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Abstract
The study goal was to determine spatiotemporal variations in chlorophyll-a (Chl-a) concentration using models that combine 
hydroclimatic and nutrient variables in 150 tropical reservoirs in Brazil. The investigation of seasonal variability indicated 
that Chl-a varied in response to changes in total nitrogen (TN), total phosphorus (TP), volume (V), and daily precipitation 
(P). Therefore, an empirical model for Chl-a prediction based on the product of TN, TP, and normalized functions of V and 
P was proposed, but their individual exponents as well as a general multiplicative factor were adjusted by linear regression 
for each reservoir. The fitted relationships were capable of representing algal temporal dynamics and blooms, with an aver-
age coefficient of determination of R2 = 0.70. The results revealed that nutrients yielded better predictability of Chl-a than 
hydroclimatic variables. Chl-a blooms presented seasonal and interannual variability, being more frequent in periods of high 
precipitation and low volume. The equations demonstrate different Chl-a responses to the parameters. In general, Chl-a was 
positively related to TN and/or TP. However, in some cases (22%), high nutrient concentrations reduced Chl-a, which was 
attributed to limited phytoplankton growth driven by light deficiency due to increased turbidity. In 49% of the models, pre-
cipitation intensified Chl-a levels, which was related to increases in the nutrient concentration from external sources in rural 
watersheds. Contrastingly, 51% of the reservoirs faced a decrease in Chl-a with precipitation, which can be explained by the 
opposite effect of dilution of nutrient concentration at the reservoir inlet in urban watersheds. In terms of volume, in 67% of 
the reservoirs, water level reduction promoted an increase in Chl-a as a response to higher nutrient concentration. In the other 
cases, Chl-a decreased with lower water levels due to wind-induced destratification of the water column, which potentially 
decreased the internal nutrient release from bottom sediment. Finally, applying the model to the two largest studied reservoirs 
showed greater sensitivity of Chl-a to changes in water use classes regarding variations in TN, followed by TP, V, and P.
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Introduction

Eutrophication is one of the world’s most critical environ-
mental issues concerning reservoirs and other aquatic envi-
ronments. Excessive nutrient loading into water bodies is 
considered the main induction factor of water eutrophica-
tion (Paerl et al. 2016; Andrade et al. 2020), particularly 
total nitrogen (TN) and total phosphorus (TP), as they are 

essential for the growth of phytoplankton (microalgae and 
cyanobacteria) and macrophytes (aquatic plants) (Schindler 
2006; McCrackin et al. 2017). However, although often 
associated with consistent nutrient enrichment, the mecha-
nisms that dictate eutrophication’s effects on uncontrolled 
phytoplankton growth and algae blooms are not yet fully 
understood (Padedda et al. 2017; Namsaraev et al. 2020). In 
recent years, outbreaking of harmful algal blooms is becom-
ing more frequent, posing severe risks not only to water 
quality but also to human health and economic development 
(Jargal et al. 2021; Li et al. 2021a, b). Therefore, in regions 
with high climate variability and frequent occurrence of 
extreme droughts and reflooding events, such as the Bra-
zilian Northeast, reservoirs are particularly susceptible to 
water quality deterioration and subsequent eutrophication 
due to continued anthropogenic pressure on water bodies 
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(Pontes Filho et al. 2020; Wiegand et al. 2021; Carvalho 
et al. 2022).

Chlorophyll-a concentration (Chl-a) has been a useful 
indicator for measuring phytoplankton or algal biomass (Li 
et al. 2021a, b). For this reason, exploring the complex rela-
tionships between the aquatic environment and Chl-a behav-
ior has always been a crucial strategy for sustainability and 
better management of water resources (Lu et al. 2016; Luo 
et al. 2019). Initially, mathematical models were developed 
by Vollenweider (1968), Dillon and Rigler (1974), Jones 
and Bachmann (1976), and Pridmore et al. (1985), relat-
ing Chl-a in lakes and marine environments to phosphorus 
or nitrogen through linear or non-linear regressions. More 
recently, researchers have used empirically based models to 
explore the correlation of Chl-a with other parameters such 
as reservoir characteristics, watershed occupation, and phys-
icochemical characteristics of the water (Tang et al. 2019; 
Franklin et al. 2020; Hara et al. 2020; Yuan and Jones 2020; 
Mamun et al. 2021a) and hydroclimatic variations (volume, 
precipitation, temperature, and wind speed) (Wang et al. 
2014; Paerl et al. 2016; Tang et al. 2019). Despite being 
simple to implement, these models are developed for lakes 
and reservoirs with regional characteristics, which can lead 
to significant prediction errors in regions with water deficits 
and a high degree of uncertainty in the spatio-temporal dis-
tribution of rainfall, such as tropical reservoirs (Chaves et al. 
2019; Andrade et al. 2020; Lopes et al. 2021).

With the development of artificial intelligence, other 
models and approaches have been used to understand pri-
mary production in aquatic environments, such as machine 
learning models (Lu et al. 2016; Franklin et al. 2020; Frank-
lin et al. 2020; Liao et al. 2021; Thi Hoang Yen et al. 2021; 
Carvalho et al. 2022; Chusnah and Chu 2022; Kim and Ahn 
2022) and monitoring through remote sensing satellites 
(Gidudu et al. 2021; Mamun et al. 2021a, b; Rotta et al. 
2021; Stefanidis et al. 2021; Aranha et al. 2022; Kayastha 
et al. 2022). Despite predicting Chl-a levels with satisfactory 
accuracy, these models strongly depend on a large number 
of input variables (extensive time series, initial conditions 
and boundary conditions), which limits their application 
in regions with data scarcity (Park et al. 2015; Zeng et al. 
2017). Although several models in the literature attempt to 
predict the Chl-a’s concentration and blooms in aquatic envi-
ronments, due to the complexity and nonlinearity associated 
with the factors involved, few research focused on the devel-
opment of simple empirical models that combine hydrocli-
matic and nutrient factors in tropical reservoirs, particularly 
in the northeast region of Brazil.

This study proposes models that innovatively combine 
hydroclimatic and nutrient variables to predict Chl-a levels 
and blooms through simple empirical equations in 150 tropi-
cal reservoirs located in the state of Ceará, in the Brazilian 
Northeast. In this water-scarce region with relatively high 

population density (approximately 9 million inhabitants 
within an area of 149,000  km2), the construction of reser-
voirs to store water during wet periods has been the solution 
to cope with water shortage and recurrent droughts, result-
ing in watersheds with dense reservoir networks subject 
to significant variations in precipitation and volume, high 
trophic levels, and recurrent cyanobacterial blooms (Rabelo 
et al. 2021; Rocha and Lima Neto 2021a; Wiegand et al. 
2021; Lima Neto et al. 2022). Therefore, suitable models 
are required to predict Chl-a concentrations accurately. This 
study aims (1) to characterize the spatio-temporal variability 
of hydroclimatic and water quality parameters of the study 
reservoirs; (2) to identify the relevance of each input vari-
able in the Chl-a dynamics; (3) to define the variables that 
best describe the concentration peaks; and (4) to simulate 
scenarios of water quality change using the empirical models 
developed for Chl-a prediction.

