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Abstract
Carbon trading is an effective way to limit global carbon dioxide emissions. The carbon pricing mechanisms play an essen-
tial role in the decision of the market participants and policymakers. This study proposes a carbon price prediction model, 
multi-decomposition-XGBOOST, which is based on sample entropy and a new multiple decomposition algorithm. The main 
steps of the proposed model are as follows: (1) decompose the price series into multiple intrinsic mode functions (IMFs) by 
using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN); (2) decompose the IMF with 
the highest sample entropy by variational mode decomposition (VMD); (3) select and recombine some IMFs based on their 
sample entropy, and then perform another round of decomposition via CEEMDAN; (4) predict IMFs by XGBoost model and 
sum up the prediction results. The model has exhibited reliable predictive performance in both the highly fluctuating Beijing 
carbon market and the comparatively stable Hubei carbon market. The proposed model in Beijing carbon market achieves 
improvements of 30.437%, 44.543%, and 42.895% in RMSE, MAE, and MAPE, when compared to the single XGBoost 
models. Similarly, in Hubei carbon market, the RMSE, MAE, and MAPE based on multi-decomposition-XGBOOST model 
decreased by 28.504%, 39.356%, and 39.394%. The findings indicate that the proposed model has better predictive perfor-
mance for both volatile and stable carbon prices.

Keywords  Carbon price prediction · Multiple decomposition algorithm · XGBoost · CEEMDAN · Sample Entropy · 
Decomposition with integration

Introduction

Background

Climate change has posed a significant threat to the ecologi-
cal environment and public health since the advent of global 
industrialization. Controlling greenhouse gas emissions is 
a critical component in addressing climate change issues 
under the framework of the Kyoto Protocol. Following the 
Protocol, the carbon trading market emerged and it was con-
sidered a new strategy to lower greenhouse gas, particularly 

carbon dioxide emissions. The core of the carbon trading 
market is the carbon pricing mechanisms. The volatility of 
carbon prices could release policy signals and restrict the 
actions of those industries that generate plenty of carbon 
dioxide (Lu et al. 2020). In response, many countries and 
regions have regarded carbon pricing mechanisms as a shift 
to a sustainable development pathway (Wara 2007; Zhang 
and Zhang 2019; Boyce 2018). Carbon pricing mechanisms 
differ across countries and regions. The European Union 
Emissions Trading System (EU ETS) is one of the world’s 
largest carbon pricing mechanisms (Convery 2009). It covers 
specific carbon-emitting industries in the 28 European Union 
member states as well as in Norway, Iceland, and Liech-
tenstein, which are part of the European Economic Area. 
The California Cap-and-Trade Program is the first carbon 
emissions trading system in the USA. It was implemented in 
2013 and covers multiple carbon-emitting industries (Cush-
ing et al. 2018). Starting from 2013, China has successively 
launched carbon emission quota trading pilots in seven cit-
ies, including Beijing, Shanghai, Hubei, Shenzhen, Tianjin, 
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Chongqing, and Guangdong. On July 16, 2021, China’s car-
bon emission trading market was officially launched for the 
further carbon-constrained goal. The market has a total of 
2162 key emitting units in the power generation industry, 
covering approximately 4.5 billion tons of carbon dioxide 
emissions. In 2022, the total trading volume of Chinese 
Emission Allowances (CEA) reached 50.88 million tons 
in the market. Until now, it has become the world’s largest 
carbon market. Implementing a low-carbon development 
strategy and advancing the construction of a carbon market 
are important measures for China to address climate change 
(Zhang et al. 2019; Liu et al. 2020). Research on carbon 
price prediction is favorable in achieving the transforma-
tion to a low-carbon economy, managing enterprise risk, and 
stabilizing the development of the carbon market. Besides, 
this research is also crucial in supporting decisions regarding 
carbon trading. Therefore, exploring methods to predict Chi-
na’s carbon prices is particularly significant (Ji et al. 2018; 
Xu et al. 2020; Hao and Tian 2020; Huang and He 2020).

Previous literature

Carbon price prediction models typically relied on tradi-
tional statistical models during their initial development. 
For example, various types of generalized autoregressive 
conditional heteroskedasticity (GARCH) models have been 
utilized to forecast carbon prices (Paolella and Taschini 
2008; Benz and Trück 2009; Byun and Cho 2013). Based on 
moving average (ARIMA) and least squares support vector 
machine (LSSVM), a combined model was carried out for 
carbon price prediction (Zhu and Wei 2013). Chevallier and 
Sévi (2011) applied a simplified HAR-RV model for carbon 
price prediction. Previous studies of carbon price forecasting 
have observed that these traditional methods could be imple-
mented effectively and reliably. However, the carbon price 
data has been shown for its nonlinear and unstable charac-
teristics, which suggests the traditional statistical models are 
powerless to handle the current carbon price prediction of 
the market (Zhu et al. 2019).

To better deal with the nonlinearity and unstability issues 
of sequence data, machine learning and deep learning meth-
ods have been utilized for data prediction. Fan et al. (2015) 
forecasted the carbon price trend by multi-layers perceptron 
(MLP) neural network. Sun and Zhang (2018) used extreme 
learning machine (ELM) and back-propagation (BP) network 
to estimate the EU carbon price. Ji et al. (2019) analyzed and 
predicted the carbon price by ARIMA-CNN-LSTM mod-
els. Compared to traditional statistical methods, many recent 
studies carried out in the machine learning and deep learning 
methods could more accurately handle nonlinear problems.

