2016 using a 2-medium-
volume sampler, while explaining the potential sources of 
 PM2.5 composition. Geng et al. (2017) integrated aerosol 
optical thickness (AOD) data and GEOS-Chem chemical 
transport model, investigated the spatial and temporal char-
acteristics of  PM2. 5 chemical composition concentrations in 
major cities from 2005 to 2012 in China, and explained the 
driving forces of spatial heterogeneity. Furthermore, Sun 
et al. (2015) relied on measured data from several stations 
or used chemical transport models to characterize the vari-
ability of  PM2.5 fractions in different regions of China; Liu 
et al. (2018) studied the variations of  PM2.5 fraction concen-
trations in urban and background areas in China from 2012 
to 2014 based on the “Campaign on Atmospheric Aerosol 
Research” network of China (CARE-China).

The aforementioned have significant implications for 
understanding the variation of  PM2.5 component concen-
trations in China at different spatial and temporal scales. 
However, there is growing evidence that individual cities or 
short-term  PM2.5 fraction measurements are insufficient to 
support comprehensive national analyses or health impact 
studies, because air quality problems are usually regional 
issues and are influenced by many different factors, social 
and natural factors such as socioeconomic factors, anthro-
pogenic emissions, and natural emissions (Chen et al. 2020; 
Guo et al. 2017). CTMs are important for understanding 
 PM2.5 pollution levels, drivers, and potential sources at dif-
ferent spatial and temporal scales (Feng et al. 2015). How-
ever, it is worth noting that CTMs were originally developed 
in other regions with different pollution levels compared to 
China (Wei et al. 2021). The application of these models in 
China might pose some problems with missing precursors 
and formation mechanisms of secondary organic aerosols 
and the lack of heterogeneous reactions, which may eventu-
ally lead to the underestimation of sulfate in haze events 
(Geng et al., 2017). Therefore, more information is needed 
to alleviate these problems and improve the simulations of 
historical  PM2.5 chemical compositions.

Currently, a new dataset was being developed by Tsin-
ghua University as a cooperative effort among several 
institutions and teams, namely, the Tracking Air Pollution 
in China (TAP) Data (Geng et al. 2021). The purpose 
was to establish a multi-scale database of near real time 
aerosol and gaseous pollutant concentrations in China and 
provide the necessary support for pollution characteriza-
tion analysis (Zhao et al. 2022). At present, this dataset 
provides  PM2.5 chemical component concentrations in 

China from 2000 to 2019. Compared with the previous 
 PM2.5 component dataset simulated by CTMs, the TAP 
dataset is generated based on machine learning algo-
rithms and multi-source data information. Meanwhile, 
the TAP dataset integrates ground observation data, sat-
ellite remote sensing information, high-resolution emis-
sion inventory, air quality model simulation, and other 
multi-source information to construct a multi-source data 
fusion (Xiao et al. 2021). To our knowledge, the TAP 
dataset is by far the most accurate, largest-coverage, and 
longest time-span  PM2.5 component dataset available and 
has been validated and effectively applied on a regional 
scale (Zhao et al. 2022).

This study investigated the spatiotemporal patterns, vari-
ation trends, and social drivers of  PM2.5 chemical fraction in 
China using the newly released national-scale  PM2.5 chemi-
cal fraction concentration dataset from 2000 to 2019. The 
specific objectives were (1) to reveal the spatial-temporal 
characteristics of  PM2.5 chemical fraction concentrations in 
China from 2000 to 2019 using spatial and trend analyses 
and (2) to explore the spatial differences in the effects of 
major socioeconomic factors on  PM2.5 chemical fraction 
concentrations based on the multi-scale weighted regres-
sion MGWR model and GD model.

Materials and methods

Study area

This study focuses on China mainland, which contains 
31 provinces. Based on the social, natural, economic, and 
human environment, these 31 regions were further cat-
egorized into seven geo-administrative regions, including 
North China (NC, Beijing, Tianjin, Hebei, Shanxi, and Inner 
Mongolia), South China (SC, Guangdong, Guangxi, and 
Hainan), East China (EC, Shanghai, Anhui, Fujian, Jiangsu, 
Jiangxi, Shandong, and Zhejiang), Central China (CC, 
Henan, Hunan, and Hubei), Southwest China (SW, Yunnan, 
Guizhou, Sichuan, Chongqing, and Tibet), Northwest China 
(NW, Shaanxi, Gansu, Ningxia, Qinghai, and Xinjiang), and 
Northeast China (NE, Heilongjiang, Jilin, and Liaoning) 
(Fig. 1a) (Gong et al. 2018). Figure 1b shows the frequency 
statistical histogram of  PM2.5, black carbon (BC), organic 
matter (OM), ammonium (NH+ 4), nitrate (NO− 3), and 
sulfate (SO2− 4) concentrations in 31 provinces of China 
from 2000 to 2019. The statistical results show that the con-
centrations of  PM2.5, BC, OM, NH+ 4, NO− 3, and SO2− 4 
were basically showed a positive distribution. Meanwhile, 
the concentrations of  PM2.5, BC, OM, NH+ 4, NO− 3 and 
SO2− 4 were mainly distributed between 30 and 50, 1 and 
2.5, 6 and 12, 0 and 7, 2 and 8, and 4 and 10μg/m3.
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Data sources

