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Abstract
Nitrogen transport from terrestrial to aquatic environments could cause water quality deterioration and eutrophication. By 
sampling in the high- and low-flow periods in a highly disturbed coastal basin of Southeast China, hydrochemical character-
istics, nitrate stable isotope composition, estimation of potential nitrogen source input fluxes, and the Bayesian mixing model 
were combined to determine the sources and transformation of nitrogen. Nitrate was the main form of nitrogen. Nitrification, 
nitrate assimilation, and NH4

+ volatilization were the main nitrogen transformation processes, whereas denitrification was 
limited due to the high flow rate and unsuitable physicochemical properties. For both sampling periods, non-point source 
pollution from the upper to the middle reaches was the main source of nitrogen, especially in the high-flow period. In addition 
to synthetic fertilizer, atmospheric deposition and sewage and manure input were also major nitrate sources in the low-flow 
period. Hydrological condition was the main factor determining nitrate transformation in this coastal basin, despite the high 
degree of urbanization and the high volume of sewage discharge in the middle to the lower reaches. The findings of this 
study highlight that the control of agricultural non-point contamination sources is essential to pollution and eutrophication 
alleviation, especially for watersheds that receive high amounts of annual precipitation.
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Introduction

Nitrogen transport from terrestrial to aquatic environments 
largely contributes to the nitrogen (N) amount in estuarine 
waters, leading to eutrophication, harmful algal blooms, and 
hypoxia (Richards et al. 2021). Coastal basins are the hot 
spot for rapid economic development; therefore, the environ-
mental and ecological qualities of coastal basins largely rely 
on the fragile equilibrium between land and ocean interac-
tions in the coastal zone and are particularly susceptible to 
the variations in hydrological conditions and human activi-
ties (Ye et al. 2017; Han and Currell 2022). This vulnerabil-
ity is accentuated by the increasing anthropogenic pressure 
exerted on them (Bertrand et al. 2022). Such activities are 
often associated with point (e.g., municipal and industrial 
sewage leakages) and non-point source pollution (e.g., agri-
cultural runoff and atmospheric deposition) that directly 
impact the environment quality (Botero-Acosta et al. 2019; 
Kibuye et al. 2020) and greatly alter the pool of carbon and 
nitrogen in coastal area (de la Reguera and Tully 2021).
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As N does not behave conservatively in aquatic environ-
ments, determining the sources and transformation of N is 
still challenging, also because of the complex anthropogenic 
activities and hydrological conditions at catchment scale 
(Ding et al. 2015), which alter the composition and concen-
tration of N via terrestrial input and internal retention (Yang 
and Toor 2016). In this context, the isotopic signatures of 
nitrate (δ15N-NO3

− and δ18O-NO3
−) can provide valuable 

information on the sources and fate of N in aquatic environ-
ments (Kendall 1998; Yu et al. 2021). Different sources of 
N have distinct isotopic signatures, which can be used diag-
nostically to semi-quantify the relative importance of single 
N sources (Xue et al. 2009; Nestler et al. 2011).

Biological processes, such as nitrification, could lead to 
isotope fractionation; as the light isotope (14N) is preferen-
tially used by microorganisms, depletion of δ15N-NO3

− is 
likely to be observed during this process (Jacob et al. 2016). 
Laboratory studies have verified that, during nitrification, the 
conversion of ammonium to nitrate by microbial activities 
requires two oxygen atoms from water in the substrate and 
one oxygen atom from the atmosphere (Aleem et al. 1965; 
DiSpirito and Hooper 1986). In field conditions, due to the 
isotopic fraction caused by evaporation and respiration, 
δ18O in water and atmosphere could be higher than those 
in laboratory conditions. Thus, δ18O of newly microbially 
produced nitrate could be 5‰ higher than the theoretical 
value obtained in the laboratory (Kendall 1998). But, such 
deviation could not prevent δ18N-NO3

− from being an effec-
tive tool to determine nitrogen sources and transformation.

By contrast, denitrification would cause an enrichment 
of δ15N and δ18O in residual nitrate at ratios between 1.3 
and 2.1 (Archana et al. 2018; Zhang et al. 2018). Both deni-
trification and anaerobic ammonium oxidation can allevi-
ate nitrate contamination by transforming it into harmless 
forms, such as N2 (Bernard-Jannin et al. 2017). Besides 
denitrification, NO3

− assimilation by phytoplankton can also 
cause an increase in δ15N-NO3

− and δ18O-NO3
−, with ratios 

between these two isotopes close to 1.0 (Mohd Jani and Toor 
2018; Yu et al. 2018). With the application of the nitrate 
dual-isotope technique in combination with physicochemical 
water quality data, precipitation data, hydrological data, land 
use data, and other tracers (e.g., boron isotopes, chloride), 
some authors have successfully determined the sources and 
transformation process of N in different ecosystems, such 
as river-aquifer system (Meghdadi and Javar 2018; Kwon 
et al. 2021), karst systems (Valiente et al. 2020), urban basin 
(Jin et al. 2018; Guo et al. 2021), and coastal basin (Chang 
et al. 2021).

The distribution and correlation between δ15N-NO3
− and 

δ18O-NO3
− could help to qualitatively determine the poten-

tial nitrate sources. However, it is important to acknowledge 
the limitations when discussing the uncertainty caused by 
isotope fractionation and mixing process of different nitrate 

sources (Yu et al. 2021). This is due to the typical isotopic 
compositions of nitrate from different sources which can 
overlap, making it challenging to definitively differentiate 
the sources based solely on isotopic ratios, which may bring 
great uncertainties to the determination of sources.

The initial attempt to quantify the potential sources of 
nitrate in water relied on the simple linear mixing model 
to derive an analytical solution (Deutsch et al. 2006; Voss 
et al. 2006). However, this model proved inadequate in 
underdetermined systems where the number of potential 
sources exceeded the number of environmental tracers by 
two. IsoSource, an alternative approach, partially addresses 
this issue by providing distributions of feasible solutions 
through iterative calculations utilizing a “tolerance” term 
(Phillips and Gregg 2003). However, IsoSource is also 
based on the linear mixing model and only accepts mean 
values when inputting the isotopic compositions of poten-
tial sources, disregarding standard deviations or the “raw 
data” of isotopic compositions from potential sources; the 
outputs of IsoSources are based on the maximum likelihood 
estimation, providing point estimates without the analysis of 
associated probabilities and uncertainties.

Since the introduction of Bayesian mixing model frame-
work, several packages have been developed to estimate the 
contribution of different sources to a mixture (Stock et al. 
2014), such as SIAR (Parnell et al. 2013), MixSIR (Moore 
and Semmens 2008), and MixSIAR (Stock et al. 2014).
These models use a Markov chain Monte Carlo (MCMC) 
algorithm, based on the input of mixtures’ isotope compo-
sition, assumed prior distribution of potential sources, the 
associated isotopic range of each sources, and isotope frac-
tionation factors to quantitatively estimate the contribution 
of different nitrate sources to the mixture (i.e., water samples 
in our study). During the MCMC simulation process, the 
Bayesian mixing model generated a large number of poste-
rior samples, which enable the estimation of uncertainties 
and credible interval of source estimations (Li et al. 2023).

