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Abstract
Streamflow estimation is important in hydrology, especially in drought and flood-prone areas. Accurate estimation of stream-
flow values is crucial for the sustainable management of water resources, the development of early warning systems for 
disasters, and for various applications such as irrigation, hydropower production, dam sizing, and siltation management. 
This study developed the ANN algorithm by optimizing with an artificial bee colony (ABC). Then, the ABC-ANN hybrid 
model, which was established, was combined with different signal decomposition techniques to evaluate its performance in 
streamflow estimation in the East Black Sea Region, Türkiye. For this purpose, the lagged streamflow values were divided 
into subcomponents using the local mean decomposition (LMD) with the empirical envelope and complete ensemble empiri-
cal mode decomposition with adaptive noise (CEEMDAN) signal decomposition techniques presented to the ABC-ANN 
algorithm. Thus, the success of the novel hybrid LMD-ABC-ANN and CEEMDAN-ABC-ANN approaches in streamflow 
prediction was evaluated. The outputs are reliable strategies and resources for water resource planners and policymakers.

Keywords  Streamflow prediction · Artificial bee colony optimization · Empirical mode decomposition · Local mean 
decomposition · East Black Sea Region

Introduction

In hydrology, a watershed is an area of land that drains to a com-
mon point, such as a river, lake, or ocean. Water flow in a water-
shed is a critical component of the hydrological cycle, including 
precipitation, evapotranspiration, and runoff (Jencso et al. 2009).

The availability of a good network for measuring hydro-
logical processes such as rainfall, river flow and groundwa-
ter levels, etc., is essential for proper management and use 
(Huang and Yang 1998; Zamoum and Souag-Gamane 2019), 

especially in areas that suffer from water scarcity on one 
side and the low density of the measurement network on the 
other side (Swain et al. 2015). Having current flow data on 
a spatial and temporal scale has many advantages, includ-
ing a better understanding of climate change, the effects of 
land use change, and other environmental factors on water 
resources (Gudmundsson 2021; Pokhrel et al. 2017). Moreo-
ver, researchers can well assess the impact of human activities 
on water resources by examining changes in water availability 
by analyzing water stream flow data over time, (Sivapalan 
et al. 2012) and studying several natural phenomena such as 
droughts and floods (Le et al. 2022; Maity and Kashid 2011).

A good understanding of the change in streamflow records 
in a particular watershed is difficult because it is linked to 
many direct and indirect factors, such as the low density of 
the measuring network (Xuan Do et al. 2020) and sometimes 
no stream gauges in the small catchment areas, In some cases, 
different agencies or organizations may collect streamflow data 
but not shared with others (Gerlak et al. 2011; Kibler et al. 
2014). Finally, changes in land use such as human activities, 
agriculture, urbanization, and deforestation, can significantly 
impact streamflow by altering the water balance of a watershed 
(Allan 2004; Bosch and Hewlett 1982; Zhang et al. 2001).
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For many decades stream flow prediction has been an 
important topic of hydrology and water resource engineering 
(Beven 2006; Gupta et al. 1999). Initially, reliance on statis-
tical techniques to establish a relationship between histori-
cal data and future flows (Nash and Sutcliffe 1970; Razavi 
et al. 2012). Despite their simplicity and ease of use, these 
models' accuracy in prediction is related to the quality and 
quantity of available data. Rating curves remained the most 
widely used tools for stream flow estimation (Kiang et al. 
2018), which relied on relating the river water level to the 
corresponding flow rate. The development of rating curves 
relies on collecting flow and stage water data across a range 
of flow conditions and then constructing a curve on the data 
using regression analysis (Sivapalan et al. 2012). The devel-
opment of rating curves allows estimating the flow rate at 
any point in time based on the current phase measurement.

Despite their potential advantages, streamflow models 
require facing some challenges. One of the most important 
challenges that can make it difficult to develop accurate and 
effective models is the issue of data availability, both in 
terms of quality and quantity, (Ghimire et al. 2021). This is 
often found in remote or developing areas where data may be 
little or completely absent and of poor quality. In addition, 
we may find streamflow models are more complex, requiring 
great expertise in their creation and interpretation (Kavetski 
et al. 2006; Wagener et al. 2003).

This complexity may limit its scope of use, especially in 
regions with limited technical expertise. Finally, streamflow 
models differ concerning the level of uncertainty, the lat-
ter of which can be influenced by a range of factors, which 
would particularly affect flow estimation. Uncertainties can 
be resolved through sensitivity analyses and model calibra-
tion if additional data and resources are available.

However, In recent years, a growing body of scientific 
research has used machine learning techniques for streamflow 
estimation because of its ability to capture complex non-linear 
relationships between different hydrological variables and 
streamflow and use them to estimate streamflow at ungauged 
or poorly measured sites. Some popular machine-learning 
methods for streamflow estimation include artificial neural 
networks, decision trees, support vector machines, and ran-
dom forests. These models have been successfully applied in a 
range of studies. Wang et al. (2006) used three types of hybrid 
artificial neural network (ANN) models, namely the thresh-
old-based ANN (TANN), cluster-based ANN (CANN), and 
periodic ANN (PANN). The latest hybrid model gave better 
prediction results than other models for daily discharge fore-
casting of the headwater region of the Yellow River northeast 
of the Tibet Plateau in China. Rahsepar and Mahmoodi (2014) 
proposed an algorithm combining ANN and ABC to predict 
the future discharge of the Tang-e Karzin hydrometric sta-
tion of Salman Farsi Dam, South Iran, with good results. The 
ABC significantly improved the performance of the ANN, 