In order to enhance prediction performance, a com-
bination of data decomposition and machine learning or 

deep learning models, known as hybrid models, has been 
increasingly utilized for forecasting problems. Decom-
posing the raw data sequence can effectively improve 
the data’s stability and reduce the impact of noise on 
the prediction results. Zhu (2012) used an artificial neu-
ral network (ANN) model combined with the empirical 
mode decomposition (EMD) method for carbon price pre-
diction. Its prediction accuracy exceeded that of single 
ANN. Huang et al. (2021) enhanced the performance of 
carbon price prediction by incorporating the variational 
mode decomposition (VMD) into the GARCH and long 
short-term memory (LSTM) network. Zhou et al. (2019) 
performed a complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN) with the 
XGBoost model to make the crude oil price prediction. 
As data decomposition can effectively reduce prediction 
difficulty, hybrid models conducted by previous research 
demonstrate better prediction performance.

To reduce data complexity and improve prediction accu-
racy, Li et al. (2021) proposed a secondary decomposition 
(re-decomposition) method. Sun and Huang (2020) proposed 
the EMD-VMD method with BP neural network for predic-
tion. Zhou et al. (2022a) attempted to use CEEMDAN-VMD 
as a decomposition method and integrated it with LSTM 
to forecast carbon pricing, resulting in improved accuracy. 
Evidence from several studies identified the benefits of re-
decomposition algorithm for carbon price prediction.

The re-decomposition method has shown its superior-
ity in carbon price prediction for markets with relatively 
stable prices, such as Tianjin and Hubei ETS. The perfor-
mance of these models fell short of expectations when it 
came to the more intricate carbon prices of the Beijing ETS, 
which experienced more substantial fluctuations. To bet-
ter predict high-complexity data, we represent a multiple 
decomposition prediction model entitled multi-decomposi-
tion-XGBoost. Multiple decompositions refer to combining 
the results of the first and second decompositions based 
on sample entropy and then performing another round of 
decomposition. The following describes the innovation and 
contribution of this research:

(1)	 Proposing the multi-decomposition algorithm to further 
mitigate the effects of data nonlinearity and irregularity 
on forecasting performance. And the multi-decomposi-
tion is a combination of VMD and CEEMDAN.

(2)	 The sample entropy was used as the selection criterion 
for decomposing the data, and the decomposed results 
were recombined before further decomposition.

(3)	 Proposing a hybrid model called multi-decomposition-
XGBoost by combining multi-decomposition algo-
rithm and XGBoost model. The model is validated and 
assessed utilizing data from Beijing and Hubei carbon 
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market. RMSE, MAE, MAPE, Diebold-Mariano (D-M) 
test (Harvey et al. 1997), and time are the five indica-
tors used to assess the model’s performance.

The remaining sections of this work are organized 
as follows: “Methods” describes the methodologies and 
theoretical foundation of the models conducted in this 
research. “Empirical examination” presents the data selec-
tion and the composition of the hybrid model. Besides, it 
carries out verification, analysis, and comparison of dif-
ferent models. The experimental findings are outlined in 
“Conclusion and discussion” along with potential areas 
for future research.

Methods

Complete ensemble empirical mode decomposition 
with adaptive noise (CEEMDAN)

Torres et al. (2011) introduced CEEMDAN, which stands 
for full ensemble empirical mode decomposition with 
adaptive noise, as an advanced signal processing technique. 
It allows the dissection of a complex signal into multi-
ple intrinsic mode functions (IMFs). The decomposition 
process is achieved through a combination of the empiri-
cal mode decomposition (EMD) (Wu and Huang 2009) 
and the ensemble EMD (EEMD) (Huang et al. 1998). The 
fundamental approach employed by CEEMDAN involves 
introducing small amounts of white noise to the original 
signal and subsequently performing EMD on each noisy 
signal. The IMFs derived from each noisy signal are then 
combined to form the complete ensemble IMFs, which 
serve as a representation of the original signal.

The significant benefit of CEEMDAN is its capability to 
resolve the mode mixing issue, which is prevalent in conven-
tional EMD. This issue arises when IMFs derived through 
EMD contain more than one intrinsic mode, causing impre-
cise outcomes. By the addition of minimal units of noise to 
the original signal, CEEMDAN guarantees that each IMF 
has only one intrinsic mode, resulting in enhanced results 
in signal analysis and processing applications. The concrete 
steps of CEEMDAN are outlined below:

The initial data is noted as F(t). IMFj refers to the jth 
IMF derived through CEEMDAN. Gaussian white noise 
with N(0, 1) is noted as ωi(t). rj(t) represents jth residue. Let 
EMDj(⋅) be the jth IMF obtained from EMD decomposition. 
All above variables are long vector sequence. White noise 
standard deviation is noted as εj.

(1)	 The first decomposition is performed using Fi(t)
(i = 1, 2, 3, …, n). The definition of Fi(t) is given in for-

mula (1-1), in which i denotes the ith noise, t denotes 
time point and n denotes ensemble size.

(2)	 IMFi
j
(t)(i = 1, 2, 3,… , n) represents jth IMF that Fi(t) 

decomposed by EMD. Then, the first IMF obtained by 
CEEMDAN IMF1(t) can be calculated by formula (1-2).

(3)	 The first residue r1(t) can be found in formula (1-3).

(4)	 The first IMF that ωi(t) decomposed by EMD, 
EMD1

(
�
i(t)

)
 , with ε1 are combined to form the adap-

tive noise. Then adding it to the first residue r1(t) can get 
a new sequence. Thereafter, decomposing this sequence 
by EMD again and then calculating the second IMF 
decomposed by CEEMDAN IMF2(t) via formula (1-4).