The annual average  PM2.5, BC, OM, NH+ 4, NO− 3, and 
SO2− 4 concentrations in 31 provinces of China from 
2000 to 2019 were obtained from the Tracking Air 
Pollution

in China (TAP) datasets (http:// tapda ta. org. cn/). The 
 PM2.5 component concentration in the TAP dataset is the 
result of coupling the current advanced machine learn-
ing algorithm and the atmospheric chemical transport 
model; the model has an average out-of-bag cross-vali-
dation R2 of 0.83 in different years, which is comparable 
to the results of other studies (Geng et al. 2017). Its high 
accuracy and high coverage characteristics can provide 
basic data support for air pollution health effects, clean 
air policy assessment, and other related scientific research 
and environmental management work (Liu et al. 2022). To 
quantitatively investigate the impact of socio-economic 
factors on  PM2.5 and its chemical components, we obtained 
eight socio-economic indicators such as the number of 
enterprises (NOE), disposable income (DI), gross domes-
tic product (GDP), and electricity consumption (EC) of 
31 provinces in China from 2000 to 2019 from the EPS 
database (https:// www. epsnet. com. cn/ index. html#/ Index). 
The specific information about the basic and statistical 
description of the main socio-economic indicators can be 
found in Table 1 and Table.S1.

MAKESENS mode

To evaluate the trends of  PM2.5 chemical fractions in China, 
we introduced an integrated method called Mann–Kendall 
trend test, which is based on several conditional functions 
(Partal and Kahya, 2006). The greatest advantage of the 
MAKESENS model is that it assumes no distribution of the 
data; therefore, outliers and missing values do not signifi-
cantly affect the model results. Prior to the trend test, the 
Mann-Kendall test was first performed on the time series 
data. When the time series of the study data is less than 10, 
the MAKESENS model uses the S-test; conversely, when it 
is above 10, the model uses the Z-test. The time period of 
this study is 2000-2019; therefore, the calculations for this 

Fig. 1  The spatial distribution of the 31 provinces (a) and the frequency statistical histogram of  PM2.5, BC, OM, NH+ 4, NO− 3 and SO2− 4 
concentrations (b)

Table 1  The list of main socio-economic variables

Variable Abbreviation Unit

Number of enterprises NOE Number
Disposable income DI Yuan
Gross domestic product GDP 100 million yuan
NOx emission NOx tons
Electricity consumption EC Billion kWh
Private vehicle ownership PVO 10000 vehicles
Percentage of secondary industry SIS %
SO2 emission SO2 tons

http://tapdata.org.cn/
https://www.epsnet.com.cn/index.html#/Index
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study were based on the Z-test. We then used Sen’s method 
to calculate the linear trend of  PM2.5 chemical fraction con-
centration. The detailed calculation procedure of the Z-test 
and Sen’s method can be found in Equations (1)–(5):

where n is the span of the time series, where n=20; xk and 
xj are the annual average concentrations of  PM2.5 fraction 
in year k and year j, respectively (j>k); S is the orientation 
of the trend of the annual average concentration of  PM2.5 
fraction; Z is used to assess the existence of a statistically 
significant trend; q is the number of tied groups and tp is the 
number of data values in the pth group; and Q is the trend 
of the annual average concentration of  PM2.5 fraction, when 
Q>0, the annual average concentration of  PM2.5 fraction is 
an increasing trend, and when Q<0, the annual average con-
centration of pollutants is a decreasing trend.

Geodetector

The geodetector (GD) is an effective instrument to exam-
ine the spatial heterogeneity of a univariate factor and the 
coupling of multiple factors, which is composed of four 
parts: factor detection, risk detection, interaction detec-
tion, and ecological detection. In this work, the factor 
detection and interaction detection modules of the GD 
are used to detect quantitatively whether the driving fac-
tor affects the spatial heterogeneity of  PM2.5 component 
changes and to estimate the extent of the influence of the 
factor. The detailed calculation process of factor detection 

(1)S =

n−1∑
k=1

n∑
j=k+1

sgn
(
xj − xk

)

(2)Z =

⎧
⎪⎨⎪⎩

S−1√
VAR(S)

if S > 0

0 if S = 0
S+1√
VAR(S)

if S < 0

(3)

VAR(S) =
1

18

[
n(n − 1)(2n + 5) −

q∑
p=1

tp
(
tp − 1

)(
2tp + 5

)]

(4)Q =
xj − xk

j − k

(5)Q =

⎧
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Q[(N+1)∕2], if N is odd

1

2

⎛
⎜⎜⎝
Q[N−2] + Q�

N+1

�
∕2

�
⎞
⎟⎟⎠
, if N is even

and interaction detection in the GD is described in Wang 
et al. (2016).