Among the aforementioned packages developed based 
on the Bayesian mixing model framework, MixSIAR 
stands out by introducing a hierarchical structure. This 
feature enables the categorization of mixtures into dif-
ferent levels or groups, facilitating the analysis of nested 
relationships among different categories within the data. 
Additionally, MixSIAR incorporates the distinction 
between random effects and fixed effects for categori-
cal variables. By considering random effects, MixSIAR 
can estimate varying effects across different categories, 
capturing the variability associated with each category. 
In contrast, fixed effects provide deterministic estimates, 
assuming a constant effect across all observations within 
the category. These unique features make MixSIAR a 
more powerful tool for exploring complex relationships 
and variations in source contributions compared to other 
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packages. However, to ensure that the Bayesian mixing 
models and hydrochemical analyses accurately reflect the 
characteristics of the watershed, it is necessary to compare 
the results estimated by considering the input fluxes of dif-
ferent nitrogen sources, while also taking into account the 
local socio-economic factors and human activities within 
the watershed (Kim et al. 2023).

The Jin River Basin is located in the coastal area of 
Southeast China and contains the Shanmei Reservoir, 
which not only serves as the main water supply and flood 
control facility for the downstream Quanzhou City but also 
supplies water to Kinmen County, which is managed by 
the Taiwan Region. Thus, protecting the aquatic environ-
ment in the Jin River Basin has both ecological and politi-
cal significance. Identification of N sources and transfor-
mation is an important step in maintaining and restoring 
the aquatic environment of this coastal basin. In this con-
text, our objectives were to (1) investigate the variations in 
N composition and water quality at the longitudinal scale 
from freshwater to seawater, (2) distinguish the sources 
of nitrate using stable isotopes of NO3

− and the Bayesian 
mixing model, and (3) discuss the biogeochemical mecha-
nisms of nitrate transport under the influences of terrestrial 
nutrient export, providing evidence for microbial N trans-
formations in the Jin River Basin.

Materials and methods

Study area

The Jin River Basin is located in Fujian Province, Southeast 
China, and covers an area of 5692 km2. Considering the 
limited funds and the difficulty to obtain water samples at 
the basin scale, we selected the Dong River, which is the 
main tributary of the Jin River and converges with the Xi 
River at the lower reach of the Jin River (our study area is 
about 2500 km2). The distance of this confluence to Quan-
zhou Bay, which is a semi-closed bay and the outlet of the 
Jin River, is about 28 km. The Shanmei Reservoir, a large 
reservoir in Quanzhou District, is located in the middle of 
the Dong River and has recently attracted considerable atten-
tion because of emerging eutrophication (Qiu et al. 2016).

Using the digital elevation model (DEM) to extract the 
sub-river basin (ArcMap 10.6, Esri, Inc.), we divided our 
study area into three sub-reaches (Fig. 1). From the upper 
to the lower reach, due to the topography and the coastal 
conditions, the area of building land is constantly increas-
ing, whereas those of forests and shrubland are decreasing. 
The area of arable land remains relatively stable (Fig. 1d).

The average temperature of the study area ranges from 17 
to 21 ℃, with an average annual precipitation from 1010 to 

Fig. 1   a–c Location of the study area. d, e Statistics of different land use types of 2020 in the study area. The land use map of the study area is 
included in the Supplemental Material (Fig. S1), obtained from the Chinese Global30 project (Jun et al. 2014)



86205Environmental Science and Pollution Research (2023) 30:86202–86217	

1 3

1756 mm, of which 70% fall between June and September. 
Electronic, textile, and paper industries are widely distrib-
uted along the Jin River Basin (Li et al. 2022), and dec-
ades of rapid economic growth have resulted in significant 
increases in activities related to anthropogenic N, such as 
population growth, sewage discharge, and the extensive 
application of chemical fertilizers (Yu et al. 2015). In addi-
tion, the construction of large-scale water conservancy facil-
ities, such as Shanmei Reservoir, combined with the tempo-
rally uneven distribution of flow rate and spatially different 
land use types, may greatly alter the nitrogen transformation 
in our study area (Cao et al. 2014; Wu et al. 2017).

Sampling design

Samples were collected in June 2020 (high-flow period) and 
November 2020 (low-flow period) along the Jin River. Dur-
ing each cruise, 30 surface water samples (17, 8, and 5 for 
upper reach, middle reach, and lower reach, respectively) 
and 30 groundwater samples (24, 3, and 3 from upper to 
lower sub-reach) were collected (Fig. 1). The sampling sites 
are described in more detail in the Supplemental Material 
(Table S1).

Surface water samples were collected using organic 
glass hydrophores, and groundwater samples were taken 
with a peristaltic pump. For each sample, dissolved oxy-
gen (DO), electrical conductivity (EC), total dissolved solid 
(TDS), oxidation–reduction potential (ORP), and pH were 
measured in situ (Manta + 3.0, Eureka, USA), along with 
turbidity (2100Q, Hach, USA). Samples were collected in 
100-mL acid-washed polyethylene bottles for the analysis 
of isotope composition (δ15N-NO3

−, δ18O-NO3
−, δD-H2O, 

and δ18O-H2O); in addition, 1-L samples were collected for 
the analysis of the main ion concentrations. For the surface 
water, another 500-mL sample was collected from each site, 
and 0.2 mL saturated HgCl2 was added to inhibit bacterial 
activity; these samples were used for the analysis of total 
organic carbon (TOC) and total dissolved nitrogen (TDN) 
and for the extraction of chlorophyll a (Chl-a). All samples 
were stored in an incubator at 4 ℃ and transported to the 
laboratory within 4–6 h.

Hydrochemical and stable isotope analysis

Samples for ion concentration measurement were first fil-
tered through a 0.45-μm cellulose acetate filter, and sub-
sequently, the concentrations of anions (Cl−, NO3

−, NO2
−, 

SO4
2−) were determined using a spectrophotometer (Perki-

nElmer Lambda 35, USA) with a precision of 5%. The 
analysis of cations (Na+, K+, Ca2+, Mg2+) in the water sam-
ples was performed via an inductively coupled plasma mass 
spectrometer (7500 ICP-MS, Agilent, USA), and NH4

+ was 
analyzed by Nessler’s reagent spectrophotometric methods 

(UV2600, Shimadzu, Japan). Total alkalinity (as HCO3
−) 

was determined by titration with standard 0.1 N hydrochloric 
acid, using methyl orange and phenolphthalein as indicators, 
with a precision of ± 5%.

The TOC was measured using a total organic analyzer 
(TOC-V, Shimadzu, Japan). After filtering through a 0.45-
μm cellulose acetate filter, the TDN of the water samples 
was determined using persulfate digestion and a UV spec-
trophotometer (UV2600, Shimadzu, Japan). The Chl-a was 
extracted with acetone (90%) (V/V) in the dark for 24 h after 
filtering through 0.7-μm GF/F glass filters, followed by anal-
ysis using a spectrophotometer (UV2600, Shimadzu, Japan) 
as described elsewhere (Yang et al. 2017).

