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Abstract
Carbon-based catalysts for activating persulfate to drive advanced oxidation processes (AOPs) are widely used in wastewater 
treatment. In this study, Shewanella oneidensis MR-1, a typical ferric reducing electroactive microorganism, was utilized as 
the raw material of biochar (BC) to prepare a novel green catalyst (MBC). The effect of MBC on activating persulfate (PS) to 
degrade rhodamine B (RhB) was evaluated. Experimental results showed that MBC could effectively activate PS to degrade 
RhB to reach 91.70% within 270 min, which was 47.4% higher than that of pure strain MR-1. The increasing dosage of PS 
and MBC could improve the removal of RhB. Meanwhile, MBC/PS can well perform in a wide pH range, and MBC showed 
good stability, achieving 72.07% removal of RhB with MBC/PS after 5 cycles. Furthermore, the free radical quenching test 
and EPR experiments confirmed the presence of both free radical and non-free radical mechanisms in the MBC/PS system, 
with •OH, SO4

•− and 1O2 contributing to the effective degradation of RhB. This study successfully provided a new applica-
tion for bacteria to be used in the biochar field.
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Introduction

Advanced oxidation process (AOP) is a new form of the 
advanced treatment of wastewater that has received much 
attention in recent years and is characterized by strong oxida-
tion, rapid degradation, mild reaction conditions, and more 
thorough degradation of pollutants (Liu et al. 2020b; Sun et al. 
2017, Wang and Wang 2021). Common AOPs include pho-
tocatalysis (Lai et al. 2019b; Li et al. 2018; Qin et al. 2019; 
Zhou et al. 2018), Fenton oxidation (Lai et al. 2019a), ozone 
oxidation (Levanov et al. 2019), persulfate activation (Li et al. 
2022; Zeng et al. 2021; Zhu et al. 2023), and electrochemical 

oxidation (Zhang et al. 2019b). However, most of the oxi-
dation methods in AOPs require large amounts of energy, 
complex operation, high cost, and harsh reaction conditions. 
Among them, the Fenton reaction process has a very wide pH 
range (2-4). The pH of the solution is too high or too low to 
effectively treat organic pollutants in wastewater. In contrast, 
PS is more friendly to the environment, easier to transport and 
store, and more stable in conventional environments. The PS 
can absorb energy or obtain an electron to generate SO4

•−, 
which can react further with water or hydroxide ions to gener-
ate •OH. In conventional methods, heat (Fan et al. 2015; Milh 
et al. 2021; Oh et al. 2009), UV-visible light (Ao et al. 2019; 
Lu et al. 2017), ultrasound (Monteagudo et al. 2018; Nasseri 
et al. 2017), transition metal ions (Fang et al. 2021; Wacławek 
et al. 2017; Wang et al. 2021a; Wei et al. 2016), and alkali 
can effectively activate PS to produce sulfate radical (SO4

