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Abstract
Effectual air quality monitoring network (AQMN) design plays a prominent role in environmental engineering. An optimal 
AQMN design should consider stations’ mutual information and system uncertainties for effectiveness. This study develops 
a novel optimization model using a non-dominated sorting genetic algorithm II (NSGA-II). The Bayesian maximum entropy 
(BME) method generates potential stations as the input of a framework based on the transinformation entropy (TE) method 
to maximize the coverage and minimize the probability of selecting stations. Also, the fuzzy degree of membership and the 
nonlinear interval number programming (NINP) approaches are used to survey the uncertainty of the joint information. To 
obtain the best Pareto optimal solution of the AQMN characterization, a robust ranking technique, called Preference Rank-
ing Organization METHod for Enrichment Evaluation (PROMETHEE) approach, is utilized to select the most appropriate 
AQMN properties. This methodology is applied to Los Angeles, Long Beach, and Anaheim in California, USA. Results 
suggest using 4, 4, and 5 stations to monitor CO, NO2, and ozone, respectively; however, implementing this recommendation 
reduces coverage by 3.75, 3.75, and 3 times for CO, NO2, and ozone, respectively. On the positive side, this substantially 
decreases TE for CO, NO2, and ozone concentrations by 8.25, 5.86, and 4.75 times, respectively.
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Abbreviations
BME	� Bayesian maximum entropy
CO	� Carbon monoxide
NINP	� Nonlinear interval number programming
NO2	� Nitrogen dioxide
NSGA-II	� Non-dominated sorting genetic algorithm 

II
PROMETHEE	� Preference Ranking Organization 

METHod for Enrichment Evaluation
TE	� Transinformation entropy
TE-D	� Transinformation entropy-distance

Introduction

Efficient air quality monitoring networks (AQMNs) provide 
information that allows the source and location of air pol-
lution to be identified and, thus, have attracted substantial 
attention in environmental engineering. Such information 
is beneficial for preventing the catastrophic damage of pol-
lution to humans’ livelihoods (Chen et al. 2006; Dong et al. 
2022). Nowadays, techniques associated with effective air 
quality monitoring system designs have been focused in 
several studies based on communication and computing 
approaches. In more detail, assessing the air quality sys-
tems gives engineers the golden opportunity to manage this 
environmental issue with efficient adaptive and intelligent 
techniques (Hadj Sassi and Fourati 2022). Different simu-
lation techniques have been applied for effective AQMN 
design, including the figure-of-merit (FOM) approach (Liu 
et al. 1986), cell approach (Elkamel et al. 2008), passive 
diffusion sampler–based model (Lozano et al. 2009), indus-
trial source complex short-term 3 (ISCST3) model (Zorouf-
chi Benis et al. 2015), dispersion model (Zoroufchi Benis 
et al. 2016), geographic information system (GIS), cluster 
analysis (Li et al. 2018), interpolation method (Boubrima 
et al. 2019), and simple linear regression approach (Galán-
Madruga 2021). In addition, the MCA method (Elkamel 
et al. 2008; Zoroufchi Benis et al. 2016), the ISCST3 model 
(Sharma and Chandra 2008; Kansal et al. 2011), GIS, and 
kriging (Chung et al. 2019; Galán-Madruga 2021; Wang 
et al. 2021) have been used to predict the amount of air 
pollutants around an emission source. However, although 
these simulation models are suitable for estimating the 
air pollutants’ concentration around an emission source, 
this study focuses on designing an effective AQMN for a 
large area from existing monitoring stations and estimated 
ones. To this extent, these tools can be supplemented using 
robust optimization algorithms (Trujillo-Ventura and Ellis 
1991; Kao and Hsieh 2006). Therefore, the optimal design 
of AQMNs draws substantial attention because of the air 
pollution severity associated with the monitoring stations’ 
installation and maintenance.

