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Abstract
The use of in situ active capping to control phosphorus release from sediment has attracted more and more attentions in 
recent years. It is important to identify the effect of capping mode on the control of phosphorus release from sediment by 
the in situ active capping method. In this study, the impact of capping mode on the restraint of phosphorus migration from 
sediment into overlying water (OW) by lanthanum hydroxide (LH) was studied. Under no suspended particulate matter 
(SPM) deposition condition, LH capping effectively restrained the liberation of endogenous phosphorus into OW during 
anoxia, and the inactivation of diffusive gradient in thin film-unstable phosphorus  (UPDGT) and mobile phosphorus  (PMobile) 
in the topmost sediment served as a significant role in the restraint of endogenous phosphorus migration into OW by LH 
capping. Under no SPM deposition, although the transformation of capping mode from the single high dose capping to the 
multiple smaller doses capping had a certain negative impact on the restraint efficiency of endogenous phosphorus libera-
tion to OW by LH in the early period of application, it increased the stability of phosphorus in the static layer in the later 
period of application. Under SPM deposition condition, LH capping had the capability to mitigate the risk of endogenous 
phosphorus liberation into OW under anoxia conditions, and the inactivation of  UPDGT and  PMobile in the topmost sediment 
was a significant mechanism for the control of sediment phosphorus liberation into OW by LH capping. Under SPM deposi-
tion condition, the change in the covering mode from the one-time high dose covering to the multiple smaller doses covering 
decreased the efficiency of LH to limit the endogenous phosphorus transport into OW in the early period of application, but 
it increased the performance of LH to restrain the sedimentary P liberation during the later period of application. The results 
of this work suggest that the multiple LH capping is a promising approach for controlling the internal phosphorus loading 
in freshwater bodies where SPM deposition often occurs in the long run.
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Introduction

Eutrophication of surface water bodies is a severe environmen-
tal issue globally (Balasuriya et al. 2022; Sun et al. 2022; Zhou 
et al. 2022). The occurrence of eutrophication in water bod-
ies not only can cause the harmful algal blooms, bottom water 
hypoxia, water quality deterioration, biodiversity loss, and eco-
system degradation but also can give rise to the disruption of 
drinking water supplies and the closure of commercial fisheries 

(Feng et al. 2023; Le Moal et al. 2019; Mackay et al. 2022; 
Rozemeijer et al. 2021). A lot of researchers have found that 
phosphorus (P) is a key limiting factor causing eutrophication 
in freshwater bodies (Determan et al. 2021; Schindler 1977; 
Schindler et al. 2016). As such, the reduction in the phosphorus 
loading is critical to the control of eutrophication in freshwater 
bodies (Carpenter 2008; Yu et al. 2022). The sources of phos-
phorus in surface waters could be divided into two categories, 
namely, external phosphorus source (such as wastewater dis-
charge and runoff from agriculture) and internal phosphorus 
source (phosphorus released from sediments) (Smith et al. 
1999; Wen et al. 2020; Yang et al. 2020a). In order to mitigate 
the eutrophication of surface water bodies, it is important for 
reducing the input of exogenous phosphorus (Schindler et al. 
2016; Yang et al. 2020a). However, after the input of exogenous 
phosphorus is controlled, reducing the release of endogenous 
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phosphorus is regarded as the key for combating the eutrophica-
tion in surface water bodies (Jeppesen et al. 2005; Sondergaard 
et al. 2003; Wen et al. 2020; Yang et al. 2020a; Zhang et al. 
2023).