•−) 
and hydroxyl radical (•OH). However, the several physical 
methods mentioned above generate high energy consumption. 
Transition metal ions need complex subsequent treatment to 
avoid secondary contamination. Alkali activation method 
needs to adjust the pH value, which is a risk of equipment 
corrosion (Fu et al. 2021; Shi et al. 2017; Wu et al. 2018). 
Therefore, it is necessary to explore more efficient and green 
activation methods.
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Carbon materials have broad applications in the field of 
catalysis due to their unique nanostructures, good electrical 
conductivity, chemical stability, and strong adsorption 
capabilities (Chen et al. 2021; Yu et al. 2020; Zhou et al. 
2019). Carbon materials have been proven to be effective in 
activating PS by replacing various metals and metal oxides 
in various chemical processes. (Duan et al. 2016) found that 
phenol can be completely degraded after 150 min of reaction 
in the reduced graphene oxide rGO-900/PMS system. 
(Cheng et  al.  2017) discovered that carbon nanotubes 
(CNTs) materials can effectively activate PS to produce 
singlet oxygen, thereby effectively degrading various 
pollutants. (Forouzesh et al. 2019) reported that oxidative 
degradation and adsorption jointly acted on the removal 
of metronidazole in the granular activated carbon (GAC)/
PDS system, and PS efficiency was much higher than that 
of H2O2. However, the carbon-based materials mentioned 
above are generally expensive. In recent years, BC has 
been considered as an efficient carbon-based material for 
degrading organic pollutants due to its low cost, availability, 
ease of preparation, and recyclability of resources. It 
can be obtained by the pyrolysis of biomass feedstock 
under high temperatures and low oxygen conditions. Its 
morphological structures and physicochemical properties 
vary depending on the biomass and the pyrolysis process 
(Tag et al. 2016). Among them, metal-free BC materials 
exhibit non-metallic leaching properties, acid and alkali 
resistance, biocompatibility, recyclability and adaptability, 
and are promising and efficient catalysts (Chen et al. 2021; 
Yu et al. 2020). A series of studies have been undertaken on 
the activation performance of PS by using different types 
of metal-free biochar, such as sludge biochar (Huang et al. 
2018, Wang and Wang 2019, Wu et al. 2021b, Yin et al. 
2019), straw biochar (Duan et al. 2022; Feng et al. 2022; 
Tang et al. 2023; Wang et al. 2019a), wood biochar (He et al. 
2019; Ouyang et al. 2019), algae biochar (Ho et al. 2019), 
shell biochar (Liang et al. 2019), and some biochar from 
waste (Chen et al. 2023; Zhao et al. 2022). BC from different 
biomass sources possesses different elemental compositions, 
surface structural properties, and redox capacities, which 
in turn affect their performance in PS activation efficiency. 
Thus, it is necessary to investigate the impact of the inherent 
properties of biomass on the performance of BC.

Microorganisms are the most biodiversity organisms on 
earth. They perform an essential role in the biosphere and 
provide mankind with numerous untapped resources. Espe-
cially bacteria have great potential for bio-decontamination in 
environmental pollution management (Timmis and Hallsworth 
2022). Microorganisms can be used to degrade organic matters 
such as plastics (Zeenat et al. 2021) and toluene (Yan et al. 
2020), and can also treat phosphates in industrial wastewater 
(Si et al. 2021) and sulfur-containing waste gasses, and can 
also help improve soil (Sanz et al. 2022). Recent years, the 

use of microorganisms in new directions has been studied. 
Liu et al. (Liu et al. 2021) investigated the different antioxidant 
capacities of Lactobacillus plantarum by crushing it with vari-
ous methods such as high-pressure treatment (HIP), lysozyme 
combined with ultrasonic treatment (LCU), and freeze–thaw 
treatment (FAT). (Dong et al. 2022) investigated the effect of 
different forms of phosphate-solubilizing bacteria-Paenibacil-
lus xylanexedens (bacterial supernatant, bacteria, broken bac-
teria) on Chlorella pyrenoidosa, providing a new approach 
to the treatment of wastewater. (Zhang et al. 2019a, 2021, 
2022b) prepared novel and effective oxygen reduction reaction 
(ORR) electrocatalysts by crushing Shewanella cells through 
carbonization, electrostatic spinning-carbonization, and hydro-
gen reduction techniques. Based on the above research, we 
consider whether bacteria can be used as raw materials for the 
preparation of BC.