thus improving the prediction of future discharge in the study 
area. Adnan et al. (2017) used three measures, the coefficient 
of determination (R2), the root mean square error (RMSE) 
and the mean absolute error (MAE), to evaluate the accuracy 
of the ANN and the support vector machines (SVM) in pre-
dicting monthly flow in the upper Indus basin, north of India. 
These measures showed that SVM has the best accuracy in 
predicting monthly flow. Katipoğlu and Can (2018) used the 
Auto-Regressive (AR) model to model monthly streamflow 
in Karasu River in the Euphrates Basin. Cheng et al. (2020) 
used ANN and long and short-term memory (LSTM) to fore-
cast streamflow using precipitation and runoff datasets in the 
Nan River Basin and Ping River Basin, Thailand. The results 
showed that the LSTM model is superior to the ANN model 
in daily prediction. For multi-month prediction, the LSTM 
model showed less satisfactory results, and this is due to the 
limited availability of monthly training data. Katipoğlu (2020) 
employed Extreme gradient boosting (XGBoost) and K-Near-
est Neighbors (KNN) to predict monthly streamflows in the 
lower Euphrates basin. According to the analysis, Xgboost 
was found to be superior to KNN. Siddiqi et al. (2021) used 
regression extreme learning machines (ELM) and ANN to 
estimate mean monthly upstream flow for the Tarbela dam in 
the Indus River basin. Ghimire et al. (2021) have developed a 
new deep-learning model called CNN‑LSTM based on inte-
grating CNN and LSTM to predict the hourly Qflow at Bris-
bane River and Teewah Creek, Australia, using deep neural 
networks. Pini et al. (2020) have used different machine learn-
ing algorithms such as ANN, support vector machine (SVM), 
and random forest (RF). Ha et al. (2021) used the monthly 
streamflow data of the Yangtze River from 1952 to 2018 to 
predict the monthly streamflow of the Yangtze River to esti-
mate the streamflow in Lake Como (Italy). Le et al. (2022) 
have tried to estimate the monthly streamflow over several 
areas in the world, such as North America, South America, 
and Western Europe using three machine learning such as 
SVM, RF, and gradient-boosted trees, Akbarian et al. (2023) 
investigated the effect of these variables on the accuracy of 
streamflow forecasting using learning models, multiple linear 
regression (MLR), ANN, SVM, RF, and XGBoost, concern-
ing the results, it showed a significant effect of surface runoff 
on the accuracy of flow forecasting, followed by precipita-
tion and temperature, with regard to the performance of the 
models, the results showed that machine learning models, 
especially ANN, XGBoost and RF, can provide accurate pre-
dictions of surface runoff compared to other used models, to 
improve surface water management through accurate predic-
tion of discharge in drought-prone areas. If we compile the 
results of these studies, we find that the use of artificial intel-
ligence models for the estimation of flow offers many advan-
tages, especially in terms of accuracy, and it helps to make 
informed decisions about the hydrological domain. However, 
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the availability of high-quality data remains the main respon-
sible for the accuracy of these models.

This study combines the ANN algorithm and artificial 
bee colony (ABC) to make a new integrated hybrid model 
called ABC-ANN for estimation streamflow time series. 
Furthermore, this model was combined with various signal 
decomposition techniques to assess its efficiency in estimating 
streamflow time series in the East Black Sea Region (Türkiye).

Material and method

The East Black Sea Region

The study area includes three cities located in the north-
east of the country, on the shores of the East Black Sea 
region, Rize, Ordu, Trabzon, which are located 41°01′29″N 
40°31′20″E, 40°77′45″N 37° 44′08″ and 41°00′18″N 
39°43′21″E respectively. The climate of the study area is 
the same as the climate of the east Black Sea region, a humid 
subtropical climate with warm and sometimes cold summers 
due to the direct influence of the Black Sea, where the aver-
age temperature is about 26.5 C. It is characterized by mild 
to cold winters, sometimes due to snowfall, especially in the 
mountains, with the average temperature reaching up to 5.7 
C for the period (1991–2020). Precipitation in the study area 
is relatively equal and moderate to high, especially in the late 
autumn season from (October to December), especially in 
the mountainous areas, where they receive large amounts of 
rain, with an average of 178 mm. Most of the streams in the 
area flow vertically to the sea in narrow and deep valleys. 
(Turkish State Meteorological Service 2021). The location 
information of the stream gauging station (SGS) for which 
the current is estimated is shown in Fig. 1. In Table 1, the 
locations of SGS are addressed.

Statistical coefficients of monthly average flow data from 
3 SGS in the Eastern Black Sea Region are given in Table 2. 
The data structure can be considered and model assumptions 
can be tested by evaluating the mean values, standard devia-
tions and distributions of the stream flows according to these 
statistical parameters.

Methods

Artificial neural networks

ANNs are among the most preferred AI models for predict-
ing incomplete hydrological data such as precipitation and 
river flow (Dawson et al. 2005; Kueh and Kuok 2018). These 
models can quickly model the relationship between vari-
ables. ANNs consist of input, hidden and output layers. The 
layers learn by changing the information between them. The 
training process is based on reducing the error between the 
expected and actual output values by adjusting the model 
parameters. The model estimates streamflow data based on 
training of historical data. The computational steps of the 
ANN model are presented in Fig. 2. The mathematical for-
mula of the ANN is given in Eq. 1.