(5)	 The j th  IMF decomposed by CEEMDAN 
IMFj(t)(j = 2, 3,… , J) can be calculated by formula 
(1–5). J means the total amount of IMFs obtained by 
CEEMDAN.

(6)	 Next, jth residue rj(t)(j = 2, 3, …, J) be calculated by 
formula (1-6).

(7)	 Repeat step 5 and step 6 for next k until the residue 
unable to be decomposed anymore and does not pos-
sess a minimum of two extrema. The last residue is 
noted as R(t). Ultimately, the final decomposition result 
for initial data F(t) is expressed in formula (1-7).

Variational mode decomposition (VMD)

Dragomiretskiy and Zosso (2014) presented the variational 
mode decomposition (VMD) algorithm as a novel approach 
for signal analysis. The term of VMD involves breaking 

(1-1)Fi(t) = F(t) + ε0ω
i(t), i = 1, 2, 3,… , n.

(1-2)IMF1(t) =
1

n

∑n

i=1
IMFi

1
(t) =

1

n
EMD1

(
Fi(t)

)
.

(1-3)r1(t) = F(t) − IMF1(t).

(1-4)

IMF2(t) =
1

n

n∑

i=1

EMD1

(
r1(t) + �1EMD1

(
�
i(t)

))
.

(1-5)

IMFj(t) =
1

n

n∑

i=1

EMD1

(
rj−1(t) + εj−1EMDj−1

(
ωi(t)

))
.

(1-6)rj(t) = rj−1(t) − IMFj(t).

(1-7)F(t) =

J∑

j=1

IMFj(t) + R(t).



89168	 Environmental Science and Pollution Research (2023) 30:89165–89179

1 3

down a signal into its intrinsic modes using a variational 
method. The approach is based on the perspective that a 
signal can be decomposed into basic functions or modes 
and that these modes can be improved by minimizing a 
cost function. This cost function represents the discrepancy 
between the original signal and its approximation. VMD 
blends the concepts of EMD and sparse representation. It 
offers a more robust and dependable mode decomposition 
approach in comparison to conventional EMD or CEEM-
DAN. The concrete steps of VMD are outlined below:

The initial data is noted as F(t). The finite bandwidth is 
defined as uk(k = 1, 2, …, K). K represents the total amount of 
IMFs obtained by VMD. And instantaneous frequency is noted 
as ωk. The variational model with the corresponding constraints 
can be calculated by formula (2-1). And the width of frequency 
spectrum for each IMF is shown in formula (2-2).

The constraint concern can be simplified into a more solv-
able unconstrained problem by incorporating a penalty term 
α and a Lagrange multiplier λ. Afterwards, the augmented 
Lagrange expression is derived in formula (2-3).

Then, utilizing the alternative direction multiplier 
approach to calculate the saddle point:

where ûn+1
k

(ω) , F̂(ω) , and λ̂(ω) respectively indicate Fou-
rier transform of un+1

k
(t) , F(t), and λ(t). And τ represents the 

tolerance of noise. Similarly, the method for updating the 
center frequency is shown in formula (2-6).

(2-1)min
{uk},{�k}

{
∑

k

‖
‖
‖‖‖
�t

[(

�(t) +
j

�t

)

∗ uk(t)

]

e−j�kt
‖
‖
‖‖‖

2

2

}

,

(2-2)s.t.

K∑

k=1

uk(t) = F(t).

(2-3)L
({

uk
}
,
{
ωk

}
, λ
)
= α

∑

k

‖‖
‖‖‖
�t

[(

�(t) +
j

�t

)

∗ uk(t)

]

e−j�kt
‖‖
‖‖‖

2

2

+
‖‖
‖‖‖
F(t) −

∑

k

uk(t)
‖‖
‖‖‖

2

2

+

⟨

λ(t),F(t) −
∑

k

uk(t)

⟩

.

(2-4)ûn+1
k

(ω) =
F̂(𝜔) −

∑
i≠k ûi(𝜔) + 𝜆̂(𝜔)∕2

1 + 2α
�
ω − ωk

�2 ,

(2-5)λ̂n+1(ω) = λ̂n(ω) + τ

(

F̂(ω) −
∑

k

ûn+1
k

(ω)

)

,

(2-6)ω̂n+1
k

=
∫ ∞

0
ω
||
|
ûn+1
k

(ω)
|
|
|

2

dω

∫ ∞

0

|||
ûn+1
k

(ω)
|||

2

dω

.

Sample entropy

Richman and Moorman (2000) presented sample entropy as 
a mathematical measure of the complexity and unpredict-
ability of a time series. It is computed by comparing the 
similarity between patterns in a time series. Typically, it 
is used to analyze physiological signals and financial time 
series. The concrete steps of sample entropy are outlined 
below:

The tolerance is noted as r and m indicates the length 
of the compared time series. The number of data points in 
time series is referred to as N. Let A(m, r, N) be the number 
of matches, which is calculated in formula (3-1). Besides, 
the number of self-matches is defined as B(m, r, N), which 
is shown in formula (3-2).

Ultimately, the expressions for Sample Entropy, 
SampEn(m, r, N), is listed in formula (3-3).