Methodology

Study sites and data collection

The study focused on 150 reservoirs in the State of Ceará, 
a tropical region of the Brazilian Northeast (Fig. 1). This 
region is characterized by a variable and irregular spatio-
temporal distribution of precipitation, high evaporation rates, 
high stable temperatures (seasonal), and recurrent droughts 
(Carneiro et al. 2014; Rocha and Lima Neto 2021a). In this 
region, the average precipitation rates range from 550 to 
1100 mm/year, and the rainy season comprises the period 
from January to May when about 80% of the annual precipi-
tation occurs.

The analyzed data consists of 3835 sets of samples of 
nutrient concentrations (TN and TP), Chl-a concentrations, 
volumetric percentage (V), and daily precipitation (P) for 
150 reservoirs distributed in the 12 hydrographic regions of 
the state of Ceará. The main water uses from these reservoirs 
are: human supply, aquaculture, fish farming, and irrigation. 
Artisanal fishing and family farming occur in 55% and 56% 
of these reservoirs, respectively. Therefore, the main non-
point pollution sources are attributed to livestock, agricul-
ture, soils, and point sources resulting from sewage and fish 
farming (Ceará 2018). Reservoirs with relevant aquaculture 
practices receive the most attention in mitigating the poten-
tial impacts of changes in water volume and quality, mainly 
due to economic losses related to these processes (Rocha 
and Lima Neto 2021a, b, 2022). The geographic location 
and storage capacity of the analyzed reservoirs are detailed 
in Table S1 in the supplementary material.

This research used data from publicly available data-
bases. The historical series (2008–2021) of volumetric 
percentage and water quality parameters (TN, TP, and 
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Chl-a) were obtained from the Ceará Hydrological Platform 
(Ceará 2021). The dataset of hydrological parameters and 
water quality of reservoirs made available by this platform 
results from a partnership between the Ceará State Water 
Resources Management Company (COGERH) and the Ceará 
State Water Resources Department (SRH). Monitoring is 
carried out in quarterly campaigns. Water quality informa-
tion is obtained in the field through a multiparameter probe 
and water samples collected 0.3 m from the surface for 
laboratory analysis according to APHA (2005). The daily 
precipitation dataset was obtained from the Meteorology 
and Water Resources Foundation of Ceará (FUNCEME) 
(Ceará 2022a). Measurement stations in each reservoir or 
municipality in which they are located were selected accord-
ing to data availability. The daily precipitation values were 
normalized through the relationship between the observed 
precipitation and the maximum precipitation identified in 
the series of each reservoir.

Spatio‑temporal analysis of parameters

Data were divided into three periods with similar intervals: 
P1 (2008–2012) (n = 504), P2 (2013–2017) (n = 1646), and 

P3 (2018–2021) (n = 1685). P2 represents a long and severe 
period of drought faced in the state of Ceará, triggered in 
2012 (Araújo and Bronstert 2016; Wiegand et al. 2021). 
Each period’s means, standard deviation, and maximum and 
minimum values were calculated for each basin. The mean 
concentrations of each basin were classified according to 
the class intervals presented in Table 1, which were defined 
based on the reference values suggested by CONAMA 357 
(Brasil 2005). The variation of TN, TP, Chl-a, V, and P 
among the studied periods was statistically analyzed with 
the non-parametric Kruskal–Wallis test (p < 0.05), since the 
observations have an unequal duration within each period.

Empirical equations

In this study, to estimate the concentration of Chl-a in the 
reservoirs, an empirical model based on four components 
(TN, TP, V, and P) was developed. In order to include 
the contributions of each input in Chl-a concentration, 
Microsoft Excel® Solver add-in was used to define the 
exponents of the input variables in Eq. 1. Through the 
GRG (Generalized Reduced Gradient) solution method for 
linear and non-linear optimizations, the tool performs a 

Fig. 1  Map of the study area geographic location (Ceará state, Brazil) showing sampling collection sites at each analyzed reservoir made avail-
able by the Ceará Water Resources Management Company (COGERH)
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series of interactions in which a given set of cells (expo-
nents a, b, c, d, and the multiplicative factor n) are changed 
to achieve the minimization of the chosen performance 
metric (RMSE) so that different coefficient values are esti-
mated for each reservoir in the data set.

In which Chl-aij is the concentration of Chl-a for reser-
voir i corresponding to sample j. The coefficients a, b, c, 
and d can assume negative or positive numerical solutions 
according to the influence of each parameter on the con-
centration of Chl-a. Note that TN, TP, and V are always 
higher than zero. However, since P = 0 during the dry peri-
ods, the last term [1 + P] was adopted as a sum with 1 to 
prevent null results in Eq. 1. In this case, for P = 0, the 
term becomes 1, meaning no precipitation effect. On the 
other hand, the higher the value of P, the higher the effect 
of precipitation in Eq. 1. To identify the most relevant 
parameters in the concentration of Chl-a in the reservoirs, 
simple linear regression models were developed to obtain 
the coefficient of determination (R2) (Eq. 2) between Chl-a 
and the nutrients TN and TP (Chl-a:TN and Chl-a:TP) 
and the hydroclimatic variables V and P (Chl-a:V and 
Chl-a:P).

Model performance

The developed empirical models were evaluated accord-
ing to the coefficient of determination (R2) (Eq. 2), which 
quantifies how much the dependent variable is determined 
by the independent variables in terms of the proportion 
of variance (Chicco et al. 2021). These coefficients were 
classified into four groups according to the performance 
evaluation criteria for statistical performance measures for 
watersheds proposed by Moriasi et al. (2015), considering 
nitrogen as the base parameter (which may be easier to 
predict than Chl-a): Unsatisfactory (U) (R2 ≤ 0.3), Satis-
factory (S) (0.3 < R2 ≤ 0.6), Good (G) (0.6 < R2 ≤ 0.7), and 
Very Good (V) (R2 > 0.7). In addition, the performance 
of the model was further evaluated using the root mean 
square error (RMSE) (Eq. 3), mean absolute error (MAE) 
(Eq. 4), and percent bias (PBIAS) (Eq. 5).