Up to now, a series of sediment restoration techniques 
have been proposed to reduce the internal phosphorus load-
ing, including sediment dredging (Li et al. 2020; Yang et al. 
2023; Yin et al. 2021), chemical phosphorus inactivation 
using aluminum salt (Huang et al. 2016; Huser et al. 2016), 
sediment oxidation (Yamada et al. 2012), sediment microbial 
fuel cells (Wang et al. 2022), aquatic plant restoration (Li 
et al. 2021), aeration (Chen et al. 2021a), electrokinetic iso-
lation (Tang et al. 2020), inert capping (Jiao et al. 2020), and 
active capping/addition (AC/A) (Chen et al. 2021b; Hong 
et al. 2022; Wu et al. 2022a). Among these technologies, 
AC/A, which involves the placement of P-inactivation sorb-
ent materials (PISMs) on the interface of overlying water 
(OW) and sediment or the amendment of sediments with 
PISMs, shows great potential in the restraint of internal 
phosphorus release to OW (Fan et al. 2017; Lei et al. 2022; 
Li et al. 2023; Xia et al. 2023). A lot of metal-based PISMs 
have been utilized to address the problem of endogenous 
phosphorus release into OW, including iron-based PISMs 
(Fuchs et al. 2018; Wang et al. 2021a; Zhan et al. 2019), 
aluminum-based PISMs (Li et al. 2017; Wang et al. 2019; 
Yin et al. 2018b), calcium-based PISMs (Yin et al. 2016; 
Zhou et al. 2019), zirconium-based PISMs (Lin et al. 2019b, 
2020b), and lanthanum-based PISMs (Lin et al. 2019d; 
Wu et al. 2022a; Zeller & Alperin 2021). Among them, 
lanthanum-based PISM (La-PISM) is considered a highly 
promising material for the immobilization of phosphorus in 
sediment and the restraint of sediment internal phosphorus 
release into OW because of the strong affinity of lanthanum 
for phosphate, high selectivity of lanthanum to phosphate, 
and high stability of  LaPO4 (Ding et al. 2018; Fang et al. 
2018; He et al. 2022; Li et al. 2019; Meis et al. 2013; Waajen 
et al. 2016; Wang et al. 2017; Wu et al. 2022a; Yasseri & 
Epe 2016).

For the AC/A approach, PISMs can be added with a sin-
gle high dose or added with multiple small doses (Meis et al. 
2013; Yin et al. 2018c). Mei et al. found that compared to 
a single high dose, it is probable that applying PISMs with 
multiple smaller doses increases the cost-effectiveness and 
decreases the non-target effects (Meis et al. 2013). Yin et al. 
observed that under the action of intensive bioturbation, the 
vertical movement of the applied PISMs in sediment can 
take place, which increases the potential of P flux across sed-
iment-OW interface (Yin et al. 2018c). In this case, it may be 
necessary to either remove the sediment biota or repeatedly 
dose the PISMs into the contaminated sediment (Yin et al. 
2018c). Thus, comparing the effectiveness and mechanism 
of PISMs capping/addition with a single high dose and mul-
tiple small doses to mitigate sediment phosphorus release is 

extremely critical to the application AC/A method to restrain 
the internal phosphorus release into OW.

Suspended particulate matter (SPM) is widely present in 
natural aquatic environments (Ho et al. 2022; Walch et al. 
2022). The deposition of SPM will inevitably lead to the 
formation of the new sediment on the old sediment (Liu 
et al. 2019). After the surface sediment is covered with 
PISMs, the newly formed sediment due to the SPM deposi-
tion will bury the formed capping system (Lei et al. 2021; 
Liu et al. 2016; Yin et al. 2017). SPM can serve as a source 
of phosphorus in water because of desorption/release or a 
sink of phosphorus in water due to adsorption/uptake (Ji 
et al. 2022; Yang et al. 2020b). Yin et al. observed that 
the deposition of SPM can bury PISMs deeper into the 
sediment layer, resulting in the increase in the amount of 
potentially mobile P  (PMobile) in the surface sediment and 
the flux of dissolved reactive P (DRP) across the sediment-
OW interface (Yin et al. 2018a, 2017). Consequently, com-
paring the effectiveness and mechanism of PISMs capping 
and addition with a single high dose and multiple small 
doses to intercept sedimentary phosphorus release under 
SPM deposition condition is critical to the utilization of 
AC/A approach to manage the sediment internal phospho-
rus loading.

Capping is less laborious PISM application mode than 
amendment (Abel et al. 2017). Lanthanum hydroxide (LH) 
is a common lanthanum-based PISM. LH has strong adsorp-
tion capability to phosphate even at trace levels  (HzPO4

z−3, 
z = 0, 1, 2, or 3) in aqueous solution and is receiving increas-
ing attention (Fang et al. 2017; He et al. 2022; Lin et al. 
2019d; Wu et al. 2022a). In addition, LH also has good per-
formance for P inactivation in sediment (Lin et al. 2019d; 
Wu et al. 2022a). Understanding the effect of capping mode 
(one-time capping and multiple capping) on the control of 
phosphorus release from sediment by LH in the absence and 
presence of SPM deposition is vital to the application of LH 
as an active capping material to block sediment phospho-
rus release. However, little information is available on the 
impact of capping mode on the control of internal phospho-
rus release to OW by LH.