XGBoost algorithm

XGBoost, proposed by Chen and Guestrin (2016), is a 
gradient boosting algorithm for machine learning. It is an 
enhanced version of the gradient boosting decision tree 
(GBDT) algorithm. XGBoost is a model that is formed by 
combining multiple decision trees. The core of the training 
process involves continuously adding trees, where each new 
tree is constructed based on the residuals of the previous 
tree. It trains data by fitting weak decision trees and obtains 
the combined prediction result by weighted majority vot-
ing. Compared to traditional GBDT algorithms, XGBoost 
achieves enhanced data fitting by performing a second-
order Taylor expansion on the loss function. Additionally, 
it incorporates L1 regularization (lasso) and L2 regulariza-
tion (ridge) into the model to avoid overfitting issues. The 
principle of XGBoost is outlined below:

Let ℂ = {(xi, yi)} be the initial data with m examples and 
n features, where |C| = n, xi ∈ ℝn and yi ∈ ℝ. F  indicates the 

(3-1)

A(m, r,N) =

N−m∑

i=1

[
max

|
|
|
xi+j − xi

|
|
|
≤ r

]
, j = 1, 2,… ,m.

(3-2)

B(m, r,N) =

N−m+1∑

i=1

[
max

|
||
xi+j − xi

|
||
≤ r

]
, j = 1, 2,… ,m − 1.

(3-3)SampEn(m, r,N) = − ln
A(m, r,N)

B(m, r,N)
.
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space of the classification and regression tree. XGBoost pre-
dicts by adding K functions:

In formula (4-1), q is defined as structure of each tree, T 
means the total leaves inside the tree. ω indicates the weights 
of leaves. fk(xi) represents the result of kth tree.

In XGBoost, for regression tasks, each tree is added to 
the model sequentially, thus enhancing the performance 
of the model. The newly generated tree must match the 
previous prediction’s residuals, and the jth tree’s iteration 
process is shown as follows:

XGBoost avoids overfitting by incorporating regulariza-
tion terms into the objective function. The formula (4-3) 
displays the regularization term, in which γ and ω are the 
control coefficients.

Then, we can calculate the objective function as below:

In order to enhance the model, fj(xi) can approximately 
be expanded using a second-order Taylor expansion. The 
improved objective function formula (4-5) as follows:

where first-order gradient statistics gi = 𝜕
ŷ
(j−1)

i

l
(
ŷ
(j−1)

i
, yi

)
 

and second-order gradient statistics hi = 𝜕
2

ŷ
(j−1)

i

l
(
ŷ
(j−1)

i
, yi

)
 . 

As first (j − 1) trees’ residuals have a small impact on the 
objective function, equation (4-5) can be simplified as 
follows:

(4-1)

⎧
⎪
⎨
⎪
⎩

ŷi = 𝜙
�
xi
�
=

K∑

k=1

fk
�
xi
�
, fk ∈ F,

F =
�
fk
�
xi
�
= 𝜔q(x)

�
, q ∶ ℝ → T ,𝜔 ∈ ℝ

T .

(4-2)ŷ
j

i
= ŷ

j−1

i
+ fj

(
xi
)
, ŷ0

i
= 0.

(4-3)Ω
�
fj
�
= γT +

1

2
λ‖�‖2.

(4-4)

L
(j)

obj
=

m∑

i=1

l
(
ŷ
(j)

i
, yi

)
+ Ω

(
fj
)
=

m∑

i=1

l
(
ŷ
(j−1)

i
+ fj

(
xi
)
, yi

)
+ Ω

(
fj
)
.

(4-5)

L
(j)

obj
≈

m∑

i=1

[
l
(
ŷ
(j−1)

i
, yi

)
+ �ifj

(
xi
)
+

1

2
hif

2

j

(
xi
)]

+ Ω
(
fj
)
,

(4-6)L
(j)

obj
=

m∑

i=1

[
�ifj

(
xi
)
+

1

2
hif

2

j

(
xi
)]

+ Ω
(
fj
)
.

Then, substituting equation (4-3) into equation (4-6) 
results in formula (4-7).

Afterwards, the optimum weight ω∗
k
 can be calculated 

as below:

where Ik is donated to the set of leaf k. Lastly, the optimum 
objective function is shown as follows:

Empirical examination

Data collection

Since China’s carbon trading pilot projects were carried out in 
October 2011, Beijing ETS and Hubei ETS have large busi-
ness volume. As of December 20,2022, the business volume 
for Beijing ETS and Hubei ETS are up to 10.49 billion Yuan 
and 20.03 billion Yuan, thereby their carbon prices are repre-
sentative. This paper selects Beijing and Hubei carbon price 
data set as sample (collected from http://​www.​tanji​aoyi.​com/). 
The summary of data set is shown in Table 1. Compared to the 
relatively stable price curve in Hubei ETS, the price curve in 
Beijing fluctuates more significantly. In this case, it is worth-
while to establish an accurate price prediction model that can 
be utilized for expansion and implementation in other carbon 
markets. In other words, we employed multi-decomposition 
for denoising and XGBoost for effectively predicting carbon 
prices for Beijing and Hubei ETS. All the decomposition 
results are normalized by min-max scaling before being pre-
dicted by the XGBoost model.

Empirical analyses

In order to verifying the validity of the multi-decomposition 
with XGBoost model, this section constructs 4 comparative 
experiments.

(4-7)L
(j)

obj
=

m∑

i=1

[
gifj

(
xi
)
+

1

2
hif

2

j

(
xi
)]

+ γT +
1

2
λ

T∑

k=1

ω2

k
.