Applied optimization algorithms for designs of AQMNs 
started from geospatial and statistical techniques to evolu-
tionary and heuristic approaches (Sun et al. 2019; Verghese 
and Nema 2022), such as heuristic optimization algorithm 
(Elkamel et al. 2008), ant colony and genetic optimization 
model (Zoroufchi Benis et al. 2016), genetic algorithm (Hao 
and Xie 2018), stepwise genetic algorithm (Li et al. 2019), 
ant colony optimization (Rathee et al. 2019), and clustering 
analyses (Lu et al. 2011; Stolz et al. 2020). However, as far 
as we know, the literature has not considered optimizing 
the AQMN parameters using non-dominated sorting genetic 
algorithm II (NSGA-II), a robust multi-objective optimiza-
tion method (Yazdandoost et al. 2022), principally in the 
presence of uncertainties and shared information between 
stations. Hence, the present study develops an optimization 
model using an NSGA-II optimization algorithm concerning 
the uncertainties and the stations’ transfer information as a 
novel method for optimal AQMN characterization.

Employing uncertainties within the NSGA-II optimi-
zation model for the AQMN characterization is the most 
critical element for the optimum design of the AQMN. 
Mutual information, related uncertainties, and the fuzzy 
analytic hierarchy process (Mofarrah and Husain 2010) 
can serve this purpose. To this extent, while transinforma-
tion entropy (TE) is a well-known approach for calculat-
ing each monitoring station’s mutual information with 
another monitoring station, the preliminary investiga-
tion pointed out that adopting TE within the NSGA-II 
optimization framework for the AQMN using a tool for 
generating an accurate estimation of potential air quality 
monitoring stations such as Bayesian maximum entropy 
(BME) have not been considered in the literature. This 
highlights the need for presenting an effectual NSGA-II 
optimization model based on the TE approach using the 
BME technique for accurate optimal AQMN characteri-
zation, which can be empowered when the numbers are 
assumed to have interval natures using a robust nonlinear 
interval number programming (NINP) tool (Jiang et al. 
2008; Nematollahi et al. 2022).

This study suggests a novel multi-objective optimi-
zation framework using NSGA-II based on the TE and 
NINP approaches using the BME method, considering 
fuzzy set theory for the accurate and optimal characteri-
zation of AQMNs. In this innovative framework, first, the 
BME method is applied to generate potential monitoring 
stations; then, the data of the existing and potential sta-
tions are collected. Second, the TE method calculates the 
shared information between each station pair, plotting 
TE-distance (TE-D) curves. Furthermore, in this stage, 
the desired configuration of the monitoring network is 
obtained. Third, NSGA-II multi-objective optimization 
model is operated using the objectives of minimizing the 
number of monitoring stations, the value of TE between 
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selected stations, and the average and radius of variations 
for the TE values and maximizing the fuzzy degree of 
membership for the amount of TE and the AQMN cover-
age to obtain a series of Pareto optimum AQMN stations. 
Finally, the Preference Ranking Organization METHod 
for Enrichment Evaluation (PROMETHEE) is adopted to 
rank the Pareto optimal solutions acquired from the multi-
objective framework to select the most superior optimum 
AQMN characterization. To prove the usability of this 
methodology, it is applied to the real-world AQMNs in 
Los Angeles, Long Beach, and Anaheim cities as the 

substantial metropolitan in California, USA. To sum it up, 
the presented novel multi-objective optimization model 
fills the gaps in the literature by.

1.	 Making the multi-objective optimization framework 
using NSGA-II for AQMN characterization

2.	 Adopting the BME method to generate potential air 
quality monitoring stations as a set of input data to the 
multi-objective optimization framework

3.	 Utilizing the TE method to calculate the stations’ shared 
information

Fig. 1   Schematic view of the 
suggested framework to design 
a superior optimum AQMN
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4.	 Applying the NINP technique in the optimization algo-
rithm for the AQMN to include the interval natures of 
the numbers

5.	 Considering the TE and NINP approaches simultaneously 
through the multi-objective optimization framework

6.	 Maximizing the fuzzy degree membership for the TEs 
and the AQMN in the optimization model

7.	 Employing the PROMETHEE method to obtain the 
superior optimum AQMN characterization

8.	 Obtaining the superior optimal AQMN characteriza-
tion for the significant metropolitan in California, USA, 
using the proposed innovative framework

Methodology

Figure 1 shows that the proposed framework in this study 
finds the best appropriate optimal AQMN within three pri-
mary stages: (i) preparing data, (ii) multi-objective optimi-
zation, and (iii) multi-criteria decision-making (MCDM). 
It is noteworthy that MATLAB® is used for data analysis, 
developing algorithms, and making models.