Our work is aimed at studying the impact of capping 
mode (one-time capping and multiple capping) on the con-
trol of sediment phosphorus release into OW by LH in the 
absence and presence of SPM deposition. To realize this 
goal, the behavior and mechanism of  HzPO4

z−3 adsorption 
from aqueous solution onto LH were investigated using 
batch experiments and X-ray photoelectron spectroscopy 
firstly, and then the influence of one-time and multiple LH 
capping on the migration of P from sediment to OW in the 
absence and presence of SPM deposition was comparatively 
explored using sediment incubation experiments. The results 
of this work will be conductive to the application of LH to 
inhibit the endogenous phosphorus release into OW.
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Materials and methods

Materials

The sediment and OW used in the present study were 
sampled from a small scenic surface water body located 
in Pudong New Area, Shanghai, China. The thoroughly 
homogenized wet sediment was used to construct the 
sediment core in the incubation experiment. The air-dried 
sediment sample with a particle size of less than 0.15 mm 
was adopted as the SPM in the incubation experiment. All 
chemicals employed in this work were of analytical grade 
agents and obtained from Sinopharm Chemical Reagents 
Co., Ltd., China. The zirconium oxide-Chelex based dif-
fusive gradient in thin film (ZrO-Chelex DGT) was pur-
chased from EasySensor Ltd., China.

Preparation and characterization of LH

Lanthanum hydroxide was prepared by precipitating  LaCl3 
in NaOH. First, 20 g of  LaCl3·6H2O was added to 100 mL 
of deionized water (DI-water). Next, the pH of the as-
obtained La(III) solution was adjusted to 11 by adding a 
1 mol/L sodium hydroxide solution dropwise under agita-
tion condition. Then, stirring was continued for one hour. 
Subsequently, the reaction precipitate was collected from 
the suspension solution through centrifugation. Then, the 
product was washed 5 times with DI-water. In the end, 
the washed precipitate was air-dried, ground, and passed 
through the sieve with 100 meshes.

The X-ray diffraction (XRD) spectrum of LH was 
acquired using a SMARTLAB9 XRD spectrometer (RIKEN 
Corporation, Japan) with Cu/Kα radiation. The pH drift 
approach was employed to measure the pH of zero charge 
point  (pHPZC) of LH (Zyoud et al. 2019). Briefly, 10 mg of 
LH was introduced into 50 mL of 0.01 mol/L sodium nitrate 
solutions, whose initial pH  (pHi) values were 5, 6, 7, 8, 9, 
10, and 11, respectively. After that, the reaction system was 
shaken at 150 rpm and 298 K. After 24 h of reaction, the 
final pH  (pHf) was determined by a pH meter. The  pHPZC of 
LH was estimated from the plot of  pHi-pHf versus  pHi. The 
Brunauer–Emmett–Teller (BET) specific surface area, mean 
pore diameter, and total pore volume of LH were deter-
mined using a Tristar II 3020 surface area and porosity size 
analyzer, which was provided by Micromeritics, USA. An 
Escalab 250Xi X-ray photoelectron spectrometer, which was 
provided by Thermo Fisher Scientific, USA, was employed 
to explore the interaction between LH and  HzPO4

z−3. The 
XPSPEAK41 software was employed to fit the XPS spec-
trum. The Shirley background was used. The ratio of Lor-
entzian to Gaussian was fixed at 30%.

Adsorption experiment

The influences of reaction time, initial phosphorus con-
centration, and pH value on the adsorption of  HzPO4

z−3 
onto LH were investigated by batch experiments. In the 
adsorption kinetics experiment, 0.01 g of LH was added 
into 50 mL of 20 mg P/L phosphate solution with an ini-
tial pH value of 7, and the reaction time was set at 15, 30, 
45, 60, 120, 240 360, 480, 960, and 1440 min, respec-
tively. In the adsorption isotherm experiment, 0.01 g of 
LH was introduced into 0.05 L of phosphate solution with 
an initial pH value of 7 for 24 h, and the initial concen-
tration of  HzPO4