(4-8)ω∗
k
= −

∑
i∈Ik

gi
∑

i∈Ik
hi + λ

,

(4-9)Lobj = −
1

2

T�

k=1

�∑
i∈Ik

gi

�2

∑
i∈Ik

hi + λ
+ γT .

Table 1   The summary of data 
set

Market Date Train set Test set Max Min Mean

Beijing 2019-11-19 to 2020-11-19 104 30 100.00 53.18 85.92
Hubei 2018-08-01 to 2020-11-13 230 102 53.85 24.95 30.96

http://www.tanjiaoyi.com/
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Individual models

Figure 1 compares the prediction results for each individual 
model without using decomposition method. Individual mod-
els cover single XGBoost, LightGBM, random forests (RF), 
deep neural networks (DNN), ARIMA and THETA. Besides, 
XGBoost, LightGBM, RF, and DNN using K-folder cross-val-
idation method to increase prediction precision. Table 2 pre-
sents the predictive performance comparison results for single 
models, RMSE, MAE, MAPE, and D-M test results are listed.

According to the comparison results, the single XGBoost 
outperforms other individual models. RMSE, MAE, and 
MAPE for single XGBoost are 3.085, 2.615, and 2.815%. 
The outcomes reveal that these three evaluation criteria 
scored in XGBoost are optimal in this comparison respec-
tively. The D-M test results of single DNN, AIRMA, and 
THETA are negative, which proves that these three mod-
els may be better than XGBoost. Compared with XGBoost, 
RMSE for DNN decreases by 5.099%, MAE decreases 
by 4.860%, and MAPE decreases by 4.629%. RMSE for 
ARIMA decreases by 12.089%, MAE decreases by 11.127%, 
and MAPE decreases by 10.643%. The RMSE value of 
the THETA model decreases by 4.333%, the MAE value 
decreases by 6.244%, and the MAPE value decreases by 
7.964%. Therefore, the XGBoost shows superior predictive 
performance compared to other models.

Decomposition methods with XGBoost model

To improve the predictive performance, CEEMDAN and 
VMD methods are used to decompose the carbon price 
sequence. Different decomposition methods caused dif-
ferent predictive performances. Table 3 present the details 
of prediction comparison between CEEMDAN-XGBoost, 
VMD-XGBoost, and single XGBoost model.

Figure  2 CEEMDAN part displays that CEEMDAN 
divides original data into 6 IMF components and a residual 
component. From IMF 1 to IMF 6, the frequency and com-
plexity of the CEEMDAN outcomes decrease. As the order 
of magnitude of this residual is only 1e-14, it can be ignored 
while making prediction and will not decrease the predic-
tive performance. Likewise, VMD also divide original data 
into 6 IMF components. Raw data and VMD decomposi-
tion components IMF 1 to IMF 6 are shown in Fig. 2 VMD 
part. The results of the VMD decomposition increase in fre-
quency and complexity from IMF 1 to IMF 6. The sample 
entropy for each IMF shown in Fig. 2. The complexity of 
the sequence increases with sample entropy value, making 
sequence prediction harder. The ultimate result is achieved 
by summing up the predictions for each IMF obtained from 
the decomposition.

After analyzing the RMSE, MAE, MAPE, and D-M test 
results in Table 3, CEEMDAN-XGBoost model performed 
better than single XGBoost and VMD-XGBoost model. The 
RMSE, MAE, and MAPE for VMD-XGBoost are 2.478, 
2.089, and 2.260%. Compared with XGBoost, RMSE 

Fig. 1   Beijing carbon price 
prediction outcomes from indi-
vidual models

Table 2   Prediction comparison of individual models

Model RMSE MAE MAPE D-M test

Single XGBoost 3.085 2.615 2.815% 0
Single LIGHTGBM 6.852 6.271 6.748% 19.259
Single RF 4.684 3.979 4.279% 8.237
Single DNN 3.243 2.743 2.945% −0.409
Single FASTAI 6.459 5.781 6.196% 13.686
Single ARIMA 3.458 2.906 3.114% −0.364
Single THETA 3.219 2.779 3.039% -0.951

Table 3   Prediction comparison of single XGBoost and decomposi-
tion methods

Model RMSE MAE MAPE D-M test

Single XGBoost 3.085 2.615 2.815% 0
CEEMDAN-XGBoost 2.697 2.036 2.258% −18.646
VMD-XGBoost 2.578 2.189 2.360% −3.431
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decreased 19.691%, MAE decreased 20.133% and MAPE 
value decreased 19.716%. Meanwhile, the RMSE, MAE, 
and MAPE for CEEMDAN-XGBoost are 2.697, 2.036, 
and 2.258%. Compared with XGBoost, RMSE decreased 
12.590%, MAE decreased 22.141%, and MAPE decreased 
19.787%. All these evaluation criteria performed much bet-
ter than the single XGBoost model. The D-M test results 

of CEEMDAN-XGBoost and VMD-XGBoost are negative. 
The value of MAE, MAPE, and D-M test for CEEMDAN-
XGBoost model get highest score in these three models. 
Considering the findings, CEEMDAN-XGBoost model has 
better predictive performance.

Figure 3 shows the price prediction results and the orig-
inal price for each IMFs. According to this figure, IMF1 

Fig. 2   CEEMDAN and VMD decomposition and sample entropy results

Fig. 3   Price prediction results for each decomposition IMF



89172	 Environmental Science and Pollution Research (2023) 30:89165–89179

1 3

is almost unpredictable, with a considerable discrepancy 
between the forecasted and actual data and high sample 
entropy value of 1.12. The predictive performance of IMF2 
and IMF3 is relatively good. Simultaneously, IMF4, IMF5, 
and IMF6 have a robust predictive performance and accu-
rately reflect changes in the price trend. The discrepancy 
between the expected and actual data is minimal.