Multi‑scale geographically weighted regression

In this study, the multi-scale geographically weighted 
regression (MGWR) model was used to investigate the spa-
tial differences in the effects of the various socioeconomic 
factors on  PM2.5 components. Compared with the classi-
cal geographically weighted regression model (GWR), the 
MGWR was a flexible regression model (Tran et al. 2022). 
Each regression coefficient was obtained based on local 
regression, and the bandwidth is specific (Liu et al. 2021). 
In addition, the GWR model uses weighted least squares in 
the fitting operation, while the MGWR model was equiva-
lent to a generalized additive model (GAM), which could 
perform regression analysis on spatial variables with linear 
or nonlinear relationships, and was also an effective tool 
for dealing with various complex nonlinear relationships 
of spatial variables (Oshan et al. 2019). Assuming that 
there are n observations, for observation i ∈ {1,2,3,…,n} 
at location (Ui,Vi), the MGWR were calculated as follows 
(Fotheringham et al. 2017):

where yi is the response variable  PM2.5 or chemical com-
position concentration, β0(Ui,Vi) is the intercept, Xij is the 
jth predictor variable i, βbwj(Ui,Vi) is the jth coefficient, bwj 
in βbwj indicates the bandwidth used for calibration of the 
jth conditional relationship, and εi is the error term. In 
addition, the spatial kernel function type selected during 
the model operation is bisquare, the bandwidth search 
type is golden, and the model parameter initialization type 
takes GWR estimation as the initial estimation model. The 
detailed procedures of MGWR model construction and 
validation in this study can be found in supplementary 
information (SI).

Two‑step cluster

The MGWR model provides a large number of local regres-
sion coefficients. To better characterize the spatial distribu-
tion of these local regression coefficients, we performed 
a spatial clustering of these local regression coefficients 
with a two-step clustering method. A two-step cluster is 
an effective clustering approach that can be used to cluster 
both continuous and dispersed variables. In this study, a 
two-step cluster can divide provinces into different catego-
ries according to the correlations between different driv-
ers. After clustering, there are similarities in the impact 

(6)yi = �0
(
Ui,Vi

)
+
∑

j�bwj
(
Ui,Vi

)
Xij + �i
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of social drivers in regions that are classified in the same 
category. A more detailed description of the two-step clus-
tering method can be found in the research of Qin et al. 
(2019) and Yu et al. (2012).

Research framework

This study employed spatial analysis methods, MAKES-
ENS mode, GD model, MGWR model, and two-step clus-
tering to analyze the spatial patterns, trends, and drivers of 
 PM2.5 fraction concentrations in China during 2000–2019. 
First, we used the spatial analysis module in ArcGIS10.8 
software to quantitatively investigate the differences in the 
spatial distribution of  PM2.5 component concentrations 
in China and used mathematical and statistical methods 
to statistically measure the proportion of different  PM2.5 
component concentrations to  PM2.5 concentrations. Sec-
ond, we analyzed the temporal and spatial variation char-
acteristics of  PM2.5 component concentrations using the 
MAKESENS model in both temporal and spatial dimen-
sions; Finally, we used GD model to reveal the interac-
tive effects of different socio-economic factors on  PM2.5 
component concentrations and analyzed the spatial dif-
ferences in the influence of different socio-economic fac-
tors on  PM2.5 component concentrations using the MGWR 
model and the two-step clustering method. Figure 2 shows 
the research framework of this paper.

Results

Spatiotemporal variations in the  PM2.5 chemical 
composition

Figure 3 presents the mass concentrations of  PM2.5 and 
species in 31 provinces over China. Generally, the 20-year 
average 31 province concentrations of  PM2.5, SO2− 4, 
NO− 3, NH+ 4, OM and BC were 43.12 (18.74–88.20)
μg/m3, 8.12 (2.89–14.74)μg/m3, 7.89 (2.66–17.69)μg/m3, 
5.83 (2.34–11.89)μg/m3, 10.88 (4.53–23.1)μg/m3, and 2.37 
(0.92–4.50) μg/m3, respectively, from 2000 to 2019. The 
range in parentheses represents the maximum and minimum 
annual average concentrations in 31 provinces. Spatially, the 
average concentrations of  PM2.5, SO2− 4, NO− 3, NH+ 4, 
OM and BC had significant spatial heterogeneity. The higher 
concentrations of  PM2.5, SO2− 4, NO− 3, NH+ 4, OM and 
BC were mainly distributed in Beijing–Tianjin–Hebei, Cen-
tral China and East China, which were densely populated, 
economically developed and industrially concentrated. 
Meanwhile, these areas were also the areas with the most 
serious particulate matter pollution (PM) in China. In con-
trast, the lower concentrations of  PM2.5, SO2− 4, NO− 3, 
NH+ 4, OM and BC were mainly distributed in northwest 
and south China with low PM pollution.