Both δ15N-NO3
− and δ18O-NO3

− were determined via 
the denitrified method (Sigman et al. 2001; Yi et al. 2017). 
Specifically, the denitrifying bacterium Pseudomonas aureo-
faciens convert nitrate to nitrous oxide, which is then con-
centrated and purified in a Tracegas system, and the compo-
sition is determined using an isotope ratio mass spectrometer 
(IsoPrime100, IsoPrime, Germany). For analysis of H2O sta-
ble isotopes, the δ18O value was determined using CO2-H2O 
equilibration mass spectrometry, whereas the δD value was 
determined using H2-H2O equilibration mass spectrometry 
under the catalysis of platinum (Wang et al. 2020), followed 
by analysis with a gas isotope mass spectrometer (MAT 
253, Thermo Fisher, USA). The stable isotopic ratio values 
are reported in parts per thousand (‰) relative to atmos-
pheric N2 for δ15N and Vienna Standard Mean Ocean Water 
(VSMOW) for δD and δ.18O (Eq. 1)

Multivariate statistical techniques

The homogeneity of variances and the normality of the 
residuals of each variable was first analyzed using the Kol-
mogorov–Smirnov test. If the above assumptions were both 
met, the differences of the variables among the groups (sam-
ples collected in different sampling periods and different 
sub-reach reaches) were compared using two-way ANOVA, 
or Student’s t test and one-way ANOVA when only one clas-
sification variable was considered (i.e., different samplings 
periods, whether sample type is groundwater or surface 
water, and different sub-reaches of sampling sites).

If the data failed to meet the above assumptions, the non-
parametric Kruskal–Wallis test or the Mann–Whitney U test 
was applied to compare the data among different reaches 
and sampling periods (Torres-Martínez et al. 2021). Differ-
ences were considered to be significant if p < 0.05. Linear 
regression analysis and Spearman correlation were applied 
to determine the relationship between major ions or the iso-
topic ratio values (Cao et al. 2021).

(1)δsample= (Rsample∕Rstandard − 1)×1000‰
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Estimation of potential nitrogen sources

Estimation based on Bayesian mixing model analysis

After the quantification of δ15N-NO3
− and δ18O-NO3

−, the 
measured data were used as input (customer) for MixSIAR, a 
Bayesian mixing model which can evaluate the contribution 
of different nitrate sources to the collected water samples 
(Parnell et al. 2013; Stock et al. 2014). Atmospheric depo-
sition (AD), synthetic fertilizer (SF, mainly NH4

+ fertilizer 
in our study), sewage and manure (S&M), and soil nitrogen 
(SN) were used as four potential nitrate sources. The nitrate 
fertilizer was not considered as a main nitrate source in our 
study area, because both field survey and the published 
papers indicate that the most commonly used nitrogen fer-
tilizers in China are urea and ammonium carbonate (Yang 
et al. 2013; Ding et al. 2015; Zhang et al. 2018). Further-
more, the main form of nitrate contained inorganic ferti-
lizer is ammonium nitrate (NH4NO3), which also contains 
ammonium. The distribution of nitrate isotope composition 
also verified that NO3

− fertilizer (Fig. 3) was not likely to 
be a main source of nitrate in our study area, for there were 
few samples close to the edge of NO3

− fertilizer boundary.
The detailed equations and parameter settings of Mix-

SIAR, as well as the ranges of the isotopic ratios for potential 
nitrate sources are provided in the Supplemental Material 
(Equations S1 to S4 and Table S2). The ranges of potential 
sources were modified from studies in a neighboring area 
or studies with similar hydrologic and land use patterns (Li 
et al. 2018; Guo et al. 2020).

Estimation of the flux of potential nitrogen sources based 
on human activities and land use structure

To validate and address the potential limitations of the 
nitrogen source contribution determined by isotopic com-
positions and the Bayesian mixing model, we estimated the 
nitrogen input fluxes of different potential sources using 
social-economic data from the local statistical yearbook 
and land use data from the Chinese Global30 project (Fig. 
S1). Total nitrogen input was divided into point sources and 
non-point sources.

The calculation of nitrogen input was based on the struc-
ture of Global NEWS-DIN model (Nutrient Export from 
Watersheds). The calculation of nitrogen from point sources 
(mainly from municipal sewage) was based on the GDP pur-
chasing power parity (GDPppp) and urban population (Van 
Drecht et al. 2009).

The non-point nitrogen sources consisted of nitrogen 
from fertilizer, manure (from poultry raising and rural 
population), nitrogen fixation, and atmospheric deposition 
(Yan et al. 2010). The amount of urban and rural popula-
tion, fertilizer application, the area of different crops, and the 

livestock production volume were from statistical yearbook. 
Area of arable land and forest was from the land use data, 
and detailed information was included in the Supplemental 
Material (Equations S5 to S8 and Tables S3 to S5).

Results

Spatial–temporal variations of the nitrogen 
composition and hydrochemical parameters

For groundwater samples, the mean concentrations of 
NO3

−-N were 7.66 ± 5.8 mg L−1 and 7.54 ± 6.17 mg L−1 
in the high-flow period and low-flow period (expressed 
as mean ± SD, Table S6), respectively. For surface water 
in these two periods, the values were 1.96 ± 1.09 mg L−1 
and 1.52 ± 0.96 mg L−1, respectively. For groundwater and 
surface water, there was no significant difference in nitrate 
concentration between the two sampling periods (two-way 
ANOVA: F(1,54) = 0.044 [p = 0.835] and F(1,54) = 1.613 
[p = 0.210], for groundwater and surface water, respectively), 
and there was no significant difference for NO3

− among dif-
ferent sub-reaches for surface water (two-way ANOVA: 
F(2,54) = 0.191, p = 0.826) and groundwater (two-way 
ANOVA: F(2,54) = 0.062, p = 0.940).

For surface water, nitrate was the principal component 
of dissolved inorganic nitrogen (DIN) and accounted for 
72.77% and 59.37% of the TDN in high-flow and low-flow 
periods, respectively (Table S6 and Fig. S2). Regarding 
the TDN concentration, there was no significant differ-
ence between the two sampling periods (two-way ANOVA: 
F(1,54) = 0.167, p = 0.685), but there was a significant 
difference among the three reaches (two-way ANOVA: 
F(2,54) = 4.704, p < 0.05). The mean TDN concentrations 
of the upper, middle, and lower reaches in both periods were 
2.94 ± 1.16 mg L−1, 2.08 ± 0.48 mg L−1, and 2.43 ± 0.35 mg 
L−1, respectively.