(1)y = f

(
n∑
i=1

wixi + b

)

Fig. 1   Geographical coordinates of SGSs used in the study

Table 1   Information on SGS used in the current study

River name SGS name SGS no City name

Melet Arıcılar 2238 Ordu
Karadere Değirmencik köyü 2202 Trabzon
Çamlıdere Dereköy 2215 Rize
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Table 2   Statistical 
characteristics of streamflow 
data

Jan Feb Mar April May June July Aug Sept Oct Nov Dec

Ordu
Mean 5.2 7.2 20.7 39.8 30.5 12.1 3.3 1.7 1.8 2.9 4.9 6.0
Max 18.1 25.4 51.1 76.6 58.7 35.3 6.8 3.1 3.6 8.1 22.1 18.7
Min 1.3 2.3 5.7 5.3 2.6 3.1 1.4 1.0 1.0 1.1 1.5 1.9
Std 3.7 4.9 9.6 15.6 12.3 6.5 1.3 0.5 0.5 1.7 4.1 4.0
Skewness 2.2 2.1 1.1 0.4 0.2 1.4 0.7 0.6 1.3 1.7 2.8 1.7
Kurtosis 4.9 4.5 1.8 0.1 0.1 2.9 0.2 0.3 2.8 2.4 8.5 2.3

Trabzon
Mean 4.3 5.6 11.1 28.9 33.5 16.2 6.8 4.7 4.4 6.6 7.5 5.4
Max 9.2 11.3 26.2 43.8 58.0 40.7 15.6 12.0 7.5 14.1 17.7 10.0
Min 1.6 2.6 5.4 17.1 14.2 6.4 2.8 2.5 1.7 1.8 2.0 2.2
Std 1.6 1.8 4.5 7.7 10.0 6.7 2.9 1.8 1.5 3.2 4.2 1.9
Skewness 0.8 0.9 2.0 0.4 0.3 1.2 1.0 2.0 0.1 0.6 1.0 0.3
Kurtosis 1.0 1.3 4.6 -0.9 -0.3 2.8 0.8 6.3 -0.7 -0.1 0.1 -0.5

Rize
Mean 4.3 4.4 7.1 19.6 38.9 37.4 19.0 8.5 5.9 7.1 6.8 5.2
Max 6.7 8.1 18.1 36.7 64.1 56.9 34.1 14.7 10.7 14.6 13.2 8.9
Min 2.4 2.7 3.3 8.8 27.1 20.4 9.6 4.8 3.3 3.5 3.0 2.6
Std 0.9 1.1 3.0 6.9 7.4 7.9 5.9 2.5 1.5 2.8 2.6 1.4
Skewness 0.6 1.1 2.4 0.6 0.8 0.1 0.4 0.7 1.0 1.2 1.1 0.9
Kurtosis 0.5 1.6 6.4 -0.3 1.4 -0.1 -0.3 0.0 2.0 1.2 0.6 1.0

Fig. 2   Algorithmic program showing the setup steps of the ANN model
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where y indicates the output, f shows the transfer function, 
wi is the weight vector, xi is the input vector, and b is the 
bias (Katipoğlu 2022).

Artificial bee colony (ABC)

ABC algorithm is one of the artificial intelligence techniques 
inspired by the intelligent behavior of bees in their search for 
food. Which focuses on studying the collective behavior of 
decentralized systems, represented by groupings of simple 
elements that interact locally with each other and with the 
surrounding environment. This algorithm is used to solve 
many optimization problems, i.e. issues that require reach-
ing the optimal solution from a set of proposed solutions. 
(Karaboga and Basturk 2007). The ABC system has three 
types of bees: worker, observer, and explorer. After that, the 
bees disperse to search for food sources and if there is an 
ample nectar source compared to other sources in their search 
area. This determines the most abundant source among all the 
abundant sources (Karaboga et al. 2014) and this is exactly 
what optimization issues require. It is accepted that stream-
flow estimation is a challenging scenario that requires the 
utilization of a non-linear estimator to accurately reflect the 
correlating associations and dynamics. The current research 
used the ABC-ANN model as a non-linear estimator, tak-
ing advantage of the capabilities of the ANN to accurately 
depict the intricate and non-linear relations found in stream-
flow data. The ABC optimization algorithm was employed to 

optimize the ANN's parameters for enhancing the ability of 
ordinary ANN to capture the complex patterns in streamflow 
time series datasets. Figure 3 shows the application steps of 
ABC optimization technique.

The ABC algorithm conceptualizes natural processes and 
activities by representing them as algorithmic components 
and functionalities. In this representation, the concept of a 
"food source" is transformed into a "feasible solution" denoted 
as xi, while the "nectar amount" corresponds to the fitness of 
a solution indicated by F(xi) as described in Eq. (2).

In the given equations, xi represents the current solu-
tion, xn represents the neighboring solution, and vi repre-
sents the candidate solution. The variable φi is a randomly 
generated number within the [-1, 1] range. The index i 
takes on values from 1 to N, indicating the index of the 
food source, where N represents the total number of food 
sources. Additionally, when the onlooker bees fail to find 
an improved solution, the scout bees can be generated 
using Eq. (4).

(2)F
(
xi
){ 1

1+f(xi)
f (xi) ≥ 0

||1 + f(xi)
||otherwise

(3)vi = xi + �i
(
xi − xn

)

(4)xij = LBj + rand(0, 1) ×
(
UBj − LBj

)

Fig. 3   Algorithmic program 
showing the setup steps of the 
ABC optimization (Durgut and 
Aydin 2021)



89710	 Environmental Science and Pollution Research (2023) 30:89705–89725

1 3

In the given context, xi,j represents the jth decision vari-
able within the solution vector xi. The index j ranges from 
1 to D, meaning the total decision variables. Additionally, 
LB and UB denote the lower and upper boundary val-
ues specified for the decision variable (Durgut and Aydin 
2021).