Figure 4 summarizes the average  PM2.5 speciation for 
31 provinces across China from 2000 to 2019. In general, 

Fig. 2  Research framework
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SNA (SO2− 4, NO− 3, and NH+ 4) were major compo-
nents of  PM2.5 over Chinese provinces, which contributed 
55.6 (Hainan)–68.1% (Jiangsu) of the  PM2.5 concentrations 
in the 31 provinces. The regions with higher average SNA 
fraction were mainly distributed in Jiangsu (68.1%), Anhui 
(67.5%), Shandong (67.3%), and Henan (66.8%), and the 
areas with lower average SNA fraction were mainly distrib-
uted in Tianjin (59.7%), Guangxi (59.6%), and Gansu. OM 
was also an important component in  PM2.5, with averaged 
fractions of 26.4% (Jiangsu)–36.2% (Hainan). More than 
70% of the provinces had OM fraction higher than 30.0%, 
which are mainly distributed in South China, North China, 
Southwest China, and Northwest China, such as Guangxi 
(32.8%), Beijing (34.5%), Guizhou (32.7%), and Gansu 
(33.2%). About 30% of the regions had OM fraction below 
30.0%, mainly distributed in central and eastern China, such 
as Jiangsu (26.4%) and Hubei (29.0%). Compared with SNA 
and OM, the BC fractions of all provinces were lower than 
10%, among which Hainan had the highest BC fraction 
(8.2%) and Anhui had the lowest BC fraction (5.5%).

Trend analysis in the  PM2.5 chemical composition

Figure 5 summarizes the interannual trend of the average 
concentration of  PM2.5 and its chemical components in 
China from 2000 to 2019. We can clearly find that the 
average concentration trend of  PM2.5 and its chemical 
components in China presented an inverted U-shaped in 
the past 20 years. Before 2007, the average concentrations 
of  PM2.5, OM, BC, SO2− 4, NO− 3 and NH+ 4 increased 
at an annual rate of 1.74, 0.49, 0.12, 0.43, 0.46 and 0.37μg/
m3/yr, respectively. From 2008 to 2013, the average 
concentrations of  PM2.5 (−0.08μg/m3/yr), OM (−0.26μg/
m3/yr), BC (−0.08μg/m3/yr), SO2− 4 (−0.12μg/m3/yr), and 
NH+ 4 (−0.01μg/m3/yr) in China began to decline slowly, 
while NO− 3 (0.06μg/m3/yr) kept a slow increasing trend. 
After 2014, the average concentrations of  PM2.5 and its 
chemical components showed a significant downward trend. 
In summary, from 2000 to 2019, the average concentrations 
of  PM2.5, OM, BC, SO2− 4, and NH+ 4 decreased 
significantly at a rate of change of 0.59, 0.23, 0.07, 

Fig. 3  Spatial distribution of average  PM2.5 (a), SO2− 4(b), NO− 3(c), NH+ 4(d), OM(e), and BC (f) concentrations in China from 2000 to 
2019. The units of  PM2.5, SO2− 4, NO− 3, NH+ 4, OM and BC concentration are all μg/m3
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0.15, and 0.02μg/m3/yr, respectively. In contrast, NO– 3 
concentrations increased slightly at 0.04μg/m3/yr. More 
remarkably, however, the  PM2.5 component concentrations 

maintained a substantial downward trend in China beyond 
2019, which is associated with the strict lockdown imposed 
during the COVID-19 pandemic.

Fig. 4  The average  PM2.5 speciation for 31 provinces across China from 2000 to 2019

Fig. 5  Time series and trends in  PM2.5 (a), OM (b), BC (c), SO2− 4 
(d), NO− 3 (e), and NH+ 4 (f) concentration from 2000 to 2019. The 
Qmax99 and Qmin99 indicate the lower and upper limits of the 99 
% confidence interval of Q (i.e., gray areas), respectively. The solid 

black, green, red, and purple lines indicate the fitting trends of dif-
ferent time intervals from 2000 to 2019, 2000 to 2007, 2008 to 2013, 
and 2014 to 2019, respectively. +, *, **, and *** indicate the signifi-
cance level at 0.1, 0.05, 0.01, and 0.001, respectively
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Figure 6 and Table.S2 show the spatial distribution of the 
interannual trend of  PM2.5 and the concentration of its com-
ponents in China from 2000 to 2019. For  PM2.5 concentra-
tions, there was a significant decrease in interannual trends 
in about 87% of provinces. The areas of significant decline 
were mainly distributed in Shanghai (−2.01μg/m3/yr), Bei-
jing (−1.88μg/m3/yr), Tianjin (−1.74μg/m3/yr), Jiangsu 
(−1.10μg/m3/yr), Guangdong (−1.07μg/m3/yr), Henan 
(−1.05μg/m3/yr), and Shandong (−1.01μg/m3/yr), with an 
interannual trend of more than −1.0μg/m3/yr. In contrast, 
the concentrations of  PM2.5 in Gansu (0.01μg/m3/yr), Jilin 
(0.03μg/m3/yr) and Heilongjiang (0.17μg/m3/yr) showed a 
slightly increased trend. Similarly, the areas of significant 
SO2− 4 decline were also distributed in Shanghai (−0.45μg/
m3/yr), Tianjin (−0.41μg/m3/yr), Beijing (−0.34μg/m3/yr), 
Shandong (−0.27μg/m3/yr), Henan (−0.27μg/m3/yr), and 
Jiangsu (−0.23μg/m3/yr). For NO− 3, only 9 provinces in 