Stage 1 collects air quality concentration measurement 
data, generates potential monitoring stations with the help 
of the BME method, and calculates the TE of all potential 
and existing monitoring stations to develop a TE-D curve. 
To successfully estimate the potential stations of AQMN, 
the BME method uses data from all existing stations (i.e., 
stations’ locations and pollutant concentrations) as the input.

Stage 2 develops an optimization model using NSGA-II 
to acquire the Pareto optimal solutions for the AQMN with 

six objective functions: maximizing the AQMN coverage 
and the degree of fuzzy membership and minimizing (i) the 
TE values, (ii) the average of TE variations, (iii) the TE vari-
ation radii, and (iv) the number of stations. Finally, stage 3 
ranks solutions acquired from the optimization framework 
using the PROMETHEE technique to acquire the most suit-
able optimal characterization of the AQMN.

Transinformation entropy

Transinformation entropy measures the quantity of informa-
tion about a random variable by observing another variable 
(Vicente et al. 2011). When the transinformation entropy is 
high between two variables, it indicates that the value of one 
variable gives essential information about the value of the 
other variable. Conversely, if the transinformation entropy is 
low, it suggests that the two variables are mostly independent. 
Transinformation entropy has a symmetrical characteristic, 
meaning that the information obtained about A when B is 
known is equal to that obtained about B when A is known. 
This entropy measure is always non-negative and has a zero 
value only if the two variables are independent.

Multi‑objective optimization model

In this research, the optimization model uses NSGA-II to (i) 
maximize the coverage of the AQMN (Eq. (1)), (ii) minimize 
the amount of the TE for the potential stations (Eq. (2)), (iii) 
minimize the average of TE variations (Eq. (3)), (iv) mini-
mize the radius of TE variations (Eq. (4)), (v) maximize the 
fuzzy degree of membership for the stations (Eq. (5)), and 
(vi) minimize the number of stations (Eq. (6)).

Fig. 2   The study area
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Fig. 3   Distribution of pol-
lutants’ concentrations in the 
existing stations

a) CO

b) NO2

c) Ozone
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where Zi is the ith objective function; bi is the auxiliary 
binary variable that is equal to 1 if there is a monitoring sta-
tion; otherwise, it is zero; Np is the number of monitoring 
stations; N

min
 is the monitoring stations’ minimum number; 

Di is the distance between the monitoring station i and the 
nearest monitoring station; D

opt
 and D

max
 are the optimum 

and maximum distances between stations, respectively; TEi 
is the TE between the monitoring station i and the near-
est monitoring station; TE

max
 is the maximum amount of 

(7)N
min

=

(

D
max

∕D
opt

)

+ 1 TE between stations; TE
min

 is the minimum amount of TE 
between stations; and D

mi
 is the degree of membership for 

each station.
The pseudocode of the algorithm mentioned above is 

presented in Fig. S3, Section S2, Supplementary Material.

PROMETHEE

The PROMETHEE prefers to rank solutions according to 
criteria, while VIKOR and TOPSIS are two aggregating 
function-based multiple-criteria decision-making algo-
rithms demonstrating the concept of “closeness to the ideal” 
(Opricovic and Tzeng 2004). In addition, PROMETHEE is 
an easy-to-use method and can be employed in authentic 
planning problems (Ülengin et al. 2001). More importantly, 
this method is suitable for both quantitative and qualitative 
data, making it more user-friendly than other methods. Also, 
it consists of two components helping understand the pro-
cess of ranking solutions as simply as possible. Finally, the 
PROMETHEE method is a robust MCDM method to rank 
a group of Pareto fronts, = {T1, T2 … , Tn} , according to a 
set of objectives, C = {C1,C2,… ,Cm} , that are different 
from each other (Brans and Vincke 1985; Pourshahabi et al. 
2018). This study considers an identical weight to all objec-
tives because all objectives are equally important. Although 
the different sets of weights may lead to different results, our 
approach can easily handle all possible sets of weights given 
by the decision maker. The obtained results illustrate the 
capability of the methodology to use desirable weights and 
criteria based on existing conditions in different case studies.