The DO levels in surface and groundwater samples 
showed similar patterns in all three reaches, with signifi-
cantly lower values in the low-flow period than in the high-
flow period (two-way ANOVA: F(1,54) = 90.712 [p < 0.05] 
and F(1,54) = 138.018 [p < 0.05], for surface water and 
groundwater, respectively). For instance, the DO levels of 
surface water in the high-flow period were 9.56 ± 1.27 mg 
L−1, 11.05 ± 2.69 mg L−1, and 7.31 ± 1.78 mg L−1 for the 
upper, middle, and lower reaches, respectively. However, 
these values were only 5.93 ± 1.41 mg L−1, 4.73 ± 1.56 mg 
L−1, and 3.73 ± 1.02  mg L−1 in the low-flow period 
(Table S6). It should be noted that for surface water, the 
DO showed a longitudinally decreasing trend from the 
upper to the lower reach, irrespective of the sampling 
period (two-way ANOVA: F(2,54) = 8.252, p < 0.05), but 
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this pattern was not observed for groundwater (two-way 
ANOVA: F(2,54) = 1.850, p = 0.167).

The pH variation was similar to that of DO (r = 0.88, 
p < 0.001, Fig. S7); the pH was always significantly higher 
in the high-flow period for both surface water and ground-
water in all reaches (two-way ANOVA: F(1,54) = 94.844 
[p < 0.05] and F(1,54) = 258.421 [p < 0.05], for surface 
water and groundwater, respectively). Irrespective of 
samples type (i.e., surface water or groundwater), the pH 
was 8.01 ± 0.36, 8.22 ± 0.69, and 7.85 ± 0.36 from the 
upper reach to the lower reach in the high-flow period 
and significantly decreased to 6.40 ± 0.46, 6.29 ± 0.58, 
and 6.80 ± 0.38 in the low-flow period (Table S7; two-
way ANOVA: F(1,114) = 212.366, p < 0.05).

Chloride is a widely acknowledged conservative chemi-
cal tracer. The concentration of chloride in surface water 
did not significantly differ among the three reaches in 
the high-flow period (Kruskal–Wallis test, p = 0.136), 
whereas in the low-flow period, the mean concentration 
of Cl− in the lower reach was 2920.54 ± 5074.84 mg L−1, 
most likely because in the lower reach, sampling was per-
formed at high tide when fresh water of the Jin River is 
mixed with seawater from Quanzhou Bay. When excluding 
these potentially tide-influencing samples, the concentra-
tion of Cl− was still significantly higher in the low-flow 
period compared to that in the high-flow period (Student’s 
t test, p < 0.05). For groundwater, there was no significant 
difference between the two sampling periods (Student’s t 
test, p = 0.63), and the Cl− concentration of groundwater 
in the lower reach was 33.78 ± 10.29 mg L−1, which was 
significantly larger than in the upper two reaches (one-way 
ANOVA: F(2,59) = 18.392, p < 0.05).

Spatial–temporal variations in water and nitrate 
isotope composition

Despite of sample type (groundwater or surface water), 
δ15N-NO3

− was generally heavier in the low-flow period 
(5.68‰ ± 2.11‰, Table S7) than in the high-flow period 
(5.06‰ ± 4.92‰, Mann–Whitney U test, p < 0.04). 
As shown in Fig.  2, δ15N-NO3

− of surface water was 
not significantly different between the two sampling 
periods (6.75‰ ± 4.77‰ in the high-flow period and 
5.62‰ ± 2.18‰ in the low-flow period, Mann–Whitney 
U test, p = 0.95); however, δ15N-NO3

− of groundwater in 
the low-flow period (5.75‰ ± 2.08‰) was significantly 
heavier than that in the high-flow period (3.37‰ ± 4.54‰, 
Mann–Whitney U test, p < 0.05).

For all water samples in two sampling periods, 
δ18O-NO3

− was significantly heavier in the low-flow 
period (10.11‰ ± 3.79‰) than in the high-flow period 
(0.19‰ ± 5.93‰, Mann–Whitney U test, p < 0.05). In the 
high-flow period, δ18O-NO3

− did not significantly differ 
between surface water (1.38‰ ± 4.09‰) and groundwa-
ter (− 1.01‰ ± 7.21‰, Mann–Whitney U test, p = 0.28), 
but the δ15N-NO3

− in surface water was higher than that 
in groundwater (Student’s t test, p < 0.05). In the low-flow 
period, the opposite pattern was observed; δ15N-NO3

− did 
not significantly differ between surface water and ground-
water (Student’s t test, p = 0.81), but the mean δ18O-NO3

− of 
surface water was 11.48‰ ± 4.09‰, which was significantly 
heavier than that of groundwater (8.73‰ ± 2.93‰, Stu-
dent’s t test, p < 0.05).

Evaporation was anticipated due to the high tempera-
tures (22–29 ℃) throughout the study period. However, 
there were no significant differences observed in both 

Fig. 2   Box plots of nitrate stable isotope ratio. a Ratio for samples from different reaches in the two sampling periods. b Ratio for samples of 
groundwater and surface water in the two sampling periods
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δD-H2O and δ18O-H2O isotope values between the two 
sampling periods (two-way ANOVA: F(1,114) = 1.726 
[p = 0.19] and F(1,114) = 2.835 [p = 0.095] for δD-H2O 
and δ18O-H2O, respectively). In contrast, during the low 
flow period, these two isotopes were significantly heavier 
in the lower reach (two-way ANOVA: F(2,114) = 9.548 
[p < 0.05] and F(2,114) = 9.286 [p < 0.05] for δD-H2O and 
δ18O-H2O, respectively), suggesting a greater evaporation 
closer to the estuary, which could be expected due to the 
absence of shade and the low water movement, in contrast 
to the upstream sites with high tree cover and fast-moving 
water (Erostate et al. 2018; Cao et al. 2020). The potential 
effects of the above factors on the isotopic compositions 
of water could be probably more evident in the low flow 
period.

Different nitrate sources have specific stable isotope 
ratios (Soto et al. 2019; Guo et al. 2021). According to 
Fig. 3, most samples were within the intersecting area of 
synthetic fertilizer (NH4

+ fertilizer), soil nitrogen, and 
sewage and manure, whereas no samples fell into the 
typical range of atmospheric deposition and NO3

− ferti-
lizer. However, the isotope compositions of natural water 
samples had been altered due to fractionation and mixing 
effects among different sources.

Theoretically, if nitrification occurs and plays an impor-
tant role in nitrate transformation, δ18O-H2O could be cal-
culated according to Eq. 2. As the result of δ18O-O2 being 
assumed to be 23.5‰ (Du et al. 2017) and the δ18O-H2O 
in our study area ranging between − 7.5 and 2.5‰, the 

potential range of δ18O-NO3
− is also shown in Fig. 3. It 

can be assumed that nitrification was more likely to occur 
in the high-flow period.

The slopes of δ18O-NO3
− versus δ15N-NO3

− were 0.88 
(r = 0.48, p < 0.001, Figs. 3 and S7) and 0.86 (r = 0.72, 
p < 0.001, Figs. 3 and S8) for samples in both sampling peri-
ods and high-flow period, respectively. Both slopes were 
within the range of the isotope enrichment factor caused by 
denitrification (Archana et al. 2018). However, in the low-
flow period, there was no significant relationship between 
δ18O-NO3

− and δ15N-NO3
− (r = 0.20, p > 0.05, Fig. S9, 

fitting line is not shown in Fig. 3), indicating that nitrate 
transformation in the low-flow period was somewhat more 
sophisticated, and mixing effects among different processes 
and sources are common.