Local mean decomposition (LMD)

Applicable in various fields and of numerous applications 
because of its power (Lei et al. 2013), this signal processing 
technique makes complex signals into simpler components 
according to their local average frequencies. The LMD algo-
rithm can iteratively extract a series of component functions 
from the input signal, each representing a different frequency 
range (Huang et al. 1998). Then, these component func-
tions are combined to form the original signal, which can 
be reconstructed by summing all the extracted components 
(Huang et al. 1998). Then, these component functions are 
combined to form the original signal, which can be recon-
structed by summing all the extracted components.

Application steps of the LMD technique consist of tree 
step: (i) Determining the input time series to the model, (ii) 
Determining the parsing level, (iii) Obtaining subcompo-
nents. In LMD, the process of smoothing a signal involves 
applying moving averaging, while the weighting is deter-
mined by examining the gap between consecutive extrema. 
To begin the decomposition, the first step entails computing 
each half-wave oscillation's maximum and minimum points. 
In this scenario, the mean value "mi" for the "ith" oscilla-
tion, positioned between two successive extrema "ni" and 
"ni + 1," is calculated according to the following method:

A uniformly varying continuous local mean function m(t) 
is obtained. Half-wave oscillations are expressed as follows:

For most natural data, LMD follows an iterative process 
that effectively captures a positive instantaneous frequency 
from a purely frequency-modulated signal with a constant 
envelope (Smith 2005).

Complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN)

Flandrin et  al. (2011) proposed CEEMDAN, which 
separates complex signals into their basic components 
using IMFs. The CEEMDAN algorithm uses an adaptive 

(5)mi =
ni + ni+1

2

(6)ai =
|ni − ni+1|

2

sifting process that dynamically adjusts the bandwidth of 
the sifting window for each IMF to avoid mode mixing 
and improve the decomposition accuracy (Li et al. 2015). 
In addition, CEEMDAN reduces the effects of noise on 
the separation results. It then calculates the final decom-
position result of each community member's IMFs based 
on the average. EEMD results are affected by residual 
noise that causes problems in the opposite direction. The 
number of trials can be improved with this technique by 
increasing the number of eliminations. To reduce mode 
mixing and the number of trials, the CEEMDAN tech-
nique is utilized (Torres et al. 2011). Signal processing 
techniques such as LMD and CEEMDAN provide advan-
tages in reducing the noise in the data by separating 
the various subbands of the input time series, modeling 
the subcomponents at different frequencies and better 
understanding the structure of the data.

The steps for conducting a CEEMDAN analysis are as 
follows:

Apply the identical EEMD technique to compute the 
first modal function.

Additionally, a distinctive initial residue is determined 
by performing the following calculation:

The kth Intrinsic Mode Function (IMF) compo-
nent, denoted as emd(t), is defined by applying Empiri-
cal Mode Decomposition (EMD). Next, the sequence 
sequencer1(t) + p1 * emd1(nj(t)) is decomposed to obtain 
the second IMF component.

The residual signal is indicated following:

Similar to the procedure outlined in steps 1 and 2, the kth 
residual signal can be represented using the given equation.

Similarly, the k + 1th Intrinsic Mode Function (IMF) 
component can be expressed using the provided equation.

Continue iterating steps 1 to 3 until the residual sig-
nal satisfies the specified termination criterion. Assuming 
there are L IMF components, the original sequence can be 

(7)IMF1(t) =
1

N

∑N

j=1
IMF

j

1
(t)

(8)r1(t) = x(t) − IMF1(t)

(9)IMF2(t) =
1

N

∑N

j=1
emd1[r1t + p1emd1(nj(t)]

(10)r2(t) = r1(t) − IMF2(t)

(11)rk(t) = rk−1(t) − IMFk(t)

(12)IMFk+1(t) =
1

N

∑N

j=1
emd1[rkt + pkemdk(nj(t)]



89711Environmental Science and Pollution Research (2023) 30:89705–89725	

1 3

expressed using the mentioned equation (Torres et al. 2011; 
Rezaie-Balf et al. 2019).

Comparison of methods

For our case and to study the performance of the methods 
used to estimate the monthly streamflow, four indicators are 
used:

Mean squared error (MSE)

One of the common metrics used to evaluate the perfor-
mance of regression models is the MSE scale. Where meas-
ures the average squared differences between the predicted 
(ŷ) values and the actual values (y). In other words, it meas-
ures the average amount by which forecasts deviate from 
actual values. The smaller the MSE value, the higher the 
accuracy of the model

Mean absolute percentage error (MAPE)

MAPE is a commonly used metric, as it measures the aver-
age percentage difference between the expected and actual 
values to evaluate the performance and calculate the predic-
tion accuracy in terms of the error rate for the prediction 
model.

MAPE is calculated by Eq. 15 where (ŷ) are the predicted 
values and (y) are the actual values

Correlation and determination coefficient

Sometimes we try to find if there is a relationship or a con-
nection between two or more variables. The correlation coef-
ficient can answer this question graphically or numerically 
by calculating the correlation coefficient (R). The square of 
the correlation coefficient is the determination coefficient 
(R2) and is calculated as follows:

(13)y(t) =
∑L

i=1
IMFi(t)+r(t)

(14)MSE =
(
1

n

)∑
(yi − ŷi)

2

(15)MAPE =
(
1

n

)∑|||||
(yi − ŷi)

yi

|||||

Nash–sutcliffe efficiency (NSE)

NSE is an efficiency parameter that shows the fit and rela-
tionship between two-time series. NSE is a preferred indica-
tor mostly to show the accuracy of the model. This indicator 
shows the variation of the observed data with the predicted 
data. NSE values range from -∞ to 1. A value of 1 for NSE 
indicates that the estimated dataset perfectly matches the 
actual data. It can be said that the closer the NSE value is to 
1, the higher the model performance.