(1)Chlaij = n(TNa
ij
TPb

ij
Vc
ij
[1 + P]d

ij
)

In which n is the number of observations in the dataset, 
y is the observed Chl-a, y̌ is the predicted Chl-a, and y is 
the mean observed Chl-a.

Sensitivity analysis and application of results

The sensitivity analysis was carried out by testing input 
values in the empirical equations of the largest strategic 
reservoirs in the state of Ceará: Castanhão/Médio Jaguar-
ibe and Orós/Alto Jaguaribe, and assessing the influence 
of water quality class changes on Chl-a concentration. 
For this, the maximum values of each class presented 
in Table 1 were associated with the mean values of the 
parameters in the dataset used for the development of each 
equation, resulting in five categories: categories 4, 3, 2, 
and 1 (represent the association of a variable with a con-
centration in classes 4, 3, 2, and 1 to the mean values of 
the other input variables) and Category 0 (represents the 
combination of the average of all parameters). To help 
visualize the effects of Chl-a modeling contribution to 
water quality management, the most favorable and unfa-
vorable scenarios concerning the modeled Chl-a concen-
tration for the Castanhão/Médio Jaguaribe and Orós/Alto 
Jaguaribe strategic reservoirs were identified. All possi-
ble combinations among model components were simu-
lated using the maximum values of each class defined in 
Table 1 for each reservoir.

(2)R2 = 1 −

∑n

i=1(yi−ŷi)
2

∑n

i=1(yi−yi)
2

(3)RMSE =

√√√√
n∑

i=1

(ŷi − yi)
2

n

(4)MAE =

∑n

i=1�ŷi−yi�
n

(5)PBIAS =

∑n

i=1(yi−ŷi)∑n

i=1(yi)

Table 1  Classification intervals adopted for Chl-a, TN, and TP based 
on the water quality class suggested by CONAMA Resolution 357 for 
different uses of lentic water bodies. V represents the percent volume 

of the reservoirs based on their total capacity. P(mm) is the average 
daily precipitation. Precipitation (P) limits were defined based on the 
minimum and maximum values observed in the sample

Class Chl-a ( g.L-1) TN (mg.L-1) TP (mg.L-1) V (%) P (mm)

C1 0< Chl-a ≤10 0.00 < TN ≤ 1.00 0.00 < TP ≤ 0.02 75< V ≤100 0.00< P ≤1.86

C2 10< Chl-a ≤30 1.00 < TN ≤ 2.00 0.02 < TP ≤ 0.03 50< V ≤75 1.86< P ≤3.74

C3 30< Chl-a ≤60 2.00 < TN ≤ 5.60 0.03 < TP ≤ 0.05 25< V ≤50 3.74< P ≤5.62

C4 Chl-a >60 TN > 5.60 TP > 0.05 0< V ≤25 5.62< P ≤7.50
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Results

Limnological and spatio‑temporal analysis 
of variables

The mean and standard deviation values for the parameters 
TN, TP, Chl-a, V, and P in the studied reservoirs were, 
respectively, 1.949 (± 1.056) mg  L−1, 0.124 (± 0.083) mg 
 L−1, 47.624 (± 46.988) μg  L−1, 36.059 (± 20.161) %, and 
2.025 (± 0.775) mm. There was a wide variation in the 
mean concentration values of TN (0.659–2.673 mg  L−1), 
TP (0.025–0.189 mg  L−1), and Chl-a (15.555–53.644 μg 
 L−1) within the watersheds. The highest mean concentra-
tions of TN and Chl-a were identified in the Banabuiú 
(BN) basin, while the highest TP level was identified in 
the Sertões de Crateús (SC) basin.

The spatiotemporal variability of the parameter means 
(Figure S1, supplementary material) during periods P1, 
P2, and P3 can be observed through the color scale map 
shown in Fig. 2, which indicates parameter classifica-
tion in the framing classes established in Table 1 for each 
basin. The statistical analysis resulted in a significant p 
value (< 0.05) to support differences in the mean concen-
tration of TP and TN among P1, P2, and P3 for all basins 
except Serra da Ibiapaba (SI). Regarding Chl-a, significant 
differences within the periods were identified for 58% of 
the analyzed basins. As for the hydroclimatic variables, 
statistical differences among the three periods were shown 
in 92% and 75% of the basins under study. During P1 and 
P3, the reservoirs had higher volumetric percentages and 
higher mean annual precipitation (860 and 886 mm/year), 
with a mean volume of 42.38% and 58.51% and mean 
daily precipitation of 1.747 (± 0.160) and 1.642 (± 0.163) 
mm. However, during P2, V was reduced to 24.21%, with 
approximately 30% of the reservoirs with a mean volume 
lower than 15%. Despite the mean annual precipitation in 
this period being lower than the others (613 mm), P was 
higher (2.503 ± 0.123), indicating rainfall events of greater 
intensity distributed during long periods.

The mean and standard deviation values of TN, TP, 
and Chl-a during P1 were 1.062 (± 0.984) mg  L−1, 0.111 
(± 0.160) mg  L−1, and 22.896 (± 32.894) μg  L−1. In the 
following period (P2), nutrient and Chl-a concentrations 
increased to 2.421 (± 2.509) mg  L−1, 0.137 (± 0.163) mg 
 L−1, and 62,401 (± 102.326) μg  L−1. Likewise, during 
P3, where volume accumulation conditions improved, 
the mean concentrations were 1.654 (± 1.874) mg  L−1, 
0.101 (± 0.123) mg  L−1 and 36.064 (± 51.295) μg  L−1. 
From period P1 to P2, as mean percent volume decreased 
in all basins and mean P increased in 67%, mean values 
of NT, PT, and Chl-a increased in 92%, 75%, and 100% 
of the basins, respectively. Similarly, from P2 to P3, as 

precipitation and volume increased in most basins (92%), 
NT, PT, and Chl-a mean values were reduced in 100%, 
84%, and 92% of the studied basins.

Time series of the studied variables for the reservoirs 
Castanhão and Orós (see Figure S2 for the time series of 
the larger reservoirs in each watershed) are shown in Fig. 3. 
These reservoirs differ from the others due to their high vol-
umetric capacity of 6700  hm3 and 1940  hm3, respectively, 
being the largest strategic reservoirs in the state. Mann–Ken-
dall’s non-parametric trend test suggested an upward trend 
(p value < 0.05; Z > 0) in the nutrient time series data while 
a downward trend (p value < 0.05; Z < 0) is observed in the 
volume database considering the three studied periods. 
Therefore, although variable, the concentration of nutrients 
and Chl-a in these reservoirs showed an increasing trend 
while the volume in the reservoir progressively decreased 
over time.