Case study

The suggested framework in this research is used to design 
the AQMNs for Los Angeles, Long Beach, and Anaheim in 
California (USA) (Fig. 2). These cities are regarded as the 
most industrial, populated, and polluted cities in the USA, 
with an area of about 5000 km2, in which many people are 
exposed to air pollution with its health risks.

In this case study, concentrations of all three pollutants, 
nitrogen dioxide (NO2), carbon monoxide (CO), and ozone, 
are collected from each of the 15 monitoring stations in the 
study area between January 2015 and December 2016 by the 
US Environmental Protection Agency (U.S. EPA 2022). The 
locations of existing stations are plotted in Fig. 5, and the infor-
mation about all three pollutants is from the EPA’s website.

It is notable for asserting that the main reason for select-
ing these 15 stations from all existing ones is significant gaps 
in the time series data of removed monitoring stations. Data 
deficiency does not estimate data for estimated monitoring sta-
tions using BME. The precise locations of the chosen stations 
are available in Table S1, Section S6, Supplementary Material.

a) CO

b) NO2

c) Ozone

Fig. 4   Spatial covariance models of pollutants
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Results and discussion

BME for potential monitoring station prediction

The BME approach predicts three air pollutants’ concentra-
tions, including CO, NO2, and ozone in the selected locations 
among the existing stations to provide input data for the pro-
posed optimization framework. Applying BME to obtain the 
potential stations is performed following a 3-step procedure.

First, the daily pollutants’ concentrations, the stations’ lon-
gitudes and latitudes, and the number of stations are collected 
as inputs to the BME model. After that, the distribution of 
pollutant concentrations is determined using histograms of 
the pollutants’ frequencies, as illustrated in Fig. 3.

Second, the obtained data are analyzed spatially and 
temporally to estimate the pollutants’ concentrations in 
considered time intervals and locations. The mean trend 
analysis calculates the data averages to provide a smooth 
time series through these analyses. Then, these spatial 
and temporal mean trends are plotted, as illustrated in 
Figs. S4 and S5, Section S7, Supplementary Material. 
Subsequently, the most suitable time and space covari-
ance models are defined and fitted with their related 
parameters (Fig. 4).

Finally, the BME approach predicts nine potential 
stations, wherein their covariance structure of time and 
space in determining latitudes, longitudes, and periods 
are similar to the existing stations. The locations of these 
potential stations are selected to cover the study area 
and help find the most optimized AQMN (Fig. 5). The 
detailed BME potential stations’ longitudes, latitudes, and 
station numbers are noted in Table S3, Section S8, Sup-
plementary Material.

The mathematical models are regarded as a robust tool 
to select the most proper position for monitoring stations in 
AQMN optimization (Modak and Lohani 1985). The results 
show the BME method’s importance in redesigning and 
improving the AQMN of the case study. For instance, moni-
toring stations 17 and 24 for CO, 18 and 21 for NO2, and 17 
and 21 for ozone are used in the most efficient AQMN. They 
constitute almost 50% of monitoring stations in the designed 
AQMN for air pollutants.

Transinformation entropy approach

The TE approach is used in this study to calculate the mutual 
information between each pair of stations. For this purpose, 
first, a matrix of order 24 × 24 is calculated to obtain the 

Fig. 5   Location of the existing 
and BME potential stations

Fig. 6   A diagram of the TE-D curve and the fuzzy degree of mem-
bership ( D

m
i

)
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TEs between all existing and potential stations. Each cell 
in this matrix presents the value of TE(a,b) in which a and 
b are the number of stations or ath row and bth column in 
the TE matrix.