Re‑decomposition‑XGBoost model

The objective of the re-decomposition is to reduce the com-
plexity of the IMFs obtained from the initial decomposition 
even more. In the “Re-decomposition-XGBoost model,” the 
predictive performance of IMF1 was poor. To improve its 
predictive performance, IMF1 needs further decomposition. 
As CEEMDAN is derived from EMD decomposition, using 
a similar approach for further decomposition of IMF1 will 
not yield good results. Therefore, using VMD as a method 
for further decomposition is a good choice. In this scenario, 
the decomposition number is compared between 4 and 6 
with all other settings set to default.

Figure 4 shows the re-decomposition results for IMF1 
by using CEEMDAN. IMF1-1 to IMF1-6 refer to each 

component obtained by re-decomposing IMF1. The first 
IMF1-1 after re-decomposition of IMF1 is essentially the 
same as the original data. Its sample entropy value is nearly 
identical to the initial value, and the complexity of the data 
has not been reduced. Meanwhile, the values of the other 
IMFs are small and have little impact on the predictive per-
formance. Therefore, using the same decomposition method 
during re-decomposition does not effectively improve the 
predictive performance. However, the re-decomposition 
results of VMD are entirely different. The data curves 
obtained through VMD re-decomposition are smooth and 
have low complexity. As demonstrated in Fig. 4, the sam-
ple entropy value of each VMD decomposed IMFs are sig-
nificantly lower than that of IMF1. As a result, employing 
VMD to decompose IMF1 can make data prediction easier 
while also enhancing model performance. Predict each of 
the IMF1-1 to IMF1-4 or IMF1-6 obtained from the re-
decomposition, and the remaining IMF2 to IMF6, using the 
XGBoost model. The ultimate prediction result is calculated 
by adding up the outcomes of each IMF's predictions.

Table 4 shows forecasting results for different re-decom-
position methods. Recall VMD4 presents the decomposition 
number for VMD is 4. A similar definition is for VMD6 

Fig. 4   Re-decomposition results 
for IMF1 by CEEMDAN and 
sample entropy comparison
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which appears in the following part. RMSE, MAE, MAPE, 
D-M test, and time value for CEEMDAN-VMD6-XGBoost 
model are 2.694, 2.015, 2.211%, −3.672, and 418.292 
according to Table 4. Compared with CEEMDAN-XGBoost, 
the value of RMSE just decreased 0.107%, MAE decreased 
1.048%, and MAPE value decreased 2.075%. Therefore, 
using VMD with 6 decomposition IMFs has little effect on 
performance improvement. RMSE, MAE, MAPE, and time 
values for the CEEMDAN-VMD4-XGBoost model demon-
strate superior performance compared to other models, with 
values of 2.534, 1.985, 2.195%, and 346.328, respectively. 
Compared with CEEMDAN-XGBoost, RMSE decreased 
6.077%, MAE decreased 2.521%, and MAPE decreased 
2.790%. The D-M test value is up to −6.461. The prediction 
accuracy is improved when IMF1 is replaced with 4 IMFs 
obtained through VMD decomposition. The D-M test value 
indicates that the forecasting results of CEEMDAN-VMD4-
XGBoost and CEEMDAN-VMD6-XGBoost are closer to 
the actual values compared to CEEMDAN-XGBoost model. 

Figure 5 shows the price prediction results and the original 
price for each decomposition and re-decomposition IMF.

Multi‑decomposition‑XGBoost model without integration

Multi-decomposition means further decomposition for 
re-decomposed IMFs, which is attempted to increase the 
prediction’s accuracy. As shown in Fig. 5, the forecasting 
result of IMF1-4 still has a large gap with the original data. 
Since IMF1-4 is obtained by VMD, CEEMDAN is selected 
as the method for further decomposition. Therefore, we use 
CEEMDAN-VMD-CEEMDAN as the specific method for 
multi-decomposition. IMF1-4 is decomposed into 6 IMFs, 
namely IMF1-4-1 to IMF1-4-6, and 1 residual. This resid-
ual can be ignored as its magnitude is only 1e-15. We use 
XGBoost model to predict IMF1-4-1 to IMF1-4-6 obtain 
from CEEMDAN multi-decomposition, IMF1-1 to IMF1-3 
from VMD re-decomposition, and IMF2 to IMF6 from the 
first CEEMDAN decomposition separately. The ultimate 

Table 4   Prediction comparison 
of decomposition and 
re-decomposition methods

Model RMSE MAE MAPE D-M test Time

CEEMDAN-XGBoost 2.697 2.036 2.258% 0.000 251.522
CEEMDAN-VMD4-XGBoost 2.533 1.985 2.195% −6.461 346.328
CEEMDAN-VMD6-XGBoost 2.694 2.015 2.211% −3.672 418.292

Fig. 5   Prediction results for each decomposition and re-decomposition IMF
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multi-decomposition prediction result is obtained by sum-
ming up all the prediction outcomes.

But still, this method’s gain in prediction performance is 
insignificant. RMSE, MAE, MAPE, and D-M test values for this 
model (No integration) are 2.471, 1.849, 2.150%, and −0.527, 
respectively, according to Table 5. The D-M value is near to 0, 
indicating that the improvement in effect is not readily apparent. 
Compared with model CEEMDAN-VMD4-XGBoost, the value 
of RMSE just decreased 2.478%, MAE decreased 6.843%, and 
MAPE value decreased 2.045%. However, the model’s running 
time increased by approximately 100 s.