Using bacteria as precursor materials for the preparation 
of biochar, large surface areas and potentially controllable 
pore structures in carbon materials can be formed due to vari-
ous highly porous cellular structures possessed by bacterial 
cells (Wei et al. 2015a, 2015b). Meanwhile,  carbon materials 
with specific functions can be obtained from bacteria with the 
appropriate processing method (Guo et al. 2015). For example, 
(Wei et al. 2015b) synthesized heterogeneous carbon materials 
with  nitrogen and phosphorus doping by direct carboniza-
tion using Escherichia coli (E.coli) as a precursor, and (Zhu 
et al. 2013) synthesized N-doped nanospheric particles with 
Bacillus subtilis by ion heating method. The electrochemically 
active bacterium, Shewanella oneidensis MR-1, is widely dis-
tributed in nature, and has low nutrient requirements, and can 
survive in common media (Yang et al. 2017; Zhang et al. 2009, 
2022b). MR-1, as a Gram-negative facultatively anaerobic bac-
teria, consists of peptidoglycan, phospholipids, lipoproteins, 
and lipopolysaccharides, which can provide abundant heter-
oatoms for carbon materials. In addition, the outer membrane 
of MR-1 contains cytochrome c, a heme protein containing 
iron porphyrins, which is capable of electron transfer (Wu 
et al. 2023). (Hartshorne et al. 2007) reported that the iron 
porphyrin (Fe-N4) on the outer membrane of MR-1 can be 
found to be transformed into Fe-Nx-C type active sites for 
ORR by pyrolysis. Therefore, in this work, Shewanella onei-
densis MR-1 was first used as the precursor material of BC 
to evaluate the degradation effect of activated persulfate on 
organic pollutants.

Materials and methods

Experimental materials

Shewanella MR-1 was provided by the laboratory of 
the Guangdong University of Technology. rhodamine B 
(RhB), potassium persulfate (PS), hydrochloric acid (HCl), 
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and sodium hydroxide (NaOH) were obtained from Yung 
Man Biotech Co., Ltd. (Guangzhou China); methanol 
(MeOH, 99.0%), tert-butyl-alcohol (TBA, 99.0%), and 
sodium azide (NaN3) were purchased from Sinopharm 
Chemical Reagent Co., Ltd. All chemicals utilized in this 
study were analytical grade.

Experimental procedure

The frozen MR-1 strain was first activated with beef paste 
peptone solid plate medium. Single colonies were then 
selected for enrichment in Luria–Bertani liquid medium 
(30°C, 150 rpm·min−1), placed in a shaker and incubated 
aerobically for about 24 h to obtain the mother liquor.

The cultured MR-1 bacterial solution was centrifuged 
at 4℃ (6000 r·min−1, 10 min) to settle the bacterium, 
removed the supernatant, and washed repeatedly with 
sterile saline more than three times to remove the residual 
medium, and then collected and dried at 60°C for 8 h in 
vacuum oven. Finally, solid particles/powder of MR-1 bac-
teria were collected and stored in a refrigerator at - 4℃. 
Subsequently, the dried MR-1 strain powder was placed 
in tube furnace (OTF-1200X, KeJing) for calcination. The 
temperature was raised to 700℃ for 4 h at a heating rate 
of 5℃·min−1 under the protection of nitrogen (N2). After 
completion of the pyrolysis, the MR-1 powder sample was 
removed and washed several times with hydrochloric acid 
and then deionized water to neutralize to ensure complete 
removal of any residual inorganic ions. The washed sam-
ples were then dried in an oven at 65°C for 12 h to obtain 
MR-1 after carbonization (MBC).

RhB degradation experiments were performed in a 
brown conical flask with the beaker magnetically stirred 
(400 rpm) at ambient temperature. The initial pH of the 
reaction solution was adjustable using 0.1 M H2SO4 and 
0.1 M NaOH. During the degradation of the system, a 
certain amount of MBC catalyst (0.2 g/L, 0.4 g/L, 0.6 g/L, 
0.8 g/L) was added to 10 mg/L of RhB solution. Differ-
ent concentrations of PS (2 mM, 4 mM, 6 mM, 8 mM) in 
the mixed solution were added to initiate the degradation 
reaction. The whole experiment was carried out under the 
condition of avoiding light. To measure the absorbance, 
the solution was collected at predetermined intervals and 
filtered through 0.22 µm filter. To evaluate the stability 
and reusability of the MBC, the reacted BC was washed 
repeatedly with ultrapure water and ethanol by means of 
filtration, followed by drying at 60°C, and then used for 
the next round of degradation experiments. The radical 
species in the MBC/PS system were determined using 
methanol (MeOH), tert-butyl alcohol (TBA), and sodium 
azide (NaN3) as quenching agents. All trials were done in 
three parallel groups.