Proportional contribution of different nitrogen 
sources

Source apportionment based on the MixSIAR

According to the anthropogenic activities in the study area 
and the results in Fig. 3, AD, S&M, SF, and SN are the four 
potential nitrate sources. The results obtained from Mix-
SIAR showed that in the high-flow period, SF was the main 
nitrate source for all sub-reaches (Fig. S10 and Table 1), and 

(2)δ18O − NO−
3
=

1

3
δ18O − O2 +

2

3
δ18 O − H2O

Fig. 3   Variations of δ15N-NO3
− 

versus δ18O-NO3
− values in 

water samples of the Jin River 
Basin from two sampling 
periods. The ranges of the 
typical isotopic compositions 
of different nitrate sources were 
referenced according to previ-
ous studies (Kendall et al. 2000; 
Han and Currell 2022): ① NO3

− 
fertilizer, ② NH4

− fertilizer, 
③ sewage and manure, ④ soil 
nitrogen, and ⑤ atmospheric 
deposition
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the contribution of these sources longitudinally increased 
from the upper reach (42.8% ± 6.3%) to the lower reach 
(60.9% ± 8.1%). Furthermore, SN and AD were the second 
and third nitrate sources, respectively, whereas S&M was the 
least significant nitrate source, and its contribution decreased 
from the upper to the lower section. In the lower reach, it 
only accounted for 3.5% ± 2.5%, which was somewhat unex-
pected, especially in a highly urbanized coastal river basin.

In the low-flow period, for all three sub-reaches, the dif-
ferent sources followed the order S&M (29.2% ± 6.1%), AD 
(28.6% ± 2.4%), SF (25.4% ± 6.8%), and SN (16.8% ± 4.5%). 
The mean contribution of the above potential nitrate sources 
was significantly different from the findings in the high-flow 
period, in which the contribution of AD and S&M was sig-
nificantly higher in the low-flow period than in the high-
flow period (two-way ANOVA: F(1,16) = 10.817 [p < 0.05] 
and F(1,16) = 16.991 [p < 0.05] for AD and S&M, respec-
tively), but SN and SF were opposite to this result (two-way 
ANOVA: F(1,16) = 6.498 [p < 0.05] and F(1,16) = 23.518 
[p < 0.05] for SN and SF, respectively). In the lower reach, 
it was 36.6%, almost twice as high as that in the upper reach 
(18.9% ± 5.1%). Although the contribution of SF varied sig-
nificantly between the two sampling periods, the spatial vari-
ation of the contribution from SF remained stable for both 
sampling periods (Kruskal–Wallis test, p > 0.05; Table 1 and 
Table S8).

Source apportionment based on the estimation of the flux 
of potential nitrogen sources

The contributions of various nitrogen sources, as estimated 
by the Global NEWS-DIN model equations (Equations S5 
to S8), are presented in Fig. 4. It is important to note that 
the basic social-economic data used in this analysis were 
obtained from the most recently published local statistics 

yearbook and therefore reported on an annual rather than 
quarterly basis. This limitation made it difficult to appor-
tion the nitrogen input of each source to different sampling 
periods.

The results depicted in Fig. 4 indicate that synthetic fer-
tilizer was the principal nitrogen source for the upper reach 
(69.66%) and the second most significant source for the mid-
dle (23.25%) and lower (26.10%) reaches. The combined 
contribution of nitrogen from sewage and manure increased 
gradually from the upper to lower reaches. Nitrogen deposi-
tion (both wet and dry deposition) was the third most signifi-
cant nitrogen source in our study area, while nitrogen fixed 
by crops and forest accounted for only about 1% of the total 
nitrogen input.

While similarities existed between the results of source 
estimation using MixSIAR and the calculations of various 
nitrogen input fluxes (Global NEWS-DIN model), it became 
evident that there were discrepancies and even contradic-
tions in the determination of certain sources when compar-
ing the estimated results of MixSIAR and the different nitro-
gen source input fluxes, particularly for the contributions 
of SF and S&M. The possible causes of this discrepancy 
are discussed further in sections “Comparison of the con-
tribution obtained by MixSIAR and calculation of nitrogen 
source fluxes” and “Limitation of the approach.”

Discussion

Characteristics of nitrate transformation 
in both sampling periods

Although chlorophyll a can serve as a proxy of phytoplank-
ton biomass, for the two sampling periods, the concentra-
tion of Chl-a did not vary significantly (Student’s t test, 

Table 1   Contributions of 
four potential nitrate sources 
calculated by MixSIAR for 
different sub-reaches of the Jin 
River Basin in two sampling 
periods

Period Reach Sources (mean ± SD)

Atmospheric 
deposition

Sewage and manure Soil nitrogen Synthetic fertilizer

High flow Upper reach 11.6 ± 1.3 8.2 ± 3.9 37.3 ± 6.5 42.8 ± 6.3
Middle reach 13.9 ± 2.4 9.7 ± 5.1 26 ± 7.3 50.4 ± 9.5
Lower reach 7.5 ± 1.6 3.5 ± 2.5 28 ± 7.2 60.9 ± 8.1
All reaches 11 ± 1.8 7.1 ± 3.8 30.4 ± 7 51.4 ± 8

Low flow Upper reach 28.9 ± 1.5 33.3 ± 4.8 18.9 ± 4.2 18.9 ± 5.1
Middle reach 31.7 ± 2.6 35.6 ± 5.5 12.1 ± 3.7 20.6 ± 6.2
Lower reach 25.3 ± 3.2 18.8 ± 8 19.3 ± 5.7 36.6 ± 9
All reaches 28.6 ± 2.4 29.2 ± 6.1 16.8 ± 4.5 25.4 ± 6.8

Both periods Upper reach 20.3 ± 1.4 20.8 ± 4.4 28.1 ± 5.4 30.9 ± 5.7
Middle reach 22.8 ± 2.5 22.7 ± 5.3 19.1 ± 5.5 35.5 ± 7.9
Lower reach 16.4 ± 2.4 11.2 ± 5.3 23.7 ± 6.5 48.8 ± 8.6
All reaches 19.8 ± 2.1 18.2 ± 5 23.6 ± 5.8 38.4 ± 7.4
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p = 0.348). However, the mean TOC concentration in the 
high-flow period was 5.74 mg L−1 (Table S7), which was 
significantly higher than that in the low-flow period (Stu-
dent’s t test, p < 0.05). This leads us to infer that the quantity 
of microorganisms in the two sampling periods had the same 
order of magnitude, but the microbial activities were prob-
ably more active in the high-flow period.