z−3 was set at 5, 10, 15, 20, 25, 30, and 
40 mg P/L, respectively. In the pH effect experiment, 
0.01 g of LH was shaken in 0.05 L of phosphate solution 
with an initial phosphorus concentration of 20 mg/L for 
24 h, and the initial pH values were set at 5, 6, 7, 8, 9, 10, 
and 11, respectively. In all the adsorption experiments, 
the formed suspension was stirred by a water bath shaker 
at 150 rpm and 298 K. After the adsorption reaction was 
finished, the liquid phase was collected by a 0.45 μm fil-
ter membrane. The residual concentration of  HzPO4

z−3 
in the filtrate was analyzed with a spectrophotometer at 
700 nm using the ammonium molybdate method. For the 
pH influence experiment, the final pH was measured by 
a pH meter. All the  HzPO4

z−3 uptake experiments were 
implemented in duplicate. The quasi-first-order (QFO, 
Eq. (1)), quasi-second-order (QSO, Eq. (2)), and Elovich 
(EH, Eq. (4)) kinetic models were adopted for the analysis 
of experimental kinetics data (Afridi et al. 2019; Yuan 
et al. 2023).

where Qt (mg P/g) represents the amount of  HzPO4
z−3 

adsorbed by LH at time t (min); Qe (mg P/g) represents the 
quantity of  HzPO4

z−3 adsorbed by LH at equilibrium time; k1 
(1/min) and k2 (g/mg min) indicate the rate constants of the 
QFO and QSO equations, respectively; a (mg/g min) indi-
cates the initial rate of  HzPO4

z−3 adsorption calculated based 
on the EH kinetic equation; b (g/mg) indicates the constant 
of EH kinetic equation; h (mg/g min) represents the initial 
rate of  HzPO4

z−3 adsorption calculated based on the QSO 
kinetic equation.

(1)Qt = Qe

(

1 − exp(−k
1
t)
)

(2)Qt =
k
2
Q2

e
t

1 + k
2
Qet

(3)h = k
2
Q2

e

(4)Qt =
1

b
ln(1 + abt)
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The Langmuir (Eq. (5)) and Freundlich (Eq. (6)) isother-
mal equations were employed to match the adsorption data 
(Afridi et al. 2019; Tran et al. 2017).

where Qe indicates the equilibrated  HzPO4
z−3 adsorp-

tion capacity (mg P/g); Ce indicates the concentration of 
 HzPO4

z−3 in the equilibrated solution (mg P/L); Qm (mg P/g) 
represents the  HzPO4

z−3 monolayer saturation adsorption 
capacity; KL (L/mg) represents the Langmuir equilibrium 
constant; KF and 1/n indicate the Freundlich equilibrium 
constants.

Sediment incubation experiment

Twelve Plexiglas cylinders, whose inner diameter was 
10 cm and whose height was 30 cm, were applied to inves-
tigate the impact of one-time and multiple LH capping on 
the transport of phosphorus from sediment to OW in the 
absence and presence of SPM deposition. The height of 
the sediment core in the Plexiglas cylinder was 10 cm. The 
twelve cylinders were separated into six groups (Fig. S1), 
and each group set two parallel. The cylinders that only 
contain sediment and OW were used as the control group. 
For the one-time capping group, 10 g of LH was evenly 
added to the water surface in cylinder at one time, and 
the added LH settled to the interface between sediment 
and OW (SWI), forming the LH capping layer on the 
SWI. For the multiple capping group, 10 g of LH was 
divided into five equal parts, and 2 g of LH was added 
to the water surface in cylinder every 15  days. There 
were two types of control, one-time capping and multi-
ple capping groups. One is the control, one-time capping 
or multiple capping group without SPM deposition. The 
other is the control, one-time capping or multiple cap-
ping group with SPM deposition. For the SPM deposition 
groups, 10 g of SPM was added to the water surface every 
5 days, and the number for the addition of SPM was set 
at 13. Before the addition of OW, its dissolved oxygen 
(DO) concentration was reduced to below 0.5 mg/L using 
the sulfite oxidation approach (Kim et al. 2003). Rubber 
stopper and Vaseline were used to seal cylinder. During 
the period of incubation, the DO, pH, DRP, and dissolved 
total phosphorus (DTP) of OW were monitored at regu-
lar time. The DO and pH of OW were analyzed by DO 
and pH meters, respectively. The DRP concentration of 
OW was measured by the ascorbic acid-molybdenum blue 
colorimetric method (Yang et al. 2023). The DTP concen-
tration of OW was measured by the potassium persulfate 