Analytical methods

The morphological changes before and after MBC reac-
tion and the composition of micro-elements were analyzed 
by scanning electron microscopy (SEM, FEI INSPECT 
F50) and Energy Dispersive Spectrometer (EDS, Hitachi 
SU8100), respectively. Functional groups on the material 
surface were explored using a Fourier transform infrared 
spectrophotometer (FTIR, Nicolet 6700). A D8 Advance 
X-ray powder diffractometer (Bruker) was applied to study 
the crystalline structure of the BC material. The specific 
surface area and pore size distribution of the samples were 
determined by N2 adsorption–desorption isotherms using 
a Brunauer-Emmett-Teller (BET, Micromeritics, 3-flex) 
at 77 K. RhB concentration was determined by ultraviolet 
spectrophotometry (UV-2600, Shimadzu). The EPR analysis 
was carried out with a Bruker EMXplus-10/12 spectrometer.

The degradation process of RhB in the MBC/PS system 
conforms to the pseudo-first-order kinetic model (Zhu et al. 
2018b).

where C0 (mg/L) is initial RhB concentration, C (mg/L) is 
the concentration of RhB at a given time (min), and kobs are 
the estimated pseudo-first-order rate constant (min−1).

Results and discussion

Characterization of MBC

The morphology of S. oneidensis MR-1 and MBC were 
analyzed by SEM to compare the changes of pure bacteria 
and MBC before and after the reaction. As shown in Fig. 1a, 
MR-1 showed a rod-like shape with rough surface, but the 
bacteria were relatively intact, and the length of the bacteria 
was about 2–3 μm. It can be clearly seen from Fig. 1b-c 
that the morphology of MBC obtained by high-temperature 
calcination of MR-1 has changed greatly, showing irregular 
block structure and rich pore structure. Meanwhile, 
significant morphological differences are not observed for 
the MBC before and after the reaction. The mass ratio of 
MBC before and after heating at 700 °C for 4 h in a muffle 
furnace was used to calculate the ash content of MBC 
was 28.81% (Wang et al. 2019b). EDS energy spectrum 
in Fig. 1d showed that MBC contains the other elements 
of Na, K, P, Zn, Mg, Ca, and Al and the main elements 
of C, N, and O. Trace Fe was also found probably due to 
the existence of iron porphyrin on the outer membrane of 
MR-1. By comparing the specific surface area of MBC 
before and after the reaction, it can be observed that the 
specific surface area of the sample increased from 3.9933 

ln C∕C
0
= −k

obs
t
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to 5.0058 m2g−1 (Fig. 2a-b), which was estimated by the 
Brunauere-Emmette-Teller (BET) equation. It may indicate 
that MBC has no adsorption effect on RhB. Adsorption often 
shields the active center and hinders the electron transport 
process, thus affecting the catalytic performance (Liu et al. 
2020a). Calculated by the Barrette-Joynere-Halenda (BJH) 
equation, the pore volume and average pore size of the MBC 
before and after the reaction were 0.0116 cm3g−1, 0.0118 
cm3g−1, 11.5977 nm, and 9.3968 nm, respectively. It can 
be noticed that the isotherms of adsorption and desorption 
of MBC were not closed to result in a non-closed hysteresis 
loop, which can indicate the microporous structure of MBC. 
Furthermore, the average pore radius centered at 2 nm 
(Fig. 2c) could also indicate a homogeneous microporous 

structure in the MBC. It was reported that the uniform 
porous structure of BC can offer more active sites to favor 
the activation of PS (Zhao et al. 2022).