Kling‑gupta efficiency (KGE)

Developed by Gupta et al. (2009), the KGE is an indicator of 
goodness of fit for hydrological modeling to enable its differ-
ent components to decompose correlation, variability bias, 
and mean bias properties. Kling et al. (2012) developed the 
NSE indicator to ensure that the rates of bias and variability 
were not cross-correlated and recommended this indicator.

Sŷ shows standard deviation of predictions, Syindicates 
standard deviation of observations, ŷiisaverage of predic-
tions, yis averageof observations. If the KGE value is close 
to 1, it means that the prediction results of the model have 
perfect agreement with the real values. The fact that the 
KGE's values are equal to zero indicates no relationship 
between the model estimates and the actual data.

Taylor diagrams

Taylor diagrams are used in various fields, such as mete-
orology and oceanography. It is a graphical method for 
comparing similarity and statistical parameters between 
two or more data sets. For this, the closeness of the pre-
diction models to the reference point and the values of the 

(16)R2 =

⎛⎜⎜⎜⎝

∑N

i=1

�
xi − x

�
∗
�
yi − y

�
�∑N

i=1

�
xi − x

�2
∗
∑N

i=1

�
yi − y

�2

⎞⎟⎟⎟⎠

2

(17)NSE = 1 −

�∑N

i=1

�
yi − ŷi

��2

∑N

i=1

�
yi − ŷi

�2

(18)KGE =

√
(R − 1) + (a − 1)2 (b − 1)2

(19)a =
Sŷ

Sy
, b =

ŷi

y
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statistical parameters are evaluated. In addition, the most 
suitable model can be decided according to the correlation 
coefficient between the prediction models and the real data 
set. The Taylor diagram provides a clear and concise way to 
visualize the similarities and differences between multiple 
datasets in a single graph (Taylor 2001).

Results and discussion

Streamflow estimation is vital for the risk management of 
floods, the supply of water resources, the construction of 
water structures and irrigation planning. Streamflow pre-
diction accuracy has improved with the development of 
artificial intelligence technologies. In addition, ANN tech-
niques are strengthened with various signal separation and 
bio-inspired optimization techniques. This study evaluated 
the one-month lead-time streamflow prediction success of 
the ANN model combined with LMD, CEEEMDAN and 
ABC algorithms. Furthermore, the performance of the cre-
ated hybrid ANN model was evaluated according to various 
statistical and graphical approaches.

Choosing the input combination is critical to determine 
the best streamflow prediction model. Within the scope of the 
study, a suitable model structure was established using partial 
autocorrelation function (PACF) graphics. PACF graphs are 

shown in Fig. 4. Accordingly, lagged values exceeding 95% 
confidence limits were used in the modeling. Lagged values 
that exceed the confidence limits and have a high correlation in 
the PAC graphs are presented as input to the proposed model 
for streamflow estimation. For the analysis of the streamflows 
in Ordu, Trabzon and Rize according to PAC charts, 1, 2, 10, 
11, 12-month delayed values, 1, 2, 11, 12-month delayed val-
ues and 1, 2, 11, 12-month lagged values were selected as 
an input, respectively (Table 3). Also, Fig. 5 shows Taylor 
diagrams of selected inputs based on PACF in each station, 
which were used for the input of estimator models. The t-11 
datasets (green point) are most closet point to the target dataset 
(t + 1 which is black point) and t dataset (purple point) and t10 
dataset (yellow point) are located at the second and third closet 
points (respectively) to the target dataset in all stations.

Figure 6 displays the subcomponents of delayed stream-
flow values obtained through the CEEEMDAN and LMD 
techniques in Ordu-2238 no SGS. The objective is to 

Fig. 4   PACF of streamflows of 
used SGS

Table 3   Selected model combinations for Q (t + 1) streamflow estimation

Station Input Target

Ordu- 2238 no SGS t, t-1, t-9, t-10, t-11 t + 1
Trabzon 2202 no SGS t, t-1, t-10, t-11 t + 1
Rize 2215 no SGS t, t-1, t-10, t-11 t + 1
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enhance the model's performance by presenting the obtained 
subcomponents to the ABC-ANN model. The CEEEMDAN 
algorithm separates lagged current values into various num-
bers of IMFs and residuals, enabling the intelligent model 
better to evaluate the input values' fluctuations and trends. 
With the LMD algorithm, the streamflow values are decom-
posed into sub-components, or product functions (PF), con-
sidering the impact of noise and outliers on the modeling. 
The goal is to strengthen the ABC-ANN model by incorpo-
rating these sub-components.