(5)Qe =
QmKLCe

1 + KLCe

(6)Qe = KFC
1∕n
e

digestion-ammonium molybdate spectrophotometry 
approach (Yang et al. 2023). On the  145th day, the ZrO-
Chelex DGT device was slowly inserted into the sediment 
and placed for twenty-four hours to determine the concen-
trations of DGT-unstable phosphorus and iron (abbrevi-
ated as  UPDGT and  UFDGT, respectively) in the sediment/
OW profile. After retrieval, the ZrO-Chelex DGT device 
was marked with the SWI position and cleaned using DI-
water (Hu et al. 2022). Then, a ceramic knife was used to 
cut the ZrO-Chelex DGT gel at intervals, and the gel strip 
was sequentially immersed in 1000 mmol/L nitric acid and 
1000 mmol/L sodium hydroxide solutions, respectively 
(Fan et al. 2021; Hu et al. 2022). The concentrations of P 
and Fe in the eluate were determined by the molybdenum 
blue and phenanthroline colorimetric methods, respec-
tively (Fan et al. 2021; Hu et al. 2022). The concentrations 
of  UPDGT and  UFDGT (CDGT) were calculated by Eq. (7) 
(Chen et al. 2016; Hu et al. 2022):

where M (μg) represents the mass of accumulated phospho-
rus or iron over the time of deployment; Δg (mm) indicates 
the thickness of the material diffusive layer; D  (cm2/s) rep-
resents the diffusive coefficient of phosphorus or iron in the 
diffusive layer; A  (cm2) represents the exposure area of the 
gel; t (s) represents the time of deployment.

The M value was determined by Eq. (8) (Hu et al. 2022):

where Ce (mg/L) indicates the phosphorus or iron concentra-
tion in the eluate; Vg (mL) indicates the volume of the gel; 
Ve (mL) indicates the volume of the eluate; fe represents the 
efficiency of elution.

On day 198, the sediment samples were obtained from 
the sediment layers at depths of 0–1, 1–2, 2–3, 3–6, and 
6–10 cm in the control, one-time capping, and multiple cap-
ping groups. The sampled sediment was air-dried, ground, 
and passed through the sieve with 100 meshes. According 
to the P sequential extraction method described in the pre-
vious literatures (Li & Shi 2020; Lin et al. 2019b; Wang 
et al. 2022), the P fractions of sediments were determined. 
In this method, five phosphorus fractions can be obtained, 
and they are loosely immobilized phosphorus (LI-P), readily 
reductive phosphorus (RR-P), metal oxide-bound phospho-
rus (OH-SRP), hydrochloric acid-extractable phosphorus 
(H-P), and residual phosphorus (R-P). The content of mobile 
phosphorus  (PMobile) in sediment was calculated as the total 
amount of LI-P and RR-P (Wang et al. 2013). The quantity 
of total phosphorus  (PTotal) in sediment was calculated as the 
total amount of LI-P, RR-P, OH-SRP, H-P, and R-P.

(7)CDGT =
MΔg

DAt

(8)M =
Ce(Vg + Ve)

fe
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Results and discussion

Characterization of LH

The XRD pattern of LH is displayed in Fig. 1a. The principal 
XRD peaks of LH were basically identical to those of lantha-
num hydroxide crystal (JCPDS 36–1481) (Zhang et al. 2022). 
This demonstrates that the as-prepared LH sample is primarily 
composed of lanthanum hydroxide crystal. The  pHPZC of LH 
was found to be 6.12 (Fig. 1b). This indicates that the surface 
of LH possesses net positive charges at pH below 6.12, but its 
surface possesses net negative charges at pH above 6.12. The 
BET surface area of LH was 37.7  m2/g. The total pore volume 
of LH was 0.0186  cm3/g. The mean pore diameter of LH was 
2.09 nm.