The isotopic composition of NO3
− is not only useful for 

source identification but can also be applied to investigate 
the influences of nitrification and denitrification. Consid-
ering the depletion of δ18O-NO3

− in the high-flow period 
(Fig. 3), it could be inferred that nitrification was more 
pronounced in summer, probably because of the higher 
temperatures. On the other hand, the wider distribution 
of δ15N-NO3

− in the high-flow period also suggests the 
occurrence of nitrate assimilation. Algae/biota preferen-
tially take up light isotopes of NO3

−, which would lead to 
enrichment with heavy isotopes in residual NO3

− (Casci-
otti 2016). The ratio of δ18O-NO3

− to δ15N-NO3
− was 0.86 

in the high-flow period (Fig. 3), close to the 1:1 increase 
reported for NO3

− assimilation of marine phytoplankton 
(Ding et al. 2015). This ratio was also close to the reported 
variation caused by denitrification, which ranges from 1:1.3 
to 1:2.1 between δ18O-NO3

− and δ15N-NO3
− (Yang et al. 

2019). According to Fig. 5 and Table S7, the DO level in 
the high-flow period (11.06 ± 2.69 mg L−1) was significantly 
greater than that in the low-flow period (4.06 ± 2.1 mg L−1). 
High DO levels in summer can, to some extent, impede 

denitrification, as this process is generally suppressed at DO 
levels above 4 mg L−1 (Cojean et al. 2019; Qiao et al. 2020).

In the low-flow period, there was a significant negative rela-
tion between δ18O-NO3

− and NO3
− concentration (r =  −0.31, 

p < 0.05, Fig. S9). Combined with the significant negative 
correlation between pH and NO3

− concentration (r =  − 0.41, 
p < 0.01, Fig. S9), nitrification may also occur in the low-flow 
period, which might have caused the elevated NO3

− concentra-
tion with decreasing pH, according to Eq. 3 (Kim et al. 2015). 
The higher δ18O-NO3

− in the low-flow period indicates the 
impact of nitrate from atmospheric deposition, which greatly 
enhanced δ18O-NO3

− in winter; this hypothesis was supported 
by the results of the MixSIAR (Table 1).

From the high- to the low-flow period, with the 
slight enrichment of δ15N-NO3

− from 5.06‰ ± 4.92‰ 
to 5.68‰ ± 2.11‰ and the significant enrichment of 
δ18O-NO3

− from 0.19‰ ± 5.93‰ to 10.11‰ ± 3.79‰ 
(Mann–Whitney U test, p < 0.05), denitrification may also 
occur in the low-flow period. Although DO was significantly 
lower in the low-flow period (4.06 ± 2.1 mg L−1) than in the 
high-flow period (11.06 ± 2.69 mg L−1, mentioned in the sec-
tion “Spatial–temporal variations of the nitrogen composition 
and hydrochemical parameters”), this value in the low-flow 
period was neither low enough to impede nitrification nor high 
enough to impede denitrification (Cojean et al. 2019; Li et al. 
2023), indicating the limited co-occurring of nitrification and 
denitrification in the low-flow period. Considering that TOC 
was lower in the low-flow period and there was no signification 

Fig. 4   Percent contribution of 
different nitrogen sources esti-
mated by local social-economic 
data
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relationship between δ18O-NO3
− and δ15N-NO3

− in the low-
flow period (r = 0.20, p > 0.05, Fig. S9), it is reasonable to 
hypothesize that the mixing effect of different sources was the 
main factor influencing nitrate transformation in the low-flow 
period and thus somehow masked the occurrence of nitrifica-
tion and denitrification.

Relationships between nitrate sources 
and hydrochemical parameters in different 
sub‑reaches

The stable nitrate isotopic compositions of the samples from 
the different sub-reaches did not vary significantly in the low-
flow period (one-way ANOVA: F(2,57) = 0.114 [p = 0.892] 
and F(2,57) = 1.073 [p = 0.349] for δ15N-NO3

− and 
δ18O-NO3

−, respectively). In the high-flow period, although 
δ15N-NO3

− still showed a similar distribution in all three 
sub-reaches (one-way ANOVA: F(2,57) = 2.087, p = 0.133), 
however, the δ18O-NO3

− of samples in the lower reach 
(− 5.97‰ ± 6.00‰) was significantly lower than that in 
the other two reaches (two-way ANOVA: F(2,114) = 8.449, 
p < 0.05; Fig. S11), suggesting that for the lower reach, nitri-
fication was the dominant nitrate transformation process in 
summer, causing the downstream depletion of δ18O-NO3

−.
For the upper and the middle reaches, there was a 

significant positive correlation between δ18O-NO3
− and 

(3)NH
+
4
+ 2O2 → NO

−
3
+ 2H

+ + 2H2O

δ15N-NO3
− in the high-flow period (r = 0.71 and 0.86, 

p < 0.01; Figs. S3 and S4). As discussed above, deni-
trification was unlikely to play an important role in the 
high-flow period, and therefore, this phenomenon sug-
gests that high nitrogen input from synthetic fertilizer 
had successively stimulated the nitrification of NH4

+ 
and nitrate assimilation, resulting in δ18O-NO3

− and 
δ15N-NO3

− enrichment. Furthermore, due to the signifi-
cant impact of synthetic fertilizer, NH4

+ volatilization 
and remineralization also occurred (Minet et al. 2017; 
Spalding et al. 2018), which is in accordance with the 
high contribution of nitrate from SF and SN for the upper 
reach in the high-flow period.

It should be noted that for samples from the lower 
reach, there was no significant correlation between 
δ15N-NO3

− and ln(NO3
−) (statistics shown in Fig. 

S5). With the increase in ln(NO3
−), δ15N-NO3

− almost 
remained constant. However, there was a negative corre-
lation between δ18O-NO3

− and ln(NO3
−) in lower reach, 

especially during the low-flow period, although this 
relation was insignificant (statistics shown in Fig. S6). 
This leads us to infer that for the lower reach, continued 
input from a single source of nitrate has led to increas-
ing nitrate concentrations, while the isotope composi-
tion remained largely stable because of the unchanged 
nitrate sources (Cao et  al. 2015). However, nitrifica-
tion may have a certain influence on the depletion of 
δ18O-NO3

− and the decrease in the NO3
− concentration. 

In the low-flow period, the enhanced denitrification 

Fig. 5   Scatterplot contrast-
ing pH with DO, where the 
parts divided by dashed lines 
represent the suitable conditions 
for nitrification (right side) and 
denitrification (left side), as 
described previously (Torres-
Martínez et al. 2021)
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due to the lower DO and the higher nitrate level also 
caused the negative correlation between δ18O-NO3

− and 
NO3

− concentration (r =  − 0.74, p < 0.05, Fig. S9).
Most samples in Fig. 6 fell within the ranges of soil 

nitrogen. According to the results of different N source 
flux calculations (Fig. 5), the annual nitrogen fixed by 
crops and forests only accounted for about 1% of the 
total nitrogen input. Therefore, natural nitrogen fixa-
tion cannot explain why soil nitrogen had such a strong 
impact on the source of nitrogen. Soil nitrogen may rep-
resent the nitrogen from other main sources, fixed by the 
bacteria in the soil and the vadose zone via the nitrogen 
assimilation process.