the country showed a significant decline, and the remaining 
22 provinces increased to varying degrees. Among them, 
the largest increase and decrease in NO– 3 concentrations 
occurred in Hunan (0.21μg/m3/yr) and Tianjin (–0.15μg/
m3/yr), respectively. The decrease in NH+ 4 concentration 
was significant in East China, and the increase was rela-
tively significant in Central China and Southwest China. The 
interannual trends of OM and BC concentrations showed 
similar spatial distributions, and the significant decline areas 
were mainly concentrated in Beijing (OM: −0.78μg/m3/yr, 
BC: −0.16μg/m3/yr), Tianjin (−0.70μg/m3/yr, −0.16μg/m3/
yr), Shanghai (−0.64μg/m3/yr, −0.16μg/m3/yr), Shandong 
(−0.42μg/m3/yr, −0.12μg/m3/yr), Jiangsu (−0.37μg/m3/yr, 
−0.10μg/m3/yr), and Hebei (−0.32μg/m3/yr, −0.09μg/m3/
yr) in North China, East China, and Central China, and the 
areas with significant increases were distributed in Qinghai 
(0.05μg/m3/yr, 0.01μg/m3/yr).

Fig. 6  Spatial distributions of interannual trends in  PM2.5 (a), SO2− 
4 (b), NO− 3 (c), NH+ 4 (d), OM (e), and BC (f) concentrations in 
China from 2000 to 2019. The negative or positive trends were all 

significant at the 99% confidence level after testing (p<0.05). The 
units for the trends in  PM2.5, SO2− 4, NO− 3, NH+ 4, OM, and OC 
concentration are all in μg/m3/year
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Drivers of the variation in  PM2.5 fraction 
concentration

Factor detection results (q values) reflect the degree of 
influence of factors on the spatial differentiation of  PM2.5 
components in China. For  PM2.5 concentrations, NOx emis-
sions have the highest q value (q=0.34), which indicates 
that NOx emissions are the most dominant environmental 
factor determining the spatial pattern of  PM2.5 emissions in 
China among these variables. The influence of  SO2 emis-
sions (q=0.29) and the number of enterprises (q=0.27) on 
the spatial pattern of  PM2.5 emissions are followed by that 
of NOx emissions (Fig. 7a). With respect to concentration, 
OM, SO2− 4, NH+ 4, and NO− 3 concentration, the num-
ber of enterprises is the most dominant socio-environmental 
factor affecting their spatial emission patterns, because the 
number of enterprises has the highest q values among all 
variables, with 0.39, 0.33, 0.44, 0.40, and 0.36, respectively. 
Additionally, NOx emissions (0.32<q< 0.38), population 
density (0.25<q<0.35), GDP (0.26<q<0.36), and  SO2 emis-
sions (0.27<q<0.34) play an important role on the spatial 
pattern of the emission of BC, OM, SO2− 4, NH+ 4 and 
NO− 3 concentration emissions (Fig. 7b–f).

To further investigate the level of influence of the interac-
tion factor on the spatial heterogeneity of  PM2.5 component 
concentrations, this study used an interaction detector to 
reveal the interaction effect between the two drivers. The 
results of the interaction probe show that the explanatory 
power of the interaction between any two drivers on the spa-
tial heterogeneity of  PM2.5 fraction concentrations shows 
a two-factor enhancement or non-linear enhancement. It is 

also found that the interaction effect of any two drivers on 
 PM2.5 fractions is greater than the effect of individual drivers 
(Fig. 8 and Fig.S1). Specifically, the three critical interac-
tion factors with the highest extent of influence on  PM2.5 
spatial heterogeneity are NOE∩DI (note: the symbol ∩ indi-
cates the interaction between different socioeconomic fac-
tors), DI∩EC, and PVO∩SIS, with explanatory coefficients 
of 0.66, 0.70, and 0.67, respectively (Fig. 8a). NOE∩DI, 
DI∩EC, and DI∩SO2 are the three primary critical interac-
tion factors with non-linear enhancement on BC spatial het-
erogeneity, with explanatory coefficients of 0.68, 0.69, and 
0.70 (Fig. 8b). The three major key interaction factors with 
the highest degree of influence on OM spatial heterogene-
ity are NOE∩DI, DI∩EC, and PVO∩DI, with explanatory 
coefficients of 0.71, 0.74, and 0.68, respectively (Fig. 8c). 
NOE∩DI, NOE∩SIS, and NOE∩SO2 are the three main key 
interaction factors with non-linear enhancement on the spa-
tial heterogeneity of SO2− 4, all with an explanatory power 
of 0.68 (Fig. 8d). The three critical interaction factors with 
the highest degree of influence on the spatial heterogeneity 
of NH+ 4 are SIS∩PVO, SIS∩NOE, and  SO2∩NOE, with 
explanatory powers of 0.73, 0.67, and 0.67, respectively, and 
they have non-linear enhancement on the spatial variation of 
NH+ 4 concentration spatial heterogeneity with a non-linear 
enhancement effect (Fig. 8e). The NO− 3 spatial heteroge-
neity was most affected by the interactions of SIS∩PVO, 
SIS∩NOE, and  SO2∩NOE with the explanatory coefficients 
of 0.73, 0.68, and 0.65, respectively (Fig. 8f).