After that, a TE-D curve is plotted according to the TEs 
between each pair of stations and their corresponding dis-
tances, as displayed in Fig. 6. This figure illustrates that the 
maximum TE belongs to the nearest stations, and as the dis-
tance increases, the amount of the TE decreases. Besides, in 
this TE-D curve, the point about zero inclination is presented 
as the optimum value of the distance ( D

opt
 ) since the TE is 

minimum after this point.
Finally, the fuzzy degree of membership ( D

mi
 ) is used to 

reduce uncertainty in the amount of TE between each pair 
of stations, which is zero in the lower and upper bounds of 
the TE-D curve and 1 in the curve fitted on all points of the 
TE-D curve.

Multi‑objective optimization model

The suggested multi-objective optimization framework uses 
the abovementioned six objectives, resulting in a series of 
Pareto optimal solutions, as indicated in Table S4, Sec-
tion S9, Supplementary Material. The population size and 
generation in this NSGA-II multi-objective optimization 
model are 200 and 2400, respectively. Table 1 demonstrates 
the maximum, minimum, and average values for the AQMN 
coverage, TE, average of TE variations, radii of TE varia-
tions, fuzzy degree of membership, and the number of sta-
tions for CO, NO2, and ozone contaminants obtained from 
150 acquired Pareto optimal solutions.

Relation between the number of monitoring 
stations, coverage, and transinformation entropy

Figure 7 demonstrates the relation between the number of 
monitoring stations of monitoring networks, their coverage, 
and transinformation entropy. This figure shows the relation-
ship between the number of stations varying from 4 to 24, 
the spatial coverage, and redundant information for all pol-
lutants. The amount of spatial coverage objective is to the 
negative power of 1 because the purpose is to maximize it 
in the multi-objective optimization algorithm.

PROMETHEE decision‑making model

The PROMETHEE method is applied to find the optimal 
AQMN characterization among all Pareto optimal solutions 
by ranking the multi-objective optimization model results. 
Specifically, every solution is rated based on entering, 
leaving, and net flows. Table 2 presents the top ten reso-
lutions for CO, NO2, and ozone concentrations based on 
equal weights for the six objectives, from which the optimal 
AQMN with the most desirable solutions is determined. In 
other words, the selected AQMN allows the amount of infor-
mation transferred between stations, related uncertainty of 
TE, the number of stations to be minimized, and the cover-
age to be maximized simultaneously. The location of these 
stations is depicted on the map shown in Fig. 8. As can be 
seen, the net flow and ranking of the solutions are directly 
related. Furthermore, this table illustrates that solution 
Nos. 30, 35, and 38 provide the best AQMN characteriza-
tion, including 4, 4, and 5 stations for CO, NO2, and ozone, 

Table 1   The multi-objective 
optimization model results

No. of stations Coverage TE TE variations Fuzzy degree 
of member-
ship

Radii Averages

CO
  Minimum 0.02 0.04 1.2 0.28 1.16 0.02
  Maximum 1 0.45 14.64 2.4 10.54 0.93
  Average 0.42 0.13 7.11 1.15 4.99 0.42

NO2

  Minimum 0.02 0.04 1.32 0.3 1.43 0
  Maximum 1 0.44 13.89 2.49 12.9 0.9
  Average 0.41 0.13 7.05 1.18 6.06 0.39

Ozone
  Minimum 0.04 0.04 1.05 0.37 2.26 0.05
  Maximum 1 0.28 12.35 2.25 14.8 0.9
  Average 0.44 0.11 6.76 1.15 7.47 0.45
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respectively. Detailed results for the Pareto optimal solutions 
in 6 scenarios are provided in Table S5, Section S10, Sup-
plementary Material.

The optimum number of monitoring stations directly 
affects expenses associated with operation, mainte-
nance, and assessment performance (Zhao et al. 2022). 