Multi‑decomposition‑XGBoost model with integration

Given that a third consecutive decomposition does not sig-
nificantly enhance the prediction performance and requires 
additional resources, this section focuses on integrating 
IMFs before multi-decomposing. This section selects IMFs 
with higher sample entropy for integration to form the cor-
responding Co-IMF, as IMFs with higher sample entropy 
has a greater prediction difficulty. CEEMDAN decomposi-
tion of integrated Co-IMF results in different decomposition 
components, namely Co-IMF1 to Co-IMFn. Table 5 shows 
the prediction performance obtained from different combi-
nations of Co-IMFs. Co-IMFs (1) presents the integration 
of IMF1-4 and IMF3. Co-IMFs (2) presents the integra-
tion of IMF1-4, IMF3 and IMF4. Co-IMFs (3) presents the 

integration of IMF1-4, IMF2, IMF3 and IMF4. The flow-
chart for this model is shown in Fig. 6. Co-IMFs (4) presents 
the integration of IMF1-3, IMF1-4, IMF2, IMF3, and IMF4. 
Co-IMF1 to Co-IMF4 and the remaining IMFs from the pre-
vious two decompositions are predicted using the XGBoost 
model. By summing up all of the prediction outcomes, this 
model’s ultimate prediction result is obtained.

Figure 7 presents the improvement comparation results for 
multi-decomposition. The scores for the Co-IMFs (1) mod-
el’s RMSE, MAE, MAPE, and D-M test are 2.314, 1.793, 
1.980%, and −3.876. Compared with the re-decomposition 
model CEEMDAN-VMD4-XGBoost, the RMSE, MAE, and 
MAPE reduced 8.671%, 9.692%, and 9.830% respectively. 
For Co-IMFs (2), the RMSE, MAE, MAPE, and D-M val-
ues are 2.164, 1.778, 1.950%, and −4.464. RMSE falls by 
14.584%, MAE decreases by 10.452%, and MAPE decreases 
by 11.169% compared to the CEEMDAN-VMD4-XGBoost. 
For Co-IMFs (3) model, the four indicators are 2.146, 1.450, 
1.608%, and −8.989, respectively. The improvement compar-
ation results for RMSE, MAE, and MAPE are up to 15.289%, 
26.938%, and 26.755%. For Co-IMFs (4) model, the value 
of RMSE, MAE, MAPE, and D-M test are 2.426, 1.974, 
2.176%, and 0.916. The improvement comparison results 
for RMSE, MAE, and MAPE are up to 15.289%, 26.938%, 
and 26.755%. Compared with model CEEMDAN-VMD4, 
the value of RMSE merely decreased 4.233%, MAE merely 
decreased 0.585%, and MAPE merely decreased 0.897%.

Table 5   Prediction results for 
multi-decomposition methods

Model RMSE MAE MAPE D-M test Time

CEEMDAN-VMD4-XGBoost 2.534 1.985 2.195% 0.000 346.328
No integration-XGBoost 2.471 1.849 2.150% −0.527 464.552
Co-IMFs (1)-XGBoost 2.314 1.793 1.980% −3.876 432.750
Co-IMFs (2)-XGBoost 2.164 1.778 1.950% 4.4645 404.105
Co-IMFs (3)-XGBoost 2.146 1.450 1.608% -8.989 349.209
Co-IMFs (4)-XGBoost 2.426 1.974 2.176% 0.916 319.757

Fig. 6   Multi-decomposition-XGBoost flowchart for Co-IMFs (3)
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Based on the comparison results, the multi-decomposition 
showed improved accuracy in prediction compared to the re-
decomposition. Furthermore, the improvement in accuracy 
obtained by using multi-decomposition with integration based 
on sample entropy was much greater than that obtained by 
directly using multi-decomposition without integration.

By employing multi-decomposition with appropriate 
integration, the selected IMFs can be transformed into new 
IMFs. These new IMFs exhibit lower sample entropy val-
ues compared to the original IMFs, making them easier to 
predict. Table 6 displays the sample entropy values of the 
IMFs before integration (IMF2, IMF3, IMF4, and IMF1-4) 
and after multi-decomposition (Co-IMF1 to Co-IMF4) in the 
Co-IMFs (3) model. The sample entropy values for IMF2, 
IMF3, IMF4, and IMF1-4 are 0.388, 0.582, 0.454, and 0.471, 
respectively. After multi-decomposition with integration, the 
sample entropy values for the new set of four IMFs decrease 
to 0.316, 0.449, 0.288, and 0.006. Clearly, for the Co-IMFs 
(3) model, the application of multi-decomposition with 

integration allows the original four IMFs to be transformed 
into four IMFs with lower complexity, thereby reducing the 
difficulty of prediction.

However, not all multi-decomposition with integration 
can produce good results. The combination of Co-IMFs 
results in different prediction performance. For example, 
Co-IMFs (3) improved the RMSE, MAE, and MAPE by 
15.289%, 26.938%, and 26.755% respectively, compared 
to the CEEMDAN-VMD4-XGBoost model. Each IMF 
included in this model is depicted in Fig. 8(a). However, Co-
IMFs (4) only improved these three indicators by 4.233%, 
0.585%, and 0.897%, respectively. Co-IMFs (3) model costs 
349.209 s, which is an increase of less than 1% compared to 
the re-decomposition model. This is because the Co-IMFs 
(3) model has the same total number of IMFs as the re-
decomposition model. Therefore, the Co-IMFs (3) model 
provides the most precise forecast of all models, and it 
does not require additional resources to achieve this level 
of precision. Figure 8(b) presents the prediction results for 
each decomposition XGBoost model. As a result, using this 
method requires selecting an appropriate combination of Co-
IMFs to achieve better prediction performance.