Figure 9 shows the spatial distribution of cluster results 
in each province, and the heat map shows the values of each 
of the seven driving types. We can use Fig. 9 to understand 

Fig. 7  The q value of  PM2.5 component impact factor detection
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the spatial distribution of each province type and the specific 
drivers that province is most influenced by. For  PM2.5 con-
centrations, EC was the most significant driver of  PM2.5 con-
centrations in the C1 (NC), C3 (SW), and C4 (EC) regions 
with regression coefficients of 0.67, 1.16, and 0.77, respec-
tively, and GDP (0.64) was the most important factor that 
affected the  PM2.5 concentrations in the C2 (NW and CC) 
region, followed by EC (0.42) (Fig. 9a). For BC concentra-
tions, EC was the largest driver affecting BC concentrations 
in the C1 (Most regions in China), C2 (NC), C3 (NE), and 
C4 (EC) regions with regression coefficients of 0.70, 0.93, 
1.40, and 0.86, respectively (Fig. 9b). Similarly, EC was also 
the most dominant driver of OM concentrations in the C1 
(most regions in China), C2 (NC), C3 (EC), and C4 (NE) 
regions with regression coefficients of 0.43, 0.95, 0.97, and 
0.89, respectively (Fig. 9c). For NH+ 4 concentrations, EC 
had a significantly higher effect on NH+ 4 concentrations in 
the C1 (NW) and C4 (SW) regions than other factors with 
regression coefficients of 0.51 and 1.13, respectively. In con-
trast,  SO2 emissions (0.20) and GDP (0.85) had the largest 
effect on NH+ 4 concentrations in the C2 (NC and NE) and 
C3 (CC) regions (Fig. 9d). For NO− 3 concentrations, GDP 
was the largest influence on NO− 3 concentrations in the C2 
(NW and CC) and C3 (SW) regions with regression coef-
ficients of 0.85 and 0.60, respectively;  SO2 emissions were 
the primary driver of NO− 3 concentration changes in the 
C1 (NC and NE) and C4 (EC) regions (Fig. 9e). For SO2− 4 
concentrations, EC was the most important driver affecting 
the change of SO2− 4 concentrations in C2 (NC and NE), 

C3 (EC), and C4 (SW) regions, while GDP was the primary 
factor affecting the change of SO2− 4 concentrations in C1 
(NW and CC) region (Fig. 9f).

Discussion

Spatial pattern of  PM2.5 chemical components

The spatial distribution of  PM2.5 chemical components has 
a clear high-concentration area. These areas are mainly 
concentrated in the economically developed, populous, and 
industrially dense areas of Beijing-Tianjin-Hebei (BTH), 
Central China, and East China. Jin et al. (2017) showed 
that these regions become hotspots of  PM2.5 pollution in 
China, which is related to the huge energy consumption 
and special geographical location. For example, BTH, as 
a major industrial agglomeration in China, has an energy 
consumption of about 0.56 tons of standard coal equivalent 
per 10,000 yuan of regional GDP in 2017 only which is 
significantly higher than the national average. Furthermore, 
some regions in BTH, have frequent unfavorable meteoro-
logical conditions (stable atmospheric section, smaller wind 
speed, etc.) due to their special geographical location, which 
suppress the horizontal transport and vertical diffusion of 
atmospheric pollutants and exacerbate the deterioration of 
the regional atmospheric environment (Cheng et al. 2016; 
He et al. 2017). Our study also found that SNA accounted 
for more than 50% of  PM2.5 in all study areas, which was 

Fig. 8  The q value of interaction detection between influencing factors
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similar to the findings of Geng et al. (2017) and Ma et al. 
(2019) who suggested that SNA in  PM2.5 are readily gener-
ated in the atmosphere through secondary transformation of 
gaseous pollutants and were the most important components 
of atmospheric particulate matter, as well as the signature 
products of secondary atmospheric pollution.