SF and S&M were the two main nitrogen sources 
observed in both MixSIAR and nitrogen source f lux 
calculations, suggesting the mixing of different nitrate 
sources. Although the distribution of NO3

− versus 
Cl− molar ratio of most samples was around 0.4, con-
sidering the average of this value was about 1.12 and 
the large nitrogen input fluxes of SF (Fig. 4), it was rea-
sonable to hypothesize that samples from the upper two 
reaches were strongly impacted by SF (Fig. 6), which 
has a relatively higher NO3

−/Cl− molar ratio with a 
low Cl− concentration (Li et al. 2018; Ren et al. 2022). 
Therefore, the relationship between NO3

−/Cl− molar 
ratio and Cl− also verified the nitrate sources and trans-
formation processes were strongly influenced by non-
point agricultural sources (Torres-Martínez et al. 2021).

Comparison of the contribution obtained 
by MixSIAR and calculation of nitrogen source fluxes

By comparing Fig. 7 and Fig. 4, the comparison between 
the results estimated by the concentration-based approach 
(MixSIAR) and the flux-based approach (Global NEWS-
DIN model) revealed some discrepancies. Compared to the 
Global NEWS–based estimates, MixSIAR seemed to under-
estimate the nitrogen contribution from S&M in the middle 
and lower reaches, and it underestimated the nitrogen con-
tribution from SF in the upper reach but overestimates it in 
the other two reaches. These phenomena indicate that the 
calculation of fluxes can aid in distinguishing the contribu-
tions of manure and sewage. Additionally, the discrepan-
cies in the contribution of SF estimated by the two methods 
highlight the substantial influence of hydraulic connectivity. 
Non-point source pollution can result in significant degrada-
tion of the water environment, even in the middle and lower 
areas of a coastal watershed.

The discrepancies between the two methods can be 
attributed to two factors. Firstly, as mentioned in the section 
“Source apportionment based on the estimation of the flux of 
potential nitrogen sources,” the social-economic data used in 
the calculation of nitrogen fluxes were annual and could not 
be broken down into specific months, whereas the input data 
for MixSIAR were based on two sampling periods. Nitro-
gen sources and their contribution are constantly changing 
throughout the year, and this could lead to differences in the 

Fig. 6   Cl− molar concentrations 
with NO3

−/Cl− molar ratios of 
water samples collected in both 
sampling periods from different 
sub-reaches of the Jin River 
Basin. From ① to ④ are the typi-
cal ranges of NO3

−/Cl− molar 
ratios and Cl.− concentration 
from synthetic fertilizer, sewage 
and manure, soil nitrogen, and 
atmospheric decomposition, 
based on the published studies 
(Ogrinc et al. 2019; Li et al. 
2023)
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estimated results between the two methods (shown in the 
section “Source apportionment based on the MixSIAR”).

Secondly, due to the limitation of data availability, we 
could only estimate the total nitrogen from different sources 
and calculate the respective percent contribution of each 
nitrogen source. In other words, this treatment is somewhat 
equivalent to treating each sub-reach as a closed/static sys-
tem and ignoring the transport and transformation of nitro-
gen driven by the hydrological cycle.

Despite the aforementioned limitations in the calcula-
tion of nitrogen source fluxes, comparing this method with 
the Bayesian mixing model precisely reflects the impor-
tance of the ecosystem. Estimating various nitrogen input 
fluxes serves as an apparent nitrogen source identification, 
assuming that the composition and distribution of nitrogen 
in the watershed remain unchanged, regardless of microbial 
activity in water and soil, as well as the potential impacts 
of surface runoff and groundwater infiltration. However, in 
this study, the Bayesian mixing model employed (MixSIAR) 
categorizes samples based on sampling period and sub-
reach, examining the spatiotemporal factors that influence 
the major sources of nitrate. It also takes into account the 
mixing process of different sources and possible fractiona-
tion of isotopes caused by nitrogen transformation. There-
fore, MixSIAR provides insights into the actual nitrogen 
sources influenced by the ecosystem. Comparing the results 
of both source apportionment methods can reveal the extent 
of human activities on the ecosystem’s capacity to mitigate 
nitrate pollution.

Factors affecting nitrate contamination 
and transformation in coastal basins

Based on our results, the isotope composition differed sig-
nificantly between the two sampling periods. Hydrologi-
cal conditions and temperature could be the two main fac-
tors influencing the concentration and transformation of 
NO3

− concentration, which ultimately determined the degree 
of nitrate contamination in both sampling periods. Although 
both TDN and NO3

− concentration did not vary significantly 
between the sampling periods, the significant differences in 
TOC and temperature determined the microbial activities. 
Stronger nitrification causes the depletion of δ18O-NO3

− in 
the high-flow period, while stronger nitrate assimilation and 
NH4

+ volatilization resulted in the simultaneous enrichment 
of δ15N-NO3

− (Frick et al. 2022).
According to the Quanzhou Water Resource Bulletin 

from 2020, the average annual precipitation of the Jin River 
Basin was 1667 mm, of which up to 70% was concentrated 
in the high-flow period. Nitrate gradually accumulated from 
the upper to the lower reaches, most likely because of non-
point source nitrate input from SF under the influence of 
high runoff-flushing in summer (Yi et al. 2017). This conclu-
sion is in accordance with the results of MixSIAR and stable 
isotope composition, clearly showing that nitrate sources 
were increasingly influenced by SF from upstream to down-
stream. The contribution of SN was also higher in the high-
flow period. According to a previous study, nitrate originates 
from stormwater that carries organic material, such as leaf 

Fig. 7   Mean contributions of 
four nitrate sources in the Jin 
River Basin for the three differ-
ent reaches estimated by Mix-
SIAR (irrespective of sampling 
periods)
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litter and grass clipping, from land to water in the high-flow 
period (Hu et al. 2019), which could explain this finding.

As mentioned earlier in the section “Proportional contri-
bution of different nitrogen sources,” the contribution of SN 
was significantly higher in the high-flow period compared to 
the low-flow period, also suggesting the existence of legacy 
effects, which was caused by the transportation of nitrate 
from groundwater to surface water (Van Meter et al. 2018). 
Such a process may persist for decades, causing the elevat-
ing groundwater nitrate concentration even after the cease 
of N input (Weitzman et al. 2022), partly because nitrate is 
negatively charged and tends to be leached to groundwater 
because it is rejected by the also negatively charged soil 
particles (Cao et al. 2014). The mean nitrate concentration 
of groundwater was almost five times greater than that of 
surface water; thus, a large amount of nitrogen may leach 
from the aquifer (groundwater) and the soil nitrogen pool 
under suitable conditions (Jiang et al. 2018). Although the 
transportation of this leached nitrogen to surface water may 
take years to decades (Hamilton 2012), this process could 
be stimulated by high precipitation and high runoff during 
summer.