Validation of Hubei carbon market

This research utilizes data from the Hubei carbon market 
to further validate the predictive performance of multi-
decomposition-XGBoost model in other carbon markets. 
The summary of Hubei carbon price data set is shown in 
Table 1.

Fig. 7   Improvement compara-
tion results for multi-decompo-
sition

Table 6   Sample entropy values of the IMFs before integration and 
after multi-decomposition in the Co-IMFs (3) model

IMFs before integration IMFs after multi-decom-
position

IMF2 0.388 Co-IMF1 0.316
IMF3 0.582 Co-IMF2 0.449
IMF4 0.454 Co-IMF3 0.288
IMF1-4 0.471 Co-IMF4 0.006
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Fig. 8   Prediction results for Co-IMFs (3) model and other decomposition models

Table 7   Prediction performance 
for Hubei carbon market

Model RMSE MAE MAPE D-M test Time

Single XGBoost 1.046 0.833 2.879% 0.000 66.852
CEEMDAN-XGBoost 0.933 0.819 2.852% −10.607 343.665
CEEMDAN-VMD6-XGBoost 0.916 0.784 2.727% −11.567 536.011
Multi-decomposition-XGBoost 0.748 0.505 1.745% −7.977 462.521
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Table 7 reveals that the multi-decomposition-XGBoost 
model demonstrates superior prediction performance 
compared to other models. Compared to the CEEMDAN-
VMD6-XGBoost (re-decomposition) model, the multi-
decomposition-XGBoost model exhibits a decrease in 
RMSE from 0.916 to 0.748, a reduction in MAE from 
0.784 to 0.505, and a significant decline in MAPE from 
2.727 to 1.745%. The model achieved better predictive per-
formance compared to the re-decomposition model, while 
also reducing the time required by approximately 73 s. The 
multi-decomposition-XGBoost model recombines the six 
IMF components obtained from the decomposition and fur-
ther applies CEEMDAN decomposition to obtain four new 
IMFs. With a decreasing total number of IMFs, the model 
requires less time for processing. Therefore, it remains 
applicable in other carbon markets as well.

Conclusion and discussion

This research offers the multi-decomposition-XGBoost 
model for predicting carbon price. This model employs a 
novel decomposition strategy called multi-decomposition, 
which involves recombining the results of the first and sec-
ond decomposition based on sample entropy and then per-
forming a further round of decomposition. Afterwards, the 
XGBoost model was employed for carbon price prediction. 
We could arrive at the following findings by contrasting the 
new hybrid model with others:

(1)	 The Co-IMFs (3) multi-decomposition-XGBoost model 
presented in Table 5 performs the best among all the 
models in Beijing carbon market. Its results for RMSE, 
MAE, MAPE, and time are 2.146, 1.450, 1.608%, and 
349.209, respectively. For the multi-decomposition-
XGBoost model in Hubei carbon price prediction, 
the RMSE is 0.748, the MAE is 0.505, the MAPE is 
1.745%, and the time value is 462.521.

(2)	 The utilization of multi-decomposition with appropri-
ate integration after re-decomposition does not signifi-
cantly increase the computational time of the model. 
In the case of Beijing carbon price prediction, the opti-
mal multi-decomposition model only experiences an 
increase in computational time of less than 1%. While 
in Hubei carbon price prediction, the optimal multi-
decomposition model even reduces the computational 
time by approximately 73 s.

(3)	 The multi-decomposition approach with integration 
based on sample entropy greatly enhances the preci-
sion of carbon price prediction. After combining multi-
decomposition algorithm, XGBoost model in Beijing 
carbon market achieved a decrease in RMSE, MAE, 
and MAPE by 30.437%, 44.543%, and 42.895%. And 

in Hubei carbon market, the RMSE, MAE, and MAPE 
decreased by 28.504%, 39.356%, and 39.394%.

(4)	 The integration based on sample entropy can improve 
the prediction performance, but it requires finding a 
proper integration approach. Otherwise, the improve-
ment effect of this method is insignificant.

The multi-decomposition-XGBoost model used in this paper 
performs well in predicting the fluctuation of carbon price in 
Beijing and Hubei. However, the findings are subject to sev-
eral limitations. With regard to the decomposition part, we 
used the classical methods of VMD and CEEMDAN. In future 
research, it may be worthwhile to explore updated decomposi-
tion methods, such as empirical Fourier decomposition, pro-
posed by Zhou et al. (2022b). Regarding the recombination of 
decomposition results, we used sample entropy as the crite-
rion. Considerably, more work will need to be explored on an 
alternative criterion for recombining the decomposition, such 
as permutation entropy. Ruiz-Aguilar et al. (2021) employed a 
model based on permutation entropy for wind speed prediction. 
In addition, more research is required to account for hybrid 
models composed of multiple deep learning or machine learn-
ing models that have gained attention recently (Li et al. 2020; 
Hassan et al. 2020; Liu et al. 2021; Asteris et al. 2021; Lin et al. 
2021; Ahmad et al. 2022). Such hybrid models may also have 
good performance for price prediction.
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