Trend variations of  PM2.5 chemical fraction

The results of trend analysis showed that the trend of 
 PM2.5 chemical fraction in China was inverted U-shaped 
with strong spatial variation. Before 2013, the coal-based 
energy structure and the rough economic development 
model in China were the main reasons for the intensi-
fication of  PM2.5 pollution and the continuous increase 
of the corresponding chemical fraction in China. Previ-
ous studies have shown that fossil energy accounted for 
86.2% of China’s energy consumption structure until 2013, 
while other energy accounts for only 13.8%. The intensive 

consumption of fossil energy exacerbates the emission of 
pollutants such as soot,  SO2, NOx, CO, and VOCs, further 
contributing to the degradation of air quality in China. 
Additionally, the high energy consumption per unit of 
GDP in China’s economic development process is also an 
important factor in the frequent occurrence of air pollution 
episodes (Cheng et al. 2021; Wang et al. 2020). This coal-
based energy consumption emits a large amount of soot, 
 SO2, NOx, CO, VOCs, and many other pollutants, which 
brings serious air pollution problems to China. Further-
more, China is characterized by a large economic volume 
and high energy consumption per unit of GDP. Economic 
growth often relies on increasing the amount of inputs 
of production factors to expand the scale of production. 
Under such circumstances, China’s air pollutant emis-
sions approach or even exceed the environmental carrying 
capacity, which, combined with unfavorable meteorologi-
cal conditions, has led to frequent air pollution events on 
a large scale and in multiple regions (Ming et al. 2017).

Fig. 9  Four types of provinces obtained by clustering of the MGWR 
coefficients. Here, the map represents the spatial distribution of the 
clustering results of the dependent variables  PM2.5 (a), BC (b), OM 

(c), NH+ 4 (d), NO− 3 (e), and SO2− 4 (f), and the heat map repre-
sents the clustering results of the MGWR coefficient
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The dominant factor that shows a significant decrease 
in  PM2.5 concentrations and component concentrations in 
China after 2013 is the emission reduction. Especially, after 
China promulgated and implemented the Action Plan for 
the Prevention and Control of Air Pollution in 2013, the 
emission of sulfur dioxide, nitrogen oxides, and primary 
 PM2.5 in China was reduced by 16.4 million tons, 8 million 
tons, and 3.5 million tons, respectively, which resulted in a 
significant decrease in the exposure level of  PM2.5 concen-
tration for the Chinese population. In particular, the popu-
lation-weighted annual average  PM2.5 concentrations in the 
BTH, Yangtze River Delta (YRD), and Pearl River Delta 
(PRD) regions decreased from 102.8, 67.1, and 47.8μg/m3 
in 2013 to 66.1, 44.0, and 34.4μg/m3 in 2017, respectively 
(Geng et al. 2017). Meanwhile, the trend analysis found that 
the  PM2.5 fraction concentration remained on a substantial 
downward trend after 2019 in China, the most important 
reason being the strong nationwide blockade measures 
implemented by the Chinese government to combat the 
rapid spread of the virus after the COVID19 outbreak. The 
unprecedented cessation of human activities led to a slow-
down or even a standstill in industrial production, which 
inevitably resulted in a reduction in energy consumption, 
carbon emissions and industrial pollution (He et al. 2021). 
For example, He et al. (2020) found that the Chinese govern-
ment’s lockdown measures during COVID-19 resulted in a 
19.84% decrease in air quality index (AQI) and a 14.07μg/
m3 decrease in  PM2.5 concentration in cities where the lock-
down policy was implemented.

Spatial heterogeneity of  PM2.5 chemical component 
emission drivers

The results of factor detection and interaction detection of 
the GD model show that different explanatory variables have 
effects on  PM2.5 component emissions to different extents. 
Among all explanatory variables, the effect of the NOE on 
 PM2.5 component emissions is significantly higher than other 
factors. This is because the NOE is an indicator that responds 
to the regional industrial level. The industrial level played 
an important supporting role in social and national eco-
nomic development. However, production emissions from 
the industrial sector are one of the major sources of air pol-
lution in China, and controlling industrial emissions poses 
a major challenge to air pollution control in China. Li et al. 
(2019) quantitatively evaluated the socioeconomic drivers of 
 PM2.5 spatial and temporal variation in China using a spatial 
econometric approach based on the  PM2.5 remote sensing 
inversion dataset from 1998 to 2013, and the results showed 
that industrial structure is considered to be one of the most 
important influencing factors on  PM2.5 spatial variation. The 
second industry, especially heavy industries such as steel and 
cement, causing serious pollution has been a key concern of 

the Chinese government in the last decade or so. Therefore, 
one of the effective measures to reduce  PM2.5 pollution is to 
adjust and optimize the industrial structure. Similarly, Yang 
et al. (2023) investigated the spatial and temporal evolution 
and drivers of  PM2.5 in key urban agglomerations in China 
based on a GD model, and they found similar results. These 
further suggested that industrial restructuring has an impor-
tant role in future  PM2.5 emission reduction in China.

In addition, the influence of NOE with DI, PVO, and SIS 
and interaction effects on  PM2.5 component emissions are 
more pronounced, as the superimposed effects of multiple 
factors closely related to air pollution can exacerbate air 
pollution levels. A recent study showed that the air pollu-
tion levels in the industrial area of Wuhan Optics Valley are 
significantly higher than those in the Yang Luo Industrial 
Zone, although they are both important industrial centers in 
Wuhan, yet the Wuhan Optics Valley area is also an impor-
tant transportation junction with significantly higher traffic 
flow than the Yang Luo area. This resulted in higher air 
pollution levels for similar industrial emission levels, under 
the influence of higher traffic emissions (Liang et al. 2016).