In Table 4, the performance evaluation of the models 
used in streamflow estimation has been made. Accordingly, 
the accuracy of the models was compared according to the 
KGE, MSE, NSE and R2 statistical indicators. Therefore, 
the training and test results of the CEEEMDAN-ABC-ANN 
model in SGS no. 2238 in Ordu and SGS no. 2202 in Tra-
bzon showed more successful results than ABC-ANN and 
LMD-ABC-ANN models in monthly streamflow estimation. 
The hybrid model CEEEMDAN-ABC-ANN has the high-
est prediction accuracy at station 2238 with the following 
values for training (MSE: 43.58, R2: 0.79, NSE: 0.79, KGE: 
0.84) and testing (MSE: 54.44, R2: 0.67, NSE: 0.67, KGE: 
0.75). At station 2202, the CEEEMDAN-ABC-ANN hybrid 
model has the highest prediction accuracy with the following 

values for training (MSE: 19.15, R2: 0.83, NSE: 0.83, KGE: 
0.84) and testing (MSE: 41.86, R2: 0.66, NSE: 0.66, KGE: 
0.76). In addition, the ABC-ANN model showed higher suc-
cess than LMD-ABC-ANN and CEEEMDAN-ABC-ANN 
hybrid models during training and testing stages in Rize-
2215 with no SGS. At station 2215, the ABC-ANN model 
has the highest prediction performance with the following 
statistical values for training (MSE: 17.88, R2: 0.89, NSE: 
0.88, KGE: 0.91) and testing (MSE: 36.92, R2: 0.80, NSE: 
0.80, KGE: 0.86).

In Fig. 7, the accuracy of the models used to estimate 
streamflow in SGS 2238 was evaluated according to the scat-
ter diagrams. A scatter plot is a graphical indicator plotted 
along the X and Y axis to visualize the relationship between 
two variables and reveal correlations and outliers. In order 
to determine the appropriate model according to the scat-
terplots, an evaluation is made according to the distribution 
of the points around the 45-degree line. When the scatter 
diagrams are compared, it can be said that the performances 
of the established models in the streamflow estimation are 
close. Still, it can be said that the CEEEMDAN-ABC-
ANN hybrid model gives more successful results than the 
other models. Figure 7 shows strong correlations between 
observed streamflow and predicted streamflow values for 

Fig. 5   Taylor diagrams of 
selected input data for estimator 
models based on PACF in each 
station; t-11: green point, t-10: 
yellow point, t-9: red point, t-1: 
blue point, t: purple point, t + 1: 
black point
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the training and testing phases at Ordu station. Generally, 
correlations between predicted and observed streamflow in 
the training phase are higher than corresponding values in 
the testing phases.

Figure 8 analyzes the scattering diagrams of the models 
used to estimate streamflow in SGS 2202. When the scatter 
diagrams were evaluated, it was determined that the perfor-
mances of the established models in the streamflow predic-
tion were close to each other. However, it is seen that the 
CEEEMDAN-ABC-ANN hybrid model gives slightly more 
accurate results than other models. This issue indicates the 
higher performance of CEEEMDAN-ABC-ANN in both 
training and testing phases than other applied models. Also, 
it shows the ability of the ABC algorithm as a boosting 
tool to optimize the performance of the ANN model for 
streamflow precision.

In Fig. 9, the streamflow prediction performances of the 
model established in SGS 2215 are compared according 
to the scatter diagrams. According to these diagrams, the 
ABC-ANN model has higher accuracy than CEEEMDAN-
ABC-ANN and LMD-ABC-ANN models in the training and 

testing stages. This higher performance of the ABC-ANN 
model is demonstrated in the scatter plot, where the points 
for the ABC-ANN model are more closely grouped around 
the actual target values.

Figure 10 shows time series plots of predicted and actual 
values in SGS 2238. These plots evaluated the relationship 
and spread between the actual and estimated streamflow val-
ues. According to Fig. 10, it can be said that the estimation 
results of the CEEEMDAN-ABC-ANN hybrid model during 
the training and testing phase are superior to other mod-
els since they spread following the real values. In addition, 
the LMD-ABC-ANN model is the weakest since it predicts 
the maximum current values with less accuracy than other 
models. The distribution of the predicted streamflow values 
around the observed streamflow values indicates that the 
CEEEMDAN-ABC-ANN model successfully captures the 
complexity and variability of streamflow in SGS 2238 with 
a high accuracy in the training and testing phases.

Figure 11 presents time series plots of estimated and 
actual streamflow values in SGS 2202. These plots ana-
lyzed the relationship and spread between the actual and 

Fig. 6   Streamflow values decomposed to subcomponents in Ordu- 2238 no SGS a) CEEEMDAN algorithm b) LMD algorithm
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estimated streamflow values. The estimation results of the 
CEEEMDAN-ABC-ANN hybrid model during the training 
and testing phase are superior to other models since they best 
match the actual values. In addition, it is emphasized that the 
LMD-ABC-ANN model is the weakest because it predicts 
the maximum streamflow values with less accuracy than 
other models and has less overlap with the actual values.

Figure 12 shows time series plots of streamflow values in 
SGS 2215. According to these plots, it is noteworthy that the 
actual and the estimated streamflow values overlap to a large 
extent. In addition, when the time series plots are examined 
in detail, it is seen that the ABC-ANN model represents the 
actual streamflow values better than the other models.

In Fig. 13, the potentials of the streamflow prediction 
models are compared with the Taylor diagrams. These 
graphs compared the estimated currents during the train-
ing and testing phases with the actual values. According to 
the statistical properties of the prediction model, which is 
close to the reference point, the most superior model was 

decided. According to these diagrams, it has been deter-
mined that the CEEEMDAN-ABC-ANN model in SGS 
2238 and 2202 has the highest accuracy since it is closest 
to the reference point and has low RMSE and high R2 val-
ues. Accordingly, it can be deduced that the CEEEMDAN 
technique is superior to the ABC-ANN model with its noise 
reduction in the input stream data, solving the mode mixing 
problem and time-varying structure. In addition, since the 
ABC-ANN model is closest to the reference point in SGS 
2215, it is deduced that the estimations are the most real-
istic. In addition, all models showed satisfactory results in 
the flow estimation with values in the range of 0.80 to 0.95.