Chlorophyll‑a modeling

To test the predictive capacity of each input, linear regres-
sion models were employed to establish the parameters’ 
correlation to Chl-a. The variable with the highest mean R2 
was TN (0.400 ± 0.27), followed by TP (0.260 ± 0.228), V 
(0.204 ± 0.157), and, finally, P (0.053 ± 0.090). Using the 
performance evaluation criteria proposed by Moriasi et al. 
(2015), the highest number of correlations considered at 
least satisfactory (R2 > 0.3) was between Chl-a and TN in 
57% (n = 86) of the reservoirs, followed by TP with 41% 
(n = 61). For most data, V and P presented unsatisfactory 
correlations, with only 27% (n = 40) and 3% (n = 4) of the 
reservoirs with satisfactory R2, respectively. These results 
are illustrated in Table 2 for the highest volumetric capacity 
reservoirs in each studied basin and listed for all the 150 
reservoirs in Table S2 (supplementary material).

The empirical models developed to predict Chl-a used 
four input variables: TN, TP, V, and P. Due to the very differ-
ent characteristics among the studied reservoirs, such as total 
capacity, hydrographic basin type (rural or urban), climatic 
conditions, etc., the development of general models (i.e., 
grouping datasets into similar concentrations, hydrographic 
basins or into single dataset) did not result in significant 
performances. Therefore, individual models were devel-
oped for each reservoir, preserving their intrinsic charac-
teristics. Table 2 presents the resulting empirical equations 
and evaluation metrics (R2, RMSE, MAE, and PBIAS) for 
the reservoirs with the highest volumetric capacity in each 
studied basin. Table S2 (supplementary material) lists these 
results for the 150 evaluated reservoirs. The mean meas-
ured (45.637 μg  L−1) and modeled (44.477 μg  L−1) Chl-a 
values were very similar, considering all dataset. Accord-
ingly, mean differences of less than 10% were identified in 
82% of the reservoirs (n = 122). Since the amount of data 
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per reservoir is limited, applying a more robust validation 
model of the empirical equations (through a test dataset, 
for example) was not feasible. Thus, model validation was 
performed in a simplified way, comparing the measured and 
modeled Chl-a throughout the study period (see Figure S3, 
supplementary material).

Following the performance evaluation criteria sug-
gested by Moriasi et al. (2015), all models were Satisfac-
tory (R2 > 0.3), with 69% (52) of the reservoirs with Good 
or Very good performance (R2 > 0.6). The mean R2 for all 
models was 0.699 (RMSE = 17.259 and MAE = 13.581 μg 
 L−1). In addition, all developed models showed statistically 
significant R2 (p < 0.01). Comparisons of modeled versus 
observed time series of Chl-a for the largest reservoir of 
each watershed are shown in Fig. 4 (see Figure S4 for the 
150 reservoirs). In general, the estimated Chl-a concentra-
tion followed well the temporal behavior of the data, noting 
that, even in models with lower statistical performance, such 
as the Jaburu I/SI (R2 = 0.32) and Orós/AJ (R2 = 0.51), the 
model showed consistency in the prediction of concentration 
peaks. Thus, the models proved to be adequate for evaluat-
ing the temporal variability of Chl-a concentration in the 
studied reservoirs. During the wet season (P1), blooms are 
distributed evenly throughout the year. However, in P2 and 
P3, marked by lower accumulation volumes and high varia-
bility in precipitation events, most concentration peaks were 
identified between January and May (mainly in April and 
March), which generally comprises 80% of the state’s annual 
precipitation (Campos 2011), and in November, which has 
the highest mean monthly TN observed (2.19 mg  L−1).

Discussion

Spatiotemporal patterns of variables

The results showed that TN, TP, and Chl-a were highly 
variable at spatiotemporal scale. However, the concentra-
tions were within the ranges reported in the literature for 
reservoirs in the Brazilian Northeastern (Cortez et al. 2017; 
Wiegand et al. 2021; Rocha and Lima Neto 2022; Rocha 
et al. 2022). The worse water quality identified in BN and 
SC can be attributed to several factors. For example, BN is 
the basin with the highest density of reservoirs among those 
evaluated. In these types of basins, smaller reservoirs that 
are usually empty at the beginning of the rainy season favor 
significant sediment retention and intensify its transport to 
downstream reservoirs due to inflow increase (Rabelo et al. 
2021). In addition, the existence of several smaller reservoirs 

with lower hydrological efficiency upstream of strategic res-
ervoirs leads to volume reduction; BN, for example, reached 
0.7% of its volumetric capacity during the dry season (P2) 
(Lima Neto et al. 2011; Malveira et al. 2012; Mamede et al. 
2018; Freire et al. 2022). According to Schönbrunner et al. 
(2012), repeated drying and wetting episodes result in ele-
vated phosphorus release due to enhanced mineralization 
rates and reduction of iron hydroxide, especially when dry-
ing periods lead to a significant (80%) water content reduc-
tion (Bai et al. 2019). As for SC, the high concentrations can 
be attributed to the reservoir monitoring site being located 
immediately downstream of stabilization pond systems 
(Freire et al. 2021, 2022).

The temporal distribution of the variables showed that, 
in most basins, the reservoir volume reduction and the 
increase in sporadic precipitation events of greater intensity 
caused an increase in nutrient concentration and changes 
in framing classes during the drought period (P2) and in 
the subsequent period (P3), which was also evidenced in 
studies in other regions (Bortoletto et al. 2015; Cruz et al. 
2019a, b). Especially in the state of Ceará, seasonal volume 
variability is highly influenced by changes in precipitation 
levels, where, due to the tropical/semiarid condition inflow 
is completely interrupted during dry periods (Cavalcante 
et al. 2018; Rocha and Lima Neto 2021b). In summary, as 
expected, drought events cause rapid deterioration of water 
quality (Cavalcante et al. 2021; Rocha and Lima Neto 2022).

In contrast to the other basins, SL and SI showed the 
lowest averages of nutrient concentration in the three 
evaluated periods. In fact, better water quality in these 
basins may be associated with regional groundwater flow 
and reservoir density, respectively. The SL basin has the 
unique sedimentary geological formations in the state, 
which provides significant groundwater reserves. Studies 
have shown that isotopic similarities between wells and 
small reservoirs allow the interaction between surface 
water and groundwater, with water recharge and increased 
oxygen availability, significantly reducing nutrient loads, 
especially total phosphorus in tropical reservoirs (Alberto 
et al. 2004; Machado et al. 2004; Lewandowski et al. 2015; 
Moura et al. 2020; Wiegand et al. 2021). On the other hand, 
due to its sedimentary hydrogeological characteristic, the 
SI hydrographic region has fewer water bodies than the 
other studied basins (Ceará 2022b). As mentioned earlier, 
the high density of reservoirs is a characteristic that poten-
tially contributes to the deterioration of water quality since 
it favors the retention of sediments and the reduction of 
inflow to downstream reservoirs (Lima Neto et al. 2011; 
Mamede et al. 2018).