Adsorption characteristics and mechanism 
of phosphate on LH

The kinetic curve of  HzPO4
z−3 adsorption by LH is dis-

played in Fig. 2a. From Fig. 2a, we can observe that with 
the rise of adsorption time from 0 to 960 min, the  HzPO4

z−3 
adsorption capacity for LH gradually increased. During the 
early adsorption stage, the  HzPO4

z−3 adsorption was quick 
(Fig. 2a). This was due to the fact that there were a large 
number of active adsorption sites on the surface of LH in the 
initial adsorption stage (Zhang et al. 2021). The QFO, QSO, 
and EH models were adopted for the analysis of experimen-
tal kinetics data, and the relevant parameters were obtained 
as shown in Table 1. The EH kinetic model (R2 = 0.988) 
described the adsorption process of  HzPO4

z−3 onto LH better 
than the QSO (R2 = 0.882) kinetic model. Furthermore, the 

QSO kinetic model (R2 = 0.882) described the adsorption 
process of  HzPO4

z−3 onto LH better than the QFO kinetic 
model (R2 = 0.713). The EH model is widely applied to 
chemisorption data (Tran et al. 2017). The good fitting of 
kinetic data to the QSO model generally indicates that the 
adsorption process mainly obeys a chemisorption process 
(Asaoka et al. 2021; Luo et al. 2023; Wang et al. 2021b). 
Consequently, the uptake of  HzPO4

z−3 by LH is largely medi-
ated by chemisorption. The initial adsorption rates calcu-
lated based on the QSO and EH kinetic models were 1.65 
and 7.45 mg/g min, respectively (Table 1). According to 
Eq. (9), the mean adsorption rate ( v , mg/g min) at 0–15 min 
was calculated to be 1.58 mg/(g min).

where t1 and t2 represent the adsorption time (min); Qt
1
 and 

Qt
2
 (mg/g) represent the  HzPO4

z−3 adsorption capacities at 
t
1
 and t

1
 (min), respectively. Based on the data reported in 

the previous literature (Ross et al. 2008), the initial rates of 
 HzPO4

z−3 adsorption onto lanthanum ion-modified bentonite 
(Phoslock®, a widely used PISM for endogenous P release 
control) at pH 5, 7, 8, and 9 were calculated to be 0.88, 0.59, 
0.41, and 0.39 mg/g min using Eq. (3). Clearly, the initial 
 HzPO4

z−3 adsorption rate of LH was larger than that of Pho-
slock®. Thus, from the point of view of the  HzPO4

z−3 uptake 
rate, LH has a higher potential to be applied as a PISM for 
 HzPO4

z−3 elimination from water than Phoslock®.
The isotherm of  HzPO4

z−3 adsorption by LH is displayed 
in Fig. 2b. The computed values of isotherm model param-
eters for  HzPO4

z−3 adsorption onto LH are presented in 
Table 2. According to Fig. 2b and Table 2, the Freundlich 

(9)v =
Qt

1
− Qt

2

t
1
− t

2
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Fig. 1  (a) XRD pattern and (b)  pHPZC of LH



79031Environmental Science and Pollution Research (2023) 30:79026–79048 

1 3

isotherm model (R2 = 0.964) can better describe the adsorp-
tion isotherm of  HzPO4

z−3 on LH than the Langmuir iso-
therm model (R2 = 0.809). The value of 1/n was less than 1, 
which demonstrates the beneficial adsorption of  HzPO4

z−3 
onto LH (Lu et al. 2022). The theoretically calculated great-
est  HzPO4

z−3 monolayer adsorption capacity for LH was 
79.3 mg/g, which was larger than those of many other PISMs 
for phosphorus immobilization in sediment reported in pre-
vious researches (Fan et al. 2017; Haghseresht et al. 2009; 
Lei et al. 2021; Li et al. 2019; Lin et al. 2020a; Wang et al. 
2015; Wu et al. 2022b; Xia et al. 2022; Yang et al. 2015; Yin 
et al. 2018b, 2020; Zhou et al. 2019) (Table 3). This suggests 
that from the point of view of the greatest  HzPO4

z−3 uptake 
capacity, LH is a promising PISM for the suppression of 
endogenous phosphorus release into OW.

The impact of pH on  HzPO4
z−3 adsorption by LH is 

shown in Fig. 2c. When the pH of solution rose from 5 

to 9, the amount of  HzPO4
z−3 adsorbed on LH decreased 

(Fig. 2c). As shown in Fig. 1b, the  pHPZC of LH was 6.12. 
At pH below 6.12, the surface of LH possesses net posi-
tive charges. As the pH of solution rose from 5 to 6, the 
electrostatic attraction force between  HzPO4

z−3 and LH 
decreased, resulting in the decreased  HzPO4

z−3 adsorption 
capacity. At pH above 6.12, the surface of LH possessed 
net negative charges. When the solution pH rose from 6 to 
7, the electrostatic attraction force changed to the electro-
static repulsion force, resulting in a decline in the  HzPO4