The XPS spectra of Fig. 3 provide a simple qualitative 
analysis of the main constituent elements of MBC. 
The wide-survey XPS spectra revealed three distinct 
distinctive peaks of C 1 s (284.30 eV, 47.03 at. %), N 
1 s (399.18 eV, 5.49 at. %), and O 1 s (531.45 eV, 6.89 
at. %). The C 1 s spectrum is shown in Fig. 3a and could 
be considered as the contents of C–C/C = C (284.8 eV), 
C-O (285.92 eV), and O-C = O (288.75 eV) (Kong et al. 
2016; Shi et al. 2017; Wu et al. 2021b). The presence 
of elemental nitrogen can be divided into three forms 
(Fig. 3b), namely, pyridinic N (397.43 eV), graphitic N 

Fig. 1   SEM images of MR-1 
(a), before (b) and after the 
reaction of MBC (c), and EDS 
spectra of MBC (d) 

Fig. 2   BET before the reaction (a) and after the reaction (b), pore size distribution of MBC (c)
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(399.71 eV), and nitric oxide (403.27 eV) (Wang et al. 
2021b; Wu et al. 2021b). The presence of N and other 
heteroatoms could disrupt the original chemical inertness 
of the carbon layer, producing more defects on the surface 
and offering more reaction sites for the activation of PS 
(Chen et al. 2021). The O 1 s of Fig. 3c was fitted by 
three peaks. The first one was located in the lower binding 
energy (530.3 eV) and can be attributed to O2−. Two other 
components were identified as OH-/C–O–C (532.06 eV) 
and C = O (534.48 eV), respectively (Kong et al. 2016; Wu 
et al. 2022c; Zhou et al. 2020). Zhao et al. showed that the 
surface oxygen-containing groups of BC materials, such 

as carbonyl (C = O), carboxyl (-COOH), and hydroxyl 
(C-OH) groups, may benefit the catalytic performance of 
BC (Zhao et al. 2020).

The X-ray diffraction patterns of the samples are shown 
in Fig. 4a. A broad diffraction peak can be observed at 
2θ = 26°, which probably corresponds to the (002) graphitic 
carbon plane. The broader peak appearing at 2θ = 43° can 
correspond to the (100) plane of crystalline carbon. It indi-
cated that all samples are amorphous and have an amor-
phous graphitic carbon structure (Wang et al. 2019a). The 
diffraction peak at 2θ = 26° indicated parallel stacking and 
interconnection between the various parts of the graphite 

Fig. 3   XPS spectrum of full-
scan (a), C1s (b), N1s (c), and 
O1s (d) of MBC

Fig. 4   XRD (a) and FTIR spec-
tra (b) of MBC before and after 
the reaction
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layers in carbon materials. The diffraction peak at 2θ = 43° 
showed that sp2 hybridized carbon atoms interact with each 
other in the carbon material to create a hexagonal lattice 
structure (Wang et al. 2021b). In addition, the diffraction 
peak that appears near 20° represents the graphitized struc-
ture (Ding et al. 2021). Two more pronounced diffraction 
peaks appear near 2θ = 32°, corresponding to the diffraction 
peaks of (112) and (202) crystal planes of glucuronamide 
(C6H11NO6) (Qiao et al. 2016). These diffraction peaks may 
be due to the carbonization of organic components such as 
peptidoglycan, lipids, and proteins on the bacterial cell wall 
(Dik et al. 2018). Fig. 4a revealed that there was no signifi-
cant variation in the BC samples before and after the reac-
tion, which can indicate the stability of MBC.

FTIR spectroscopy was used to compare the differences 
in the structure and surface groups of MBC before and after 
the reaction. As observed in Fig. 4b, five distinct peaks of 
3425, 2928, 1700, 1533, and 1104 cm−1 appeared in the 
spectra. The peak around 3425  cm−1 is allocated to the 
stretching vibrations of -OH in phenol functional groups 
and carboxyl groups (Zhu et al. 2018b). This peak is closely 
related to the one at 1104 cm−1, due to the symmetric C-O 
or C-O-C stretching. A peak at 1700 cm−1 is caused by the 
C = O groups (Avramiotis et al. 2021; Guo et al. 2021; Liu 
et al. 2022b). The bands at 2928 cm−1 and 1533 cm−1 stand 

for the stretching vibration of -CH2- and C = C stretching, 
respectively (Liu et al. 2016; Rumjit et al. 2021; Sadegh 
et al. 2021; Wang et al. 2021b). There was a more significant 
decrease in the peak intensity of MBC at 1100-1700 cm−1 
after the reaction, which could indicate that these oxygen-
containing functional groups play a crucial role in the cata-
lytic degradation (Zhou et al. 2021). The removal capacity of 
MBC/PS for RhB could be related to the oxygen functional 
groups (-OH and C = O) in MBC (Xu et al. 2023; Yan et al. 
2023).