Discussion

The current study's main goal is to propose a new AI-
based model coupled with data preprocessing approaches 
to enhance the accuracy of ABC-ANN for streamflow 

Table 4   Performance analysis 
of streamflow prediction via 
ABC-ANN, LMD-ABC-ANN, 
and CEEEMDAN-ABC-ANN 
models

The best models are identified by bold characters representing statistical criteria

Ordu—2238 no SGS
Model phase Statistic ABC-ANN LMD-ABC-ANN CEEEMDAN-ABC-ANN
Train MSE 57.66 55.57 43.58

R2 0.72 0.73 0.79
NSE 0.72 0.73 0.79
KGE 0.78 0.78 0.84

Test MSE 67.27 62.65 54.44
R2 0.60 0.62 0.67
NSE 0.59 0.62 0.67
KGE 0.71 0.72 0.75

Trabzon—2202 no SGS
Train ABC-ANN LMD-ABC-ANN CEEEMDAN-ABC-ANN

MSE 21.45 23.10 19.15
R2 0.81 0.79 0.83
NSE 0.81 0.79 0.83
KGE 0.83 0.84 0.84

Test MSE 46.32 50.45 41.86
R2 0.63 0.60 0.66
NSE 0.62 0.59 0.66
KGE 0.76 0.72 0.76

Rize—2215 no SGS
Train ABC-ANN LMD-ABC-ANN CEEEMDAN-ABC-ANN

MSE 17.88 18.83 21.67
R2 0.89 0.879 0.86
NSE 0.88 0.85 0.86
KGE 0.91 0.88 0.87

Test MSE 36.92 56.79 45.57
R2 0.80 0.69 0.75
NSE 0.80 0.67 0.75
KGE 0.86 0.76 0.84
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simulation. The overall results showed that both preproc-
essing approaches (LMD and CEEEMDAN) increased the 
capability of ABC-ANN in the Ordu station, and CEEEM-
DAN-ABC-ANN only performed better than the ABC-
ANN in Trabzon. Also, both LMD and CEEEMDAN 
acted worse than the ABC-ANN model in Rize station for 
streamflow simulation. Various results are reported based 
on different inputs to each station's different time series 
behavior. The key advantage of the ABC-ANN approach 
is that the ANN's parameters can be tuned via an opti-
mized framework (ABC) to reach the highest accuracy of 
time series simulation via ABC-ANN mode. Furthermore, 
adding preprocessing techniques (e.g., CEEEMDAN) can 
help the model to detect the non-linear behavior stream-
flow, and therefore CEEEMDAN-ABC-ANN utilized both 
advantages of bio-inspired and preprocessing methods.

It can be observed that all applied models are more capa-
ble in streamflow simulation of the training phase. This issue 
can be justified due to the existence of a large amount of peak 
flow in the testing phase, which was not learned by models 
in the training phase and can affect the final result of the test-
ing period. Although CEEEMDAN-ABC-ANN reported bet-
ter streamflow simulation results for streamflow forecasting, 
some limitations to implanting CEEEMDAN-ABC-ANN 
include (1) combining CEEEMDAN with the ABC-ANN 
adds more complexity to the final model (CEEEMDAN-
ABC-ANN). Furthermore, (2) although CEEEMDAN can 
decompose the original time series of streamflow data into 
several signals, ABC-ANN needs more effort and process 
and make more relationships between all these separated 
signals during the learning phase of the ANN model, which 
can increase model running time. (3) using the original time 

Fig. 7   Evaluation of model 
performances in streamflow 
prediction at 2238 no SGS with 
scatter diagrams
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series of streamflow data is always understandable in the 
hydrological view, but using decomposed signals could not 
be understandable in the hydrological view. The modeling 
process could be a (deeper) black box with less explanation. 
(4) The ABC-ANN uses the artificial bee colony optimi-
zation algorithm in the ANN learning rate for tuning the 
ANN model's hyperparameters. Sometimes the algorithm 
could be trapped in the local minimize and also it is sensi-
tive to choosing algorithm initial parameters and; therefore, 
reaching optimal results by ABC-ANN has more challenges 
compared with the ordinary ANN model.

In recent years, metaheuristic optimization algorithms 
have been successfully coupled with AI models as opti-
mizer tools in solving complex non-linear issues for hydro-
logical modeling tasks (Mahmoudi et al. 2022; Marouf-
poor et al. 2019; 2020). Due to the high computational 

performance of AI-based models in solving non-linear 
problems, these models have been used for streamflow 
simulation worldwide. However, due to AI models' lack 
of hydrological terms, they fail to interpret hydrological 
processes (Mohammadi et al. 2022) physically. Previous 
studies such as Cheng et al. (2020), Difi et al. (2022), Wang 
et al. (2022), and Ayana et al. (2023) recommended AI 
techniques as powerful tools for capturing streamflow time 
series, while they also mentioned these AI techniques are 
sensitive to use data. Therefore, they should be trained well 
with enough time series data. However, both hydrological 
physically based models and AI-based models have some 
advantages and disadvantages in their application, while 
the type of case study can decide which type of model 
could be suitable. The ABC algorithm showed it can find 
the optimal solution with a high probability (Wang et al. 