The high flow rate in summer could also lead to the rapid 
discharge of nitrate from S&M downstream. Construction 
land accounts for the highest proportion of all land use types 
in the lower reach of the Jin River Basin, and the higher run-
off results in the rapid downstream transportation of nitrate 
from sewage. For this reason, the high contribution of S&M 
was somewhat masked.

According to the distribution of δ15N-NO3
− and 

δ18O-NO3
−, denitrification is unlikely to be the dominant 

nitrogen transformation process. The contribution of den-
itrification to nitrogen removal in the rainy season could 
be further limited due to storm flow impacts as a limited 
water exchange and a prolonged water residence time facili-
tate denitrification (Xue et al. 2014). Denitrification was 
enhanced in winter, most likely because of the suitable pH 
and DO conditions in the low-flow period. As mentioned 
earlier (section “Proportional contribution of different 
nitrogen sources”), the contribution of nitrate from AD in 
the low-flow period was significantly greater than that in 
the high-flow period. Most likely, this is the result of the 
weaker runoff-flushing effect caused by the lower flow rate, 
as nitrate from non-point contamination sources and SN are 
retained in the soil or vadose zone.

As discussed in sections “Spatial–temporal variations of 
the nitrogen composition and hydrochemical parameters” 
and “Relationships between nitrate sources and hydro-
chemical parameters in different sub-reaches,” despite the 
great differences in land use structure across the three sub-
reaches, there appeared to be no significant variation in both 
NO3

− concentration and isotope composition in the different 
reaches. This indicates that compared to land use structure, 

hydrological and climatic conditions were the main fac-
tors influencing nitrate sources and transformation in this 
coastal basin. However, it should be noted that land use did 
have some impacts on nitrate contamination in the low-flow 
period as the area of construction land and the contribution 
of nitrate from S&M both increased downstream. Non-point 
source contamination from arable land, caused by the appli-
cation of synthetic fertilizer, was the main cause of nitrate 
contamination compared to point source, such as sewage 
disposal. This may be particularly evident in coastal water-
sheds where the catchment area is relatively small and the 
runoff-flushing effect is strong.

Limitation of the approach

In this study, we utilized the concentration-based approach, 
which combined the hydrochemical data, analysis of nitrate 
stable isotopes, and Bayesian mixing model during differ-
ent sampling campaigns, to identify the potential sources 
and transformation of nitrogen under the influences of 
anthropogenic activities. While the data used by the con-
centration-based model is easier to obtain and explain, 
the results should be compared to those of the flux-based 
approach (e.g., Global NEWS-DIN model), which consider 
the anthropogenic activities in different sub-reaches. This is 
necessary to avoid misinterpreting the mixing model results 
as direct evidence of the importance of different inferred 
nitrogen sources without considering the broader context of 
anthropogenic activities, so as to reduce the uncertainties in 
source determination.

Due to the unavailability of long-term hydrology and 
environmental monitoring data, we calculated the input 
fluxes of different nitrogen sources based on annual social-
economic data collected from the local statistical yearbook. 
However, this method did not allow for apportioning fluxes 
to each month or sampling period and treated each sub-reach 
as a closed system, ignoring the complexities of nitrogen 
transformation and hindering analysis of underlying mecha-
nisms (Xu et al. 2022).

When it comes to the concentration-based approach, i.e., 
the Bayesian mixing model (MixSIAR), due to limitations 
in fieldwork time and low utilization of groundwater in some 
parts of our study area, obtaining a sufficient number of well 
samples was challenging, especially in the lower reach. As 
a result, the number of groundwater samples (n = 3) in the 
lower reach was limited, resulting in an unbalanced study 
design. This data deficiency should be fully considered and 
overcome in the design of future work. Additionally, due 
to limited funding, we were only able to conduct two sam-
pling cruises in this study. Conducting quarterly sampling 
in 1 year would provide more comprehensive data for dis-
cussion. Although nitrate was the main form of inorganic 
nitrogen, the isotopic composition of other nitrogen forms 
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in aquatic environment, such as δ15N-NH4
+, δ15N-TN, and 

δ15N-N2O, could greatly help reduce analysis uncertainties.
Based on the above discussion, although both the con-

centration-based approach (MixSIAR) and the flux-based 
approach (Global NEWS DIN model) used in this study have 
certain limitations, as mentioned in the section “Comparison 
of the contribution obtained by MixSIAR and calculation of 
nitrogen source fluxes,” the flux-based approach can reflect 
the “real” input intensity of different nitrogen sources. How-
ever, it falls short in capturing the spatiotemporal transfor-
mations of nitrogen composition, concentration, and sources 
influenced by surface runoff, groundwater infiltration, and 
microbial processes in water and soil. In contrast, the Bayes-
ian mixing model (MixSIAR) incorporates categorical vari-
ables in the data structure, allowing for the consideration of 
temporal (sampling periods) and spatial (sub-reaches) fac-
tors on nitrogen sources. It also addresses the uncertainties 
in isotopic composition from various sources and accounts 
for fractionation effects in source apportionment. By com-
paring the outcomes of both methods, it is possible to assess 
the potential impact of human activities on nitrate pollu-
tion and the buffering capacity of the watershed ecosystem. 
Therefore, we recommend utilizing the mixing model as the 
preferred approach for identifying nitrogen sources at the 
watershed scale, while also cross-referencing the results with 
the estimation of potential nitrogen fluxes.

Conclusions

The Jin River, which flows into Taiwan Strait, is a highly 
dynamic estuarine system in Southeast China. Based on our 
results, nitrification, nitrate assimilation by phytoplankton, 
and NH4

+ volatilization were the main nitrogen transfor-
mation processes in our study area, mainly because of the 
significant influence of nitrate from synthetic fertilizer. 
Although denitrification was more likely to occur in the 
low-flow period, its intensity was limited, and the signal of 
denitrification was masked by the mixing effects of differ-
ent biological transformation processes and nitrate sources.

Variations in precipitation and water discharge caused 
different nitrate biogeochemical processes for different 
sampling periods and may have masked the actual nitrate 
sources. The contribution of synthetic fertilizer was greater 
in the high-flow period than in the low-flow period. For both 
periods, the contribution of synthetic fertilizer longitudinally 
increased from the upper to the lower reaches, and the con-
tribution of nitrate from synthetic fertilizer was lower in the 
high-flow period. Compared to point source pollution, such 
as sewage disposal, synthetic fertilizer transported into the 
river was driven by high precipitation and runoff, which 
could be too rapid for specific functional microorganisms 

to alleviate the excess nitrate, such as denitrifying bacteria 
and anammox bacteria/archaea. Thus, more efforts should 
be made to control non-point source pollution in the upper 
reaches of coastal rivers.

Our studies also highlight the importance of comparing 
the results obtained from both the Bayesian mixing model 
(MixSIAR) and the estimation of nitrogen sources (Global 
NEWS-DIN model). This comparison allows us to not 
only assess the actual intensity of nitrogen input caused by 
human activities but also understand the buffering effect of 
the watershed ecosystem, including the mitigation of nitrate 
pollution by the vadose zone and aquifer.
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