In the largest reservoirs under study (Castanhão and 
Orós), the high TP levels observed (0,104 mg  L−1 for both 
reservoirs) may be related to the significant input of exter-
nal loads of nutrients and sediments from non-point sources 

Fig. 2  TN (A), TP (B), Chl-a (C), V (D), and P (E) mean value clas-
sifications according to Table 1 framing classes during the periods P1 
(2008–2012), P2 (2013–2017), and P3 (2018–2021)

◂
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Fig. 3  Time series plot of total nitrogen (A), total phosphorus (B), chlorophyll-a (C), volumetric percentage (D), and daily precipitation (E) for 
the strategic reservoirs Castanhão (MJ) and Orós (AJ) during the periods P1 (2008–2012), P2 (2013–2017), and P3 (2018–2021)

Table 2  Mean coefficients of determination (R2) resulting from sim-
ple linear regression between Chl-a and TN, TP, V, and P. Developed 
empirical equations and their respective performance metrics for the 

largest capacity reservoirs in each hydrographic region under study 
are also indicated

Bold values represent the state’s largest strategic reservoirs in study
1 Watershed
2 Reservoir name: 2, Araras; 30, Orós; 40, Snt Ant. De Russas; 41, Banabuiú; 63, Itaúna; 76, Pentecoste; 84, Missi; 95, Castanhão; 120, Pacoti; 
131, Flor Do Campo; 136, Jaburu I; 137, Atalho
3 N = number of samples
4 Statistic performance: V, Very good; G, Good; S, Satisfactory; U, Unsatisfactory

WS1 R2 N3 R2 [Chl-a:f] Chl-a = n(TNa  TPbVc[1 + P/Pmax]d)

TN TP V P R2 MAE RMSE PBIAS P4 n a b c d

AC 2 34 0.56 0.55 0.46 0.00 0.86 18.64 25.99  − 0.80% V 871  − 0.05 0.24  − 0.75  − 0.37
AJ 30 32 0.43 0.06 0.25 0.01 0.51 8.50 10.32  − 0.47% S 15 0.79  − 0.19  − 0.04 0.48
BJ 40 21 0.73 0.86 0.09 0.04 0.98 7.20 9.91 4.46% V 3,950  − 0.86 1.69 0.05  − 3.48
BN 41 24 0.06 0.00 0.17 0.21 0.71 8.37 9.86 5.15% V 17 0.04  − 0.45  − 0.45  − 3.51
CO 63 26 0.81 0.25 0.51 0.03 0.87 6.17 7.55  − 1.58% V 66 1.25  − 0.21  − 0.50 0.52
CR 76 41 0.76 0.43 0.23 0.03 0.79 13.26 16.21 0.30% V 50 0.53 0.13  − 0.05  − 0.59
LT 84 26 0.14 0.00 0.06 0.06 0.81 14.68 17.14 2.72% V 0.07 2.38  − 0.58 0.95 0.32
MJ 95 29 0.34 0.16 0.38 0.20 0.79 7.00 8.94  − 0.91% V 66 0.34 0.05  − 0.58 0.97
MT 120 39 0.19 0.19 0.06 0.00 0.61 12.50 15.05  − 0.75% G 278 0.43 0.39  − 0.31  − 0.30
SC 131 29 0.59 0.28 0.10 0.02 0.89 15.45 21.95 6.15% V 162 0.59 0.85  − 0.03  − 2.13
SI 136 35 0.06 0.02 0.21 0.01 0.32 0.80 1.01 0.04% S 14  − 0.11 0.07  − 0.37  − 0.04
SL 137 36 0.70 0.08 0.38 0.05 0.88 14.60 17.95 1.22% V 356 0.66 0.18  − 0.63  − 0.12
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Fig. 4  Time series plot comparison between modeled (red line) and measured (dashed black line) chlorophyll-a concentrations for all reservoirs under study
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from rural areas of greater extension (> 24,000  km2); such 
basins represent the most relevant irrigated cultivation 
areas in the state (Rocha and Lima Neto 2022). In previous 
studies on these reservoirs, high TP levels were associated 
by Raulino et al. (2021) to the volume decrease caused by 
inflow reduction, impacting the natural self-depuration of 
the rivers, increasing the nutrient transport and intensify-
ing the trophic state. Moreover, similar TP concentrations 
were identified in other studies in the same region by Figue-
iredo and Becker (2018) (0.021–0.147), Rocha et al. (2020) 
(0.118–0.302 mg  L−1), and Rocha and Lima Neto (2020) 
(0.04 and 0.59 mg  L−1), while in other non-tropical regions, 
less affected by high seasonal and annual variability of the 
water level, as well as the lower density of reservoirs, the 
values were significantly lower: 0.001–0.02 (Chen et al. 
2015), 0.004–0.0139 (Hennemann and Petrucio 2016), and 
0.008–0.009 (Jargal et al. 2021).

Correlation between Chl‑a, nutrients, 
and hydroclimatic variables

The regression results showed that TN was the variable with 
the best ability to predict Chl-a levels [58% (n = 87) of the 
reservoirs], resulting in a higher  R2 than all other parameters. 
Furthermore, in 73% (n = 110) of the reservoirs, TN better 
explained the variability of Chl-a than TP. Contrastingly, 
because it is considered the limiting nutrient for eutrophica-
tion and cyanobacterial blooms, TP has been adopted as a 
representative variable of water quality and eutrophication 
in lakes and reservoirs worldwide (Dillon and Rigler 1974; 
Xu et al. 2020; H.G. Kim et al. 2021a, b; Raulino et al. 2021; 
Zhang et al. 2022). However, the results observed for most 
reservoirs are consistent with the studies by Canfield (1983), 
which analyzed data from 223 lakes in Florida, and identi-
fied, through simple empirical equations, that TN was the 
main predictor of Chl-a in hypereutrophic lakes. TN was 
also the preponderant factor for algae production in 60% of 
the reservoirs studied by Wiegand et al. (2020) in the state of 
Ceará, being the nutrient that presented the best correlation 
with the concentration of Chl-a. These authors also reported 
that growth limitation was predominantly by TN during the 
wet period (2008–2012), shifting to TP during the dry period 
(2013–2017). Other studies also reported TN as the main 
Chl-a driver in temperate lakes and reservoirs worldwide 
(Bilgin and Bayraktar 2021; Kim et al. 2021a, b; Stepanova 
2021; Xu et al. 2022; Zou et al. 2022). This limiting nutri-
ent shifting effect may be associated with massive TP loads 
in these reservoirs. Observe that the studied reservoirs have 
been receiving, for decades, effluents from livestock, agri-
culture, and fish farming that are richer in phosphorus than 
nitrogen (Wiegand et al. 2020). Additionally, internal TP 
loading significantly contributes to the increase in TP con-
centrations (Rocha and Lima Neto 2022). In case of elevated 

phosphorus concentrations, planktonic nitrogen use may 
exceed inputs and deplete nitrogen supply in the tropogenic 
zone, decreasing the TN/TP ratio in the water column (Ding 
et al. 2018). As a result, the limiting status transfers from TP 
limitation to TN limitation, with this balance regulating the 
phytoplankton growth (Feng et al. 2020).