Based on the results of the MGWR model, we observe 
that GDP and  SO2 emissions have the strongest impact on 
 PM2.5, NO− 3, and SO2− 4 in North and East China. This 
can be attributed to the fact that these two regions produced 
more  PM2.5 emissions than other regions during the eco-
nomic development process. Meanwhile, this further indi-
cated the potential association between these economic 
indicators and  PM2.5 pollution. Additionally, these regions 
had a substantial potential to reduce  PM2.5 emissions in 
terms of economic development and industrial level (Ou 
et al. 2022; Xu and Lin, 2016). EC had a significant impact 
on NH+ 4 emissions in northwest China and BC and OM 
emissions in northeast China. The Northeast region was a 
major industrial center in China, and a substantial amount 
of industrial production was supported by large amounts of 
electrical energy. In addition, the Northwest and Northeast 
regions were among the coldest regions in China in winter 
and demand large amounts of electrical energy for domestic 
heating each year. The current electricity supply in Northeast 
and Northwest China is still dominated by thermal power 
generation, and the rapid increase of electric energy often 
requires the consumption of large amounts of fossil fuels, 
which will indirectly lead to NH+ 4, BC, and OM emissions 
in these regions (Han et al. 2011; Wang et al. 2018).

Research limitations and future prospects

Our research results reveal the spatial and temporal evo-
lution characteristics and driving factors of  PM2.5 fraction 
concentrations to a certain extent. However, there are some 
limitations and shortcomings in this study: first, due to the 
lack of monitoring data from urban and background sites, 
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this study has not discussed the variation of  PM2.5 fraction 
concentrations between urban and background sites and its 
causes in detail. Actually, there is a significant over-vari-
ation of  PM2.5 fraction concentrations between urban and 
background sites due to the difference in population density, 
income status, and industrial structure. Second, this study 
only explores the spatial and temporal patterns and drivers 
of  PM2.5 fraction concentrations at the provincial scale, with 
no further in-depth investigation of  PM2.5 fraction concen-
tration evolution patterns and their influencing factors at 
the municipal or grid scale. Third, the population exposure 
risk caused by air pollution is the most interesting hot issue 
currently. Although this study describes this issue to some 
extent in the introduction section, but the population expo-
sure risk problem caused by the change of  PM2.5 component 
concentration is not quantitatively assessed.

In the future study, we hope to integrate the site monitor-
ing data and reanalysis data to reveal the urban-rural vari-
ation characteristics of  PM2.5 fraction concentrations and 
population exposure risk from municipal or grid-scale using 
cross-method models such as environmental science, geo-
graphic information system (GIS), and epidemiology. This 
will provide key scientific support for authorities to imple-
ment regional air pollution control measures and reduce 
population exposure risk.

Conclusions

In this study, we quantitatively analyzed the spatial patterns, 
trends, and key influencing factors of  PM2.5 chemical com-
ponent concentrations in China utilizing the spatial analysis 
and spatial regression models based on the  PM2.5 chemi-
cal fraction concentration dataset from 2000 to 2019. The 
principal conclusions are as follows: the 20-year average 
concentrations of  PM2.5, SO2− 4, NO− 3, NH+ 4, OM and 
BC had significant spatial heterogeneity. The higher con-
centrations of  PM2.5, SO2− 4, NO− 3, NH+ 4, OM, and BC 
were mainly distributed in BTH, Central China, and East 
China. SNA had the highest fraction in  PM2.5 concentra-
tions (55.6–68.1% in different provinces), followed by OM 
and BC, which accounted for 26.4–36.1 and 5.5–8.2% of 
 PM2.5, respectively. The trend analysis shows that the change 
rates of  PM2.5, OM, BC, SO2− 4, NH+ 4 and NO− 3 in 
the entirety of China were −0.59, −0.23, −0.07, −0.15, 
−0.02, and 0.04μg/m3/yr, respectively, for the entire study 
period across China. Meanwhile, we found that the national 
mean  PM2.5, OM, BC, SO2− 4, and NH+ 4 concentration 
increased from 2000 to 2006 and subsequently decreased 
from 2007 to 2019, and the changing rates varied greatly 
from province to province.

The results of the GD model indicated that the number 
of enterprises, disposable income, electricity consumption, 

private vehicle ownership, and the share of secondary indus-
try was the most important drivers of spatial differences in 
 PM2.5 fraction concentrations in China. Furthermore, the 
results of the MGWR revealed the spatial differences of each 
factor on  PM2.5 component concentrations. The factors of 
GDP and  SO2 emissions in North and East China have sig-
nificantly stronger effects on  PM2.5, NO− 3, and SO2− 4 
than those in Northwest and Southwest China. Electricity 
consumption had the most significant effects on NH+ 4 
emissions in Northwest China and BC and OM emissions 
in Northeast China.
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