According to Table 3, a simple comparison between 
the TE of previous AQMNs and proposed ones for air 
pollutants shows that observing the joint information 
decreases considerably using the presented methodol-
ogy while the number of monitoring stations declines. 
In addition, the uncertainties of the observing data, 
including average TE variations, radii of TE variations, 
and fuzzy degree of membership, significantly decrease. 
Last but not least, this framework determines monitoring 
stations with an acceptable level of coverage and shared 
information.

The objective values of all three pollutants for differ-
ent numbers of stations are compared in Fig. 9. Based 
on this figure, the amount of redundant information (TE) 
for monitoring networks with 12, 14, and 9 stations is 
relatively close. Therefore, having more than 9 stations 
does not significantly help to reduce the mutual infor-
mation between monitoring stations. By comparing the 
current monitoring networks with 15 stations to the pro-
posed networks with 4, 4, and 5 stations for monitoring 
CO, NO2, and ozone, respectively, the results indicate 
a significant reduction in the number of stations and 
the amount of coverage by 3.75 times for both CO and 
NO2 and 3 times for ozone. Despite this reduction, the 
proposed networks show a decrease in the amount of 
redundant information for CO, NO2, and ozone concen-
trations by 8.25, 5.86, and 4.75 times, respectively. This 
outstanding reduction in the amount of shared informa-
tion compared to the number of monitoring stations and 
coverage means a relatively desirable level of informa-
tion can be achieved at a much lower cost. However, 
if decision-makers have a larger budget, they can have 
more coverage by installing more monitors.

Sensitivity analysis

A series of sensitivity analyses are performed based on 
the model’s results in different scenarios to show that the 
PROMETHEE method is sensitive to varying objectives’ 
weights. Figure 10 demonstrates the weights of the objec-
tives in 6 scenarios. In addition, the results of sensitiv-
ity analyses are given in Fig. 11, including the best solu-
tion for each scenario obtained from the PROMETHEE 
method. According to the solutions obtained from different 
scenarios, it is clear that TE and its related uncertainties 
are determining factors exerting a pronounced effect on the 
number of stations in scenarios 4 and 5. On the other hand, 
the coverage raises the number of stations in scenarios 1, 
2, and 3. However, in some cases, such as scenarios 1 and 
2, TE and its associated uncertainties impact the number 
of stations. However, in scenario 3, where coverage has 
a significantly higher weight, the number of stations is 
higher than the others.

a) CO

b) NO2

c) Ozone

Fig. 7   The relationship between the number of monitoring stations in 
the monitoring networks, coverage, and TE
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Table 2   The ranking of the best ten solutions based on the PROMETHEE method

Type of pollutant Ranking of 
solution

No. of solution Leaving flow (φ +) Entering flow (φ −) Net flow No. of 
stations

CO 1 30 0.19865 0.055185 0.143465 4
2 45 0.178086 0.041907 0.136179 5
3 125 0.175781 0.042141 0.13364 5
4 39 0.18931 0.055736 0.133574 4
5 135 0.16795 0.035377 0.132573 6
6 117 0.186651 0.056012 0.130639 4
7 83 0.171772 0.042976 0.128796 5
8 16 0.212227 0.083516 0.12871 3
9 54 0.212227 0.083516 0.12871 3
10 116 0.184845 0.056321 0.128523 4

NO2 1 35 0.193952 0.056214 0.137738 4
2 58 0.193952 0.056214 0.137738 4
3 49 0.176573 0.042228 0.134346 5
4 41 0.189989 0.056326 0.133663 4
5 52 0.175125 0.044921 0.130204 5
6 63 0.172937 0.042772 0.130164 5
7 121 0.171004 0.043097 0.127907 5
8 1 0.170441 0.043208 0.127233 5
9 10 0.212512 0.085641 0.126871 3
10 76 0.161974 0.036225 0.125749 6