Evaluation of MBC as the persulfate activator

Fig. 5a compared the removal of RhB by the MBC and 
MR-1 strains in different systems. It can be observed that 
91.7% of RhB could be effectively degraded with the MBC/
PS system. However, pure MR-1 almost had no degrada-
tion effect and only can remove 50.2% of RhB with PS. 
The degradation efficiency can be increased by 47.4% with 
MBC/PS rather than with MR-1/PS. As can be known from 
Table 1, the conventional ways for using microorganisms 
to degrade organic pollutants are pure bacteria, bacterial 
consortia, bacterial film, or bio-electrochemical systems. 
However, complex reaction systems, rather low degradation 
efficiency, or a relatively long time consumption of the above 

Fig. 5   Degradation of RhB in different systems (a) and the effect of catalyst dosage (b), PS dosage (c), initial pH on RhB removal (C/C0) by 
MBC/PS (d), and the reusability of MBC (e)
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ways stimulate some new means to utilize microorganisms. 
In this work, the MBC was prepared as the PS activator 
with carbonization of bacteria. Higher degradation efficiency 
and less degradation time can be achieved with MBC/PS 
than with MR-1. The oxygen-containing functional groups 
on the surface of BC such as hydroxyl and carboxyl groups 
can effectively activate S2O8

2− to produce SO4
•− (Oh and 

Nguyen 2022). Furthermore, •OH was also produced due 
to the hydrolysis of SO4

•−. In this work, the pore structure, 
high N content, and high C = O/C-O ratio of the MBC can 
provide more catalytic active sites to contribute to the cata-
lytic effect. Therefore, MBC is an effective PS activator that 
can enhance the ability of PS to remove RhB.

The effect of MBC addition, PS concentration, and ini-
tial pH on RhB degradation was assessed in Fig. 5b, d. As 
shown in Fig. 5b, the degradation efficiency increases with 
the addition of MBC. One hundred percent of RhB degra-
dation can be achieved with the addition of 0.8 g/L MBC. 
The kobs reaction rate constant was increased from 0.0046 
to 0.0143 min−1, which means that the increase of the cata-
lyst concentration provided more active sites for PS acti-
vation (Table 2). PS concentrations also had a significant 
effect on RhB degradation (Fig. 5c). When the concentra-
tion of PS was increased by four times, the removal rate 

of RhB could be increased by 41.9%. This means that suf-
ficient amount of SO4

•− and •OH need to be produced with 
the appropriate amount of PS to oxidize and degrade RhB. 
Initial pH is also usually an important factor in degrada-
tion systems. Significant effect of pH values (pH = 3-11) on 
RhB removal efficiency can be observed in Fig. 5d. Under 
acidic and neutral conditions, the removal of RhB remained 
stable at around 88.0% with no obvious changes. However, 
the removal effect was greatly reduced in strongly alkaline 
conditions (pH = 11). Such differences may be due to elec-
trostatic adsorption (Shi et al. 2023; Yang et al. 2023). BC 
has a positively charged surface in acidic solutions, which 
electrostatically adsorbs the negative ions of PS (S2O8

2−) 
and readily accesses the surface of the material, enabling 
effective activation. On the contrary, under alkaline condi-
tions, BC shows more negative charge sites, and the caused 
electrostatic repulsion may limit its degradation rate. The 
above experiments show that MBC/PS can effectively 
degrade RhB over a wide pH range, which also indicates that 
the degradation reaction conditions are mild and economical 
and no extra strong acids or alkali are needed.