Fig. 8   Evaluation of model 
performances in streamflow 
prediction at 2202 no SGS with 
scatter diagrams y = 0.718x + 3.2088
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2020). Although it uses fewer control parameters, the 
ABC model can effectively solve multidimensional multi-
modal optimization, giving better results than other models 
(Karaboga and Akay 2009). Thanks to their ability to ana-
lyze non-linear and non-stationary data, the two signal pro-
cessing techniques, Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN) and 
Local Mean Decomposition (LMD) have become popular 
and the most used in many fields. However, both CEEM-
DAN and LMD have some disadvantages as well. CEEM-
DAN can be computationally expensive, especially for 
large datasets, and may require significant computational 

resources. On the other hand, LMD may not perform well 
for signals with sharp transitions or discontinuities, as it 
relies on a smooth signal assumption.

Conclusion

Accurate streamflow simulation is vital for water 
resources management and environmental planning. The 
current study proposed a novel artificial intelligence tech-
nique based on an artificial bee colony combined with 
ANN (ABC-ANN) and the local mean decomposition 

Fig. 9   Evaluation of model 
performances in streamflow 
prediction at 2215 no SGS with 
scatter diagrams
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(LMD-ABC-ANN) for the monthly streamflow time 
series prediction in Ordu, Trabzon and Rize hydromet-
ric stations (in the East Black Sea Region Türkiye). The 
model was enhanced by applying different signal decom-
position techniques, including Local Mean Decomposi-
tion (LMD) and Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN). A 
partial autocorrelation function (PACF) was used to 
detect effective lag times of streamflow as input of esti-
mator models. The lag times including {t, t-1, t-9, t-10, 
t-11} and {t, t-1, t-10, t-11} and {t, t-1, t-10, t-11} were 
selected as effective monthly lag times for predicting 

streamflow in t + 1 in Ordu, Trabzon, and Rize stations, 
respectively. It can be concluded that all applied models 
simulated monthly streamflow with reliable performances 
in this study. The results showed that empirical envelope 
and complete ensemble empirical mode decomposition 
with adaptive noise combined with ANN-ABC (CEEEM-
DAN-ABC-ANN) outperformed in Ordu and Trabzon sta-
tions and ABC-ANN simulated streamflow by a higher 
accuracy compared with other applied models in Rize 
station. The CEEEMDAN method improved the capabil-
ity of ABC-ANN in the Ordu and Trabzon stations with 
R2 = 0.67 and 0.66 for the test section in the Ordu and 

Fig. 10   Comparison of model 
performances with time series 
plot in 2238 no SGS
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Trabzon stations, respectively. The results showed that 
the coupled ABC-ANN model, optimized via the ABC 
algorithm, achieved accurate streamflow estimation in the 
studied regions. The fluctuations and noise of stream-
flow time series data were captured by coupling the LMD 
and CEEMDAN techniques into estimator models, which 
helped to enhance streamflow time series prediction. The 
selection of lagged streamflow values by PACF analy-
sis led to identifying the most effective input variables 
for each station, which also contributed to improving the 
accuracy of estimator models. The hybrid CEEEMDAN-
ABC-ANN model resulted in lower MSE values and 
higher R2 values compared to the ABC-ANN model in 
Ordu and Trabzon stations. This shows that integration 
of the CEEEMDAN technique improved the accuracy 

of streamflow estimation during the training and testing 
phases in Ordu and Trabzon stations. This issue shows 
this coupled model can follow the dynamic pattern of 
streamflow time series during the training and testing 
phase. In Rize station, the ABC-ANN model resulted 
in a lower MSE and a higher R2 values for the training 
and testing phases compared to the LMD-ABC-ANN and 
CEEEMDAN-ABC-ANN models. These findings suggest 
that the efficiency of the hybrid models might be contin-
gent upon the particular characteristics and patterns of 
streamflow data at each station. It can be concluded that 
the CEEEMDAN technique can increase the accuracy of 
streamflow simulation compared with the LMD method 
and the CEEEMDAN-based estimators could be tested 
and generalized for streamflow simulation in various 

Fig. 11   Comparison of model 
performances with time series 
plot in 2202 no SGS
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climates. Streamflow time series behavior and its predic-
tion have been better understood using several AI-based 
methods, such as presented in this study. Streamflow 
simulation via these methods can be useful to increase 
our knowledge of the mechanisms that drive streamflow 
behavior in which these processes may be altering in 
response to climate change impacts.

Despite the good results that the artificial intelligence 
models give us, there are some limitations that may decrease 
the accuracy of the models. One of the basic limitations is 
the availability of data in terms of quality and quantity and 
the availability of other parameter data such as evapora-
tion, evapotranspiration, and information on soil properties, 
and land cover changes. This last one, using it, gives us an 

evaluation and a better analysis of the effect of other rel-
evant variables on the process flow simulation. Despite all 
these limitations, the use of artificial intelligence models in 
forecasting the streamflow has many advantages, which con-
tribute to the good management of water resources, plan-
ning for drought, and solving the problem of floods. Finally, 
the CEEEMDAN-ABC-ANN model can be applied in other 
hydro-climatic contexts similar to those studied, also inte-
grating the proposed model and comparing the proposed 
method with other types of metaheuristics optimization 
algorithms and some newly developed machine learning 
techniques such as deep learning models, thus providing a 
useful solution possible management of water resources in 
different regions of the world.

Fig. 12   Comparison of model 
performances with time series 
plot in 2215 no SGS
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Fig. 13   Comparison of model 
performances with Taylor dia-
grams: a) 2238 no SGS training, 
b) 2238 no SGS test, c) 2202 no 
SGS training, d) 2202 no SGS 
test, e) 2215 no SGS training, f) 
2215 no SGS test

Table 5
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