In the regression models developed in this research, the 
least influential variable was daily precipitation. Only four res-
ervoirs showed satisfactory R2, and all other reservoir adjust-
ments were statistically insignificant (p > 0.05). In previous 
studies, Hecht et al. (2022) evaluated the relative effects of 
climate change on algae blooms, identifying that blooms were 
sensitive to changes in precipitation, which could increase 
nutrient load or prevent blooms depending on the previous 
conditions of the aquatic environment. However, other stud-
ies have also concluded that assessing the isolated effects of 
precipitation on Chl-a levels can be a complex process, once 
while the increase in extreme precipitation events can increase 
external loads due to nutrient drag, it can also increase river 
flow, which can influence nutrient dilution, decrease water 
temperature, reduce water and constituents’ residence time, 
and restrict water flow (Mamede et al. 2018; Huang et al. 
2020; Wiegand et al. 2021; Freire et al. 2022; Hecht et al. 
2022). In general, the presence of significant correlations 
between Chl-a and the model parameters showed that the 
dynamics of Chl-a in the reservoirs may not be dictated by 
only one independent variable, being necessary to consider 
that the predictor variables, when combined, may present 
complementary information, as they are often correlated 
(Reynolds 1992; Paerl et al. 2016; Mesquita et al. 2020).

Chl‑a response to the model input variables

The results showed that the empirical models with the com-
bination of hydroclimatic and nutrients input variables per-
formed well to predict Chl-a. The models mean R2 (about 
0.70) was superior to Chl-a prediction models identified in 
previous studies by Rocha et al. (2020) (R2 = 0.34), Rotta 
et al. (2021) (R2 = 0.64), Carvalho et al. (2022) (R2 = 0.52), 
and Ventura et al. (2022) (R2 = 0.52) in the studied region, 
and similar to the performance of more complex methods by 
Liu et al. (2016) (R2 = 0.72), Lopes et al. (2021) (R2 = 0.76), 
Gidudu et  al. (2021) (R2 = 0.72), Aranha et  al. (2022) 
(R2 = 0.77), and Lu et al. (2022) (R2 = 0.75).

Furthermore, the input variables have different influ-
ences on the outcome of the models. For most models, 
Chl-a is positively related to TN and TP, which indicates 
that the increase in nutrient availability in the water col-
umn favors the increase in phytoplankton biomass, as 
expected (Paerl et al. 2016; Mamun and An 2017). How-
ever, negative exponents were observed for TN and TP in 
22% and 27% of the cases, respectively, occurring simul-
taneously in 6% of the reservoirs. Previous studies have 
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shown this effect. As reported by Wiegand et al. (2021), 
for 65 reservoirs in the same region, the limiting nutri-
ent shifted according to the observation period, with TN 
being predominant during the wet period and TP during 
the dry period. In other studies, Chl-a to nutrient nega-
tive relation was attributed to limited light availability for 
phytoplankton growth due to increased suspended parti-
cles in the water. Since intensive fish farming and artisa-
nal fishing occur, respectively, in 56% and 100% of these 
reservoirs (Ceará 2018), high concentration of suspended 
particles in the water column may occur as a result of the 
bioturbation behavior associated with the fish species com-
monly produced in the studied reservoirs (Wiegand et al. 
2020). It is also worth mentioning that, in cases where 
the two nutrients presented negative exponents, the V and 
P exponents were higher, indicating that, in these cases, 
the hydroclimatic variables were more influential in the 
prediction of Chl-a.

Regarding hydroclimatic parameters, most reservoirs 
(67%) had a negative exponent for volume, indicating a 
reduction in the concentration of Chl-a during periods of 
greater accumulation and lower nutrient concentration. The 
increase in volume had the opposite effect in 33% of the 
cases. Once the sedimentary concentration of nutrients may 
increase with reservoir age (Rocha and Lima Neto 2021a), 
this effect was investigated for the reservoirs with positive 
volume exponent. However, no clear trend was identified 
between Chl-a and reservoir age. The investigation of the 
complexity of the processes that occur as volume increases, 
such as the counterbalancing effects of nutrient dilution 
and water column stratification, which results in TP release 
from anoxic sediments (Wang et al. 2016; Moura et al. 2020) 
could improve the understanding of the positive effect vol-
ume had on Chl-a in this study. However, data on these com-
plex determinants were not available, justifying the absence 
of a simple relationship explaining this effect.

The increase in Chl-a is dictated in 49% of the reservoirs 
by the increase and in 51% by the reduction of daily precipi-
tation. In previous studies, Freire et al. (2022), investigat-
ing the influence of precipitation on nutrient concentration 
in the Ceará basins, also identified positive and negative 
relationships between TP and P in different watersheds. 
During precipitation events, surface runoff increases, and 
more sediment is transported, resulting in an excessive nutri-
ent load (Cruz et al. 2019a, b; Lira et al. 2020). Likewise, 
the increase in precipitation may imply an increase in the 
inflow into the reservoirs, which may cause a decrease in 
concentration through the dilution of nutrients (Tang et al. 
2019; Lima Neto et al. 2022). The negative exponents in 
this variable suggest that the “dilution effect” of the inflow 
(rainfall result) in some watersheds outweighs the “enrich-
ment effect” of the nutrient concentration in the reservoirs 
(Rocha and Lima Neto 2021a).

In general, the reduction in nutrient load (mainly TP) 
due to the dilution effect occurs when the predominant 
sources of pollution are punctual. However, in the case of 
predominantly diffuse sources, the release of TP retained in 
the sediments causes an increase in the load proportional 
to the inflow (Coffey et al. 2019; Freire et al. 2022; Lima 
Neto et al. 2022). In fact, the reservoirs in which increased 
precipitation intensity had a nutrient “enrichment effect” are 
mainly located (75%) in predominantly rural basins, where 
non-point sources of pollution are dominant, originating 
from soil and agriculture. This behavior was confirmed by 
Rocha and Lima Neto (2021a), who reported that the fitted 
TP concentration-flow relationship is related to the pollu-
tion source types: in rural basins dominated by non-point 
sources, the curves presented a “U-shaped” behavior (decay 
patterns and subsequent increase with flow), while in urban 
basins dominated by point sources, a dilution pattern (decay 
of concentration with the flow) prevailed.