The reusability and stability of the catalyst MBC were 
verified by recycling experiments in conjunction with the 
practical application of the catalyst (Fig. 5e). After five 

Table 1   Comparison of the degradation of organic pollutants by microorganisms in different reaction systems

Bacterial name Organic pollutants Reaction system Maximum degradation Ref.

White rot fungi Lignocellulose Combined bacterial cultures 43.36% (Chu et al. 2021)
Pseudoarthrobacter sp. and 

Gordonia sp., (PsGo); 
Stenotrophomonas sp., and 
Sphingomona sp. (StSp)

Reactive Black 5 Bacterial consortia strain 85% (for PsGo)
75% (for StSp)

(Eskandari et al. 2019)

Piscibacillus sp. and Bacillus 
sp.

Methanil Yellow G Halophilic alkalithermophilic 
bacterial consortium

94% (Guo et al. 2020)

Enterococcus faecalis and 
Klebsiella variicola

Reactive Red 198 Bacterial consortium 99.26% (Eslami et al. 2019)

Shewanella oneidensis Acid Orange 7 Microbial fuel cell (MFC) 80% (Mani et al. 2019)
Unclassified genus Reactive Brilliant Red

X-3B
Biofilm electrode reactors 

(BERs)
75.27% (Cao et al. 2018)

Pseudomonas aeruginosa and 
Alcaligenes faecalis

Polycyclic aromatic hydro-
carbons

Bacterial consortium >80% (Zhang et al. 2022a)

Bacillus licheniformis 
ARMP2 and Pseudomonas 
aeruginosa ARMP8

Petroleum hydrocarbons Bacterial co-culture 88% (ARMP2)
73% (ARMP8)

(Ravi et al. 2022)

Bacillus thuringiensis Methylene blue Synergistic effect of enzyme 95% (Wu et al. 2022a)
MR-1 Rhodamine B Pure bacteria 44% This work
MBC Bacterial-based biochar/PS 91.7%

Table 2   First-order kinetic 
parameters for degradation 
of MBC dosage and PS 
concentration

MBC dosage k × 10−3 min−1 R2 PS dosage k × 10−3 min−1 R2

0.2 g/L 4.6 0.9678 2 mM 2.8 0.9734
0.4 g/L 6.2 0.9780 4 mM 4.2 0.9865
0.6 g/L 8.6 0.9990 6 mM 5.2 0.9762
0.8 g/L 14.3 0.9930 8 mM 8.4 0.9962
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cycles, it was observed that the removal of RhB decreased 
by 18.56%, which may be due to the reduction of active sites 
on the catalyst surface by cleaning and drying processes. 
In addition, the characterization of the MBC shows that 
there was no significant change before and after the reac-
tion, which indicates that the material has good structural 
stability.

Mechanism of persulfate activation by MBC

In general, the oxidation capacity of the catalyst/PS may 
be ascribed to the generation of free radicals or non-rad-
ical active species. Typically, the •OH and SO4

•− were 
usually regarded as the two major reactants for PS activa-
tion by metal-free catalysts. In this work, MeOH, TBA, 
and NaN3 were used to investigate the active species of 
the MBC/PS system. MeOH was highly reactive towards 
•OH and SO4

•− and could quench both radicals efficiently 
at different reaction rates (kSO4

•−  = 1.1 × 107  M−1  s−1, 
k•OH = 9.7 × 108 M−1 s−1) (Guo et al. 2021; He et al. 2021; 

Wu et  al. 2021a; Zhou et  al. 2020; Zhu et  al. 2018a). 
TBA can only be used as •OH quencher with a reaction 
rate of 6 × 108 M−1 s−1, (Hu et al. 2017; Liu et al. 2021; 
Wu et al. 2021a). Known from Fig. 6a-b, the removal of 
RhB was decreased by 23.9% and 31.9% after the addi-
tion of MeOH and TBA, respectively, which can indi-
cate that both SO4