z−3 
adsorption performance. As the solution pH rose from 7 to 
11, the electrostatic repulsion between  HzPO4

z−3 and LH 
increased, which led to the decrease in the  HzPO4

z−3 adsorp-
tion ability. Furthermore, the increased  OH− ions competed 
with  HzPO4

z−3 for the active adsorption site on the surface of 
LH, which brought about the decreased  HzPO4

z−3 adsorption 
capacity with the increasing solution pH (Zhang et al. 2022). 
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z−3 onto LH, (c) effect of pH on  HzPO4

z−3 adsorption onto LH, and (d) final pH values 
of solutions after their contact with LH in the absence and presence of  HzPO4

z.−3
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Compared to  HPO4
2−,  H2PO4

− tends to be easily adsorbed 
onto metal oxide owing to its low adsorption free energy 
(Zhang et al. 2022). When pH increased from 5 to 11, the 

concentration of  H2PO4
− decreased, resulting in the decrease 

in the  HzPO4
z−3 adsorption capacity. The final solution pH 

value after the addition of LH in the presence of  HzPO4
z−3 

was higher than that in the absence of  HzPO4
z−3 (Fig. 2d). 

This indicates that  OH− is released from LH as a result of 
ligand exchange. Thus, ligand exchange is an important 
mechanism for  HzPO4

z−3 adsorption onto LH over the pH 
range of 5–11.

In order to deeply understand the mechanism for the inter-
action between  HzPO4

z−3 and LH, the XPS analyses on the 
original and  HzPO4

z−3-adsorbed LH samples were imple-
mented and the results are given in Fig. 3. The peaks of C 
1 s, O 1 s, and La 3 d were observed in the full XPS spectra 
of LH samples prior to and after reaction with  HzPO4

z−3, and 
the peak of P 2p was only observed in the full XPS spectrum 
of LH sample after reaction with  HzPO4

z−3 (Fig. 3a). This 
suggests that  HzPO4

z−3 has been adsorbed by LH success-
fully after the contact of  HzPO4

z−3 solution with LH. As 
Fig. 3b shows, the P 2p peak for the  HzPO4

z−3-adsorbed LH 
was located at 133.31 eV. The binding energy of P 2p XPS 
peak for the LH sample after the adsorption of  HzPO4

z−3 was 
larger than those for the  HzPO4

z−3 bound to the –N+(CH3)3 
groups of cationic hydrogel by electrostatic attraction 
(131.9 eV) (Dong et al. 2017) and  NaH2PO4·2H2O refer-
ence salt (132.6 eV) (Liu et al. 2020; Mallet et al. 2013). 
This demonstrates that compared to the electrostatic attrac-
tion force, the interaction force between  HzPO4

z−3 and LH 
is stronger, and the primary mechanisms that dominate 
the adsorption of  HzPO4

z−3 by LH include the formation 
of inner-sphere phosphate-lanthanum complex. The La 
3d5/2 spectra (Fig. 3c) revealed peaks shift from 834.74 
and 838.58 eV to 834.98 and 838.52 eV, respectively. The 
La 3d3/2 spectra (Fig. 3c) revealed peaks shift from 851.54 
and 855.50  eV to 851.84 and 855.38  eV, respectively. 
These results further confirm the formation of inner-sphere 

Table 1  Parameters of kinetics equations for  HzPO4
z−3 adsorption by 

LH

Qe,exp represents the experimental value of Qe, and Qe,cal represents 
the calculated value of Qe

Kinetic models Parameter Value

QFO kinetic model Qe,exp (mg/g) 62.2
Qe,cal (mg/g) 53.5
k1 (1/min) 0.0213
R2 0.713

QSO kinetic model Qe,exp (mg/g) 62.2
Qe,cal (mg/g) 58.5
k2 (g/mg min) 0.000483
h (mg/g min) 1.65
R2 0.882

EH kinetic model a (mg/g min) 7.45
b (g/mg) 0.112
R2 0.988

Table 2  Parameters of isotherm equations for  HzPO4
z−3 adsorption 

onto LH

Isotherm model Parameter Value

Langmuir isotherm model Qm (mg/g) 79.3
KL (L/mg) 2.59
R2 0.809

Freundlich isotherm model KF 46