It is worth mentioning, however, that 26 reservoirs 
(located mainly in the MT, BN, and AJ basins) presented 
a different fitting: positive exponent for the variable V and 
negative for P, which implies that the concentration of Chl-a 
increases with the increase in accumulated volume and 
decreases of precipitation. In reservoirs that face consider-
able deposition of nutrient-enriched sediments, conditions 
of high water temperatures favor stratification of the water 
column and rapid organic degradation, often forcing anoxic 
conditions on the bottom sediment, promoting a more sig-
nificant release of phosphorus to the water column (Moura 
et al. 2020; Lima Neto et al. 2022). In addition, in most of 
these reservoirs (74%), significant variations were observed 
in the volumetric percentage, and the mean accumulated vol-
ume was higher than in the other reservoirs during the dry 
period. Similar results were observed by Liu et al. (2015), 
Wang et al. (2021), and Wu et al. (2019, 2022). Continuous 
transitioning processes between low and high water levels 
can cause resuspension of accumulated material during peri-
ods of lower volume and higher wind shear, which, associ-
ated with the watershed use and occupation characteristics, 
can result in physical-chemicals variations of the water col-
umn and increased concentration of nutrients (Geraldes and 
Boavida 2005; Cruz-Ramírez et al. 2019; Rocha and Lima 
Neto 2022).

Finally, the analysis of Chl-a blooms through the investi-
gation of interannual variation patterns in the time series of 
the 150 reservoirs under study revealed that the occurrence 
of Chl-a peaks is mainly susceptible to changes in extreme 
events of precipitation. However, the complex interaction 
between nutrient loading and climate variability events 
makes it difficult to suggest a single parameter responsible 
for controlling algae blooms in reservoirs (Wilkinson et al. 
2022). Previous studies have reported that extreme precipi-
tation events followed by periods of drought are the ideal 
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scenario for blooms. During these periods, when tempera-
tures and water stratification are at their maximum, heavy 
rainfall can promote a significant increase in harmful algae 
blooms through increased nutrient loading, particularly in 
trophic environments (Michalak et al. 2013; Sinha et al. 
2017; Coffey et al. 2019; Wilkinson et al. 2022; Zou et al. 
2022). However, precipitation’s influence on concentration 
peaks is difficult to generalize. In addition to depending on 
the intensity and frequency of rainfall events (Ho and Micha-
lak 2020), it also depends on the initial conditions of the 
reservoir (Carvalho et al. 2022), the behavior between nutri-
ent concentration and inflow (Rocha and Lima Neto 2021a; 
Lima Neto et al. 2022) and other meteorological variables 
(wind speed, daily temperatures, evaporation rates, among 
others) (Woolway and Merchant 2019; Woolway et al. 2020).

Model sensitivity and assessment of water quality 
improvement scenarios

Sensitivity analysis was performed using the proposed models 
for Castanhão (MJ) and Orós (AJ) to evaluate the influence of 
the increase/reduction of a variable in the concentration of Chl-a 
using the classification range values proposed in Table 1. As 
shown in Table 3, the reservoirs’ average operating conditions 
(category 0) simulated using the mean concentration values for 
TN, TP, Chl-a, V, and P showed that both reservoirs had similar 
operating conditions. In this category, all input variables were 
classified into the same class, except for volume, which was 
lower for Castanhão (C4) than Orós (C3).

The simulations allowed to examine the effects of nutrient 
reduction in order to assess different strategies to improve 

water quality. For example, Chl-a concentration has differ-
ent responses in each reservoir. Orós’s model showed lower 
sensitivity to the input’s variability than Castanhão’s model. 
While for Castanhão changes in Chl-a framing class hap-
pened in seven different scenarios (five referring to Chl-a 
increase and two to Chl-a reduction), the model proposed 
for Orós only presented three scenarios in which Chl-a 
class is modified (two for Chl-a increase and one for Chl-a 
decrease).

Regarding the response of Chl-a concentration to hydro-
climatic variables, both reservoirs were influenced by the 
effect of precipitation. For Castanhão, extreme concentra-
tions of Chl-a (> 30 μg  L−1, classes 3 and 4) were obtained 
for all scenarios of increased P. As for Orós, changes in 
Chl-a class were only observed for C4 precipitation values. 
Similarly, in Castanhão, the proposed model predicted that 
only a 50% or 75% increase in volume (change from C4 to 
C2/C1) would promote a change of Chl-a class from C2 to 
C1, while Orós did not show significant sensitivity to any 
volume change. The greater sensitivity of Castanhão’s model 
to P, compared to Orós, may be attributed to its watershed’s 
sewage treatment connection, which, according to Freire 
et al. (2022), is the worst in the state with a percentage of 
only 4.2%. In addition, Castanhão dataset showed more sig-
nificant episodes of extreme water content reduction. In 50% 
of the data, the reservoir volume was less than 10%, while 
the same water content was observed in only 9% of Orós’ 
measurements.

Furthermore, the results showed that changes in TN fram-
ing classes promoted Chl-a changes in both reservoirs. How-
ever, no TP scenario simulation promoted changes in the Chl-a 

Table 3  Sensitivity of Chl-a 
to the input variables TN, 
TP, V, and P. C1, C2, C3, and 
C4 represent the maximum 
values for each class defined in 
Table 1. Category 0 represents 
the reservoir mean input 
values. Categories 4, 3, 2, 
and 1 represent, respectively, 
the combination of a variable 
with concentration in classes 
C4, C3, C2, and C1 with the 
mean values of the other input 
variables