•− and •OH radicals play a role in the 
MBC/PS system. However, the inhibition effect of MeOH 
(kobs−2 M = 0.0041  min−1) was weaker than that of TBA 
(kobs−2 M = 0.0021 min−1) (Table  3), which can confirm that 
the effect of •OH is more significant than that of SO4

•−. The 
above results can be explained as follows: the compensation 
effect of SO4

•− produced from PS by CH2OH• on the degra-
dation efficiency; the affinity of TBA with MBC to prevent 
from the entry of PS to MBC (Liu et al. 2022a; Ren et al. 
2021). Furthermore, it can be found in Fig. 6a-b that MeOH 
and TBA cannot completely quench the reaction, suggest-
ing that there may be other active species attributed to the 
RhB removal. NaN3 was typically used to capture singlet 
oxygen (1O2) (k = 1.2 × 108 M−1 s−1) (Xu et al. 2020), which 

Fig. 6   Effects of free radical inhibitor MeOH (a), TBA (b), NaN3 (c) on the degradation of RhB by PS catalyzed with MBC and the EPR spectra 
of •OH and SO4

•− (d) and 1O2 (e) signals in the MBC/PS system

Table 3   First-order kinetic 
parameters for degradation of 
different quenching agents

MeOH k × 10−3 min−1 R2 TBA k × 10−3 min−1 R2 NaN3 k × 10−3 min−1 R2

0.5 M 5.2 0.9973 0.5 M 5.9 0.9985 0.5 M 3.2 0.9836
1 M 4.7 0.9962 1 M 4.8 0.9983 1 M 2.7 0.9833
2 M 4.1 0.9984 2 M 3.2 0.9983 2 M 2.1 0.9536
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is the typical active substance in the non-radical pathway. 
As observed in Fig. 6c, the degradation rate of RhB showed 
a significant decrease with increasing NaN3 concentration. 
2 M NaN3 could inhibit the degradation of 46.0% RhB, indi-
cating that 1O2 also played a significant role in RhB degrada-
tion by the MBC/PS system.

To further demonstrate the contribution of the active spe-
cies in the MBC/PS system, an EPR test was performed. 
•OH or SO4

•− can form stable adducts with DMPO, and 
1O2 can be detected by reacting rapidly with TEMP to form 
TEMPO+ radicals (Wang et  al. 2023; Wu et  al. 2022b, 
2022d). In Fig. 6e, a quadruple peak with a relative inten-
sity ratio of 1:2:2:1 for DMPO-•OH and a six-line peak 
with a relative intensity ratio of 1:1:1:1:1:1 for the DMPO-
SO4

•− adduct can be observed (Wu et al. 2020). Meanwhile, 
in Fig. 6f, the characteristic signals with the ratio of 1:1:1 
for triplet peak of TEMP-1O2 can be observed (Huang et al. 
2023). The results were also verified with the quenching 
experiments, which demonstrated that the MBC/PS system 
could indeed catalyze the generation of •OH, SO4

•−, and 
1O2 from activated PS by the quenching experiments and 
the EPR measurements. Based on the above experimental 
results, a more reasonable schematic of MBC activated PS 
was proposed, as shown in Scheme 1.

Conclusion

In this study, we employed Shewanella oneidensis MR-1 
for the first time as a raw material for the preparation 
of biochar for the degradation of RhB by activated PS. 
Characterization techniques such as SEM, BET, XRD, 
XPS, and FTIR were used to examine the morphological 
structure and chemical content of MBC. Meanwhile, by 

comparing the degradation effects of pure strain MR-1 and 
MBC, it was discovered that the degradation effect of RhB 
was significantly improved after the carbonization of the 
bacterium, proving the high catalytic activity of the MBC 
material. MBC exhibited good stability and high catalytic 
action in a wide pH range. The quenching experiments 
and EPR tests indicated that •OH, SO4

•− and 1O2 play an 
important role in the MBC/PS system. This study provided 
a new simple, efficient, and economical catalyst for the 
activation of PS, and also brings a new perspective on the 
resource utilization of bacteria.
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