Ozone 1 38 0.198874 0.068133 0.13074 5
2 145 0.197865 0.068188 0.129677 5
3 29 0.223855 0.095712 0.128143 4
4 49 0.223855 0.095712 0.128143 4
5 129 0.171603 0.045155 0.126447 7
6 89 0.179288 0.053634 0.125653 6
7 27 0.217993 0.095781 0.122212 4
8 73 0.217993 0.095781 0.122212 4
9 35 0.191004 0.068816 0.122188 5
10 70 0.176177 0.054092 0.122085 6

Fig. 8   The locations of the 
superior optimal AQMN in the 
study area
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Conclusions

A novel multi-objective optimization model using NSGA-
II is suggested in this study to obtain the most suitable 
optimum air quality monitoring network (AQMN) char-
acterizations. The presented framework adopts transinfor-
mation entropy (TE) and fuzzy nonlinear interval number 
programming (NINP) to evaluate the multi-objective mod-
el’s mutual information and uncertainties among AQMN 
stations. The input data are obtained from 15 existing sta-
tions and nine potential stations generated by the Bayes-
ian maximum entropy (BME) method for three contami-
nants, namely nitrogen dioxide (NO2), carbon monoxide 
(CO), and ozone, allowing for the selection of the optimal 
AQMN with more options. The Pareto optimal results of 
this NSGA-II optimization model are prepared considering 
six optimization objectives: AQMN coverage, TE, aver-
age of TE variations, radii of TE variations, fuzzy degree 
of membership, and the number of stations. These Pareto 
optimal solutions are ranked using the PROMETHEE 
method, giving the same weight to all objectives to find 
the most appropriate AQMN characterization. Finally, to 
successfully show the efficiency and advantages of the 
methodology mentioned above, it is applied to Los Ange-
les, Long Beach, and Anaheim in Southern California, 

USA. The results illustrate that the AQMNs determined 
by the PROMETHEE method consist of 4, 4, and 5 sta-
tions for CO, NO2, and ozone concentrations from all 24 
existing and potential stations, respectively. This reveals 
that the optimal AQMN exhibits good information even 
though the stations’ number is reduced. This unparalleled 
significant achievement is gained since the BME approach 
generates the potential AQMN stations, and the shared 
information between the stations is considered using the 
TE and fuzzy NINP techniques within the innovative 
multi-objective optimization model. It is worth notic-
ing that this methodology can be implemented in other 
areas with valid data within a fair distribution in those 
regions to acquire a good estimation using BME. More 
importantly, there should be no significant gaps in the 
time series data. In addition, other methods such as TE, 
NINP, and the fuzzy degree of membership are numeri-
cal methods that can be used in other case studies. Future 
studies can develop a framework using the non-dominated 
sorting genetic algorithm III (NSGA-III) to strengthen the 
optimization model and the value of information (VOI) 
theory to gain the most information. Also, the results of 
the future studies’ framework can be compared with those 
of the methodology of this study.

Table 3   The comparison of the 
optimization model objectives 
for current monitoring stations 
and the proposed ones

1 According to Eq. (6), this column is the normalized value of the number of stations
2 The objective value of the coverage is the value obtained from Eq. (1) to the negative power of 1 because 
the optimization algorithm aims to maximize it

No. of stations1 Coverage2 TE TE variations Fuzzy degree 
of membership

Radii Averages

CO
  Current stations 0.57911 0.06667 12.0332 1.49258 6.52372 0.47916
  Proposed stations 0.06284 0.25 1.45807 0.3957 1.7133 0.16667

NO2

  Current stations 0.57934 0.06667 11.0758 1.55117 7.99504 0.50766
  Proposed stations 0.06521 0.25 1.88818 0.41897 2.2251 0.16667

Ozone
  Current stations 0.56862 0.06667 9.95877 1.40749 9.1845 0.48228
  Proposed stations 0.08931 0.2 2.09486 0.47023 3.10996 0.19634
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Fig. 9   The comparison of moni-
toring networks with different 
numbers of stations

a) CO

b) NO2

c) Ozone
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Fig. 10   The objectives weights 
in each scenario
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Fig. 11   Results of sensitivity 
analysis for different weights

a) CO

b) NO2

c) Ozone
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