C
A

T
E

G
O

R
IE

S

CASTANHÃO / MJ ORÓS / AJ
TN TP V P Chl-a TN TP V P Chl-a

0 C2 C4 C4 C1 C2 0 C2 C4 C3 C1 C3 

4

C4 C4 C4 C1 C3 

4

C4 C4 C3 C1 C4 

C2 C4 C4 C1 C2 C2 C4 C3 C1 C3 

C2 C4 C4 C1 C2 C2 C4 C4 C1 C3 

C2 C4 C4 C4 C4 C2 C4 C3 C4 C4 

3

C3 C4 C4 C1 C3 

3

C3 C4 C4 C2 C3 

C2 C3 C4 C1 C2 C2 C3 C3 C1 C3 

C2 C4 C3 C1 C2 C2 C4 C3 C1 C3 

C2 C4 C4 C3 C4 C2 C4 C3 C3 C3 

2

C2 C4 C4 C1 C2 

2

C2 C4 C3 C1 C3 

C2 C2 C4 C1 C2 C2 C2 C3 C1 C3 

C2 C4 C2 C1 C1 C2 C4 C2 C1 C3 

C2 C4 C4 C2 C3 C2 C4 C3 C2 C3 

1

C1 C4 C4 C1 C2 

1

C1 C4 C3 C1 C2 

C2 C1 C4 C1 C2 C2 C1 C3 C1 C3 

C2 C4 C1 C1 C1 C2 C4 C1 C1 C3 

C2 C4 C4 C1 C2 C2 C4 C3 C1 C3 
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framing class in Castanhão or Orós. For Castanhão, increases 
in TN concentrations to classes C3 and C4 promoted increases 
in Chl-a class to C3. However, TN reduction scenarios for this 
reservoir did not promote Chl-a class improvement, remaining 
as C2 even for TN’s lowest simulated value (C1). As for Orós, 
the only Chl-a framing class improvement scenario (C2 to C1) 
happens with TN concentration reduction to the minimum 
value (C1). In this perspective, while there are aquatic environ-
ments where exclusive phosphorus control will significantly 
reduce algal biomass, considerable reductions in phosphorus 
concentrations can be made in hypereutrophic environments 
without significantly reducing Chl-a values. In the absence of 
simultaneous nitrogen control, the TN:TP ratio can increase 
significantly, resulting in an increase rather than a decrease in 
algae biomass (Canfield 1983; Harris et al. 2014).

To test the model’s ability, a wide range of water quality 
scenarios were simulated, considering all plausible combi-
nations of the input variables concentrations in the framing 
classes presented in Table 1 (see Figure S5 and Table S3, sup-
plementary material). Figure 5 shows the six selected simula-
tions representing the most unfavorable (A), and favorable (B) 
scenarios concerning Chl-a concentration. In scenarios A1, 
A2, and A3, the worst Chl-a concentrations in both reservoirs 
are simulated. In scenario A1, these concentrations occurred 
due to the association of high nutrient concentrations, critical 
volume, and high daily precipitation. As observed previously, 
the improvement in TP concentration did not promote any 
changes in Chl-a framing class of these reservoirs.

The most favorable scenarios, observed through B1, B2, 
and B3, are conditioned to the occurrence of low levels of 

TN and P in both reservoirs. Under these conditions, neither 
the increase in TP concentrations nor volume reduction pro-
moted Chl-a framing class changes. Moreover, for Castan-
hão, the remaining simulations (Figure S5, supplementary 
material) showed that even in scenarios of low volumet-
ric percentages (C4) and high precipitation levels (C3), 
Chl-a concentrations of class 2 can be obtained through 
the reduction of TN, regardless of the TP content. However, 
for Orós, in all simulated scenarios (49) in which there is 
a combination of high TN (C3 and C4) and low TP (C1 
and C2), the modeled Chl-a concentration falls into Class 
4 (> 60 μg  L−1). The occurrence of increased blooms under 
similar conditions was reported in other studies, where in 
lakes and reservoirs with high concentrations of nitrogen, 
TN became the limiting nutrient, triggering the dominance 
of toxic cyanobacteria (Smith 1983; Prairie et al. 1989; 
Bachmann et al. 2003; González Sagrario et al. 2005; Yan 
et al. 2016; Yu et al. 2022). Nutrient management strategies 
aimed at exclusively reducing TP load can cause an imbal-
ance between TN and TP cycling in aquatic environments, 
interfering with the TN/TP ratio. Thus, in the context of 
climate change and the eutrophication processes to which 
these reservoirs are subjected, modeling the responses of 
Chl-a concentrations to nutrients and hydroclimatic factors 
is crucial for developing water quality management strat-
egies, especially specific nutrient reduction strategies for 
each water body. The generated relationships can also be 
combined with hydrological models in order to predict the 
impacts of extreme events and climate change on Chl-a con-
centrations (Raulino et al. 2021; Rabelo et al. 2021, 2022).

Fig. 5  Most unfavorable 
(scenario A) and favorable (sce-
nario B) results regarding the 
concentration of chlorophyll-a 
estimated through the empiri-
cal equations for the strategic 
reservoirs Castanhão/MJ and 
Orós/AJ
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Conclusions

The main purpose of this study was to use simple empiri-
cal methods to build a model to predict Chl-a based on 
hydroclimatic and nutrient data from multiple tropical 
reservoirs, and to analyze the relationships between 
the input variables and Chl-a. Spatiotemporal analy-
sis showed that seasonal dynamics induced significant 
changes in the water quality so that the concentrations 
of Chl-a showed an increasing trend with the reduction 
of the accumulation volume and the increase of TN and 
TP. The analysis of the importance of input variables in 
predicting Chl-a indicated that TN better explained the 
variability of Chl-a in 58% of reservoirs and was supe-
rior to TP in 73% of cases, indicating that TN is the most 
important predictor.

The developed models were able to reproduce the tem-
poral dynamics of Chl-a in the reservoirs. However, the 
input variables had different influences on the model’s 
outcome. For most reservoirs, nutrient increases promoted 
an increase in the levels of Chl-a. The cases in which the 
increase in nutrients is unfavorable to the reduction of 
Chl-a can be associated with limiting nutrient shifting 
and the limitation of phytoplankton growth due to light 
deficiency in abiotic turbidity conditions promoted by 
the practice of fish farming in these reservoirs. Similarly, 
although volume generally showed an inverse relationship 
with Chl-a, it had the opposite effect for some reservoir 
models. Likewise, the increase in Chl-a concentration is 
dictated in 49% of the reservoirs by the increase and in 
51% by the reduction of daily precipitation, indicating 
that each reservoir has a different response concerning 
nutrient dilution or enrichment effects associated with 
the increase in inflow, which is a response of precipita-
tion in the basin.

The simulations of input scenarios of class changes 
showed that regardless of the phosphorus concentrations 
in the two strategic reservoirs, the Chl-a concentration 
classes became more critical in scenarios with high nitro-
gen loads. This pattern indicates that measures to indi-
vidually control phosphorus production in reservoirs 
may not be sufficient to control eutrophication. In such 
cases, reservoir management techniques may be required 
to maintain the TN concentration in the water at accept-
able levels. These results provide a reference for monitor-
ing Chl-a fluctuations and understanding the mechanisms 
underlying nutrient concentrations in different reservoirs. 
By understanding the combined effect of nutrients and 
hydroclimatic variables on algae production in reservoirs, 
this study can provide valuable information for decision-
making and planning strategies to control water quality 
in tropical reservoirs. The proposed relationships can 

also be combined with hydrological models to predict the 
impacts of extreme events and climate change on Chl-a 
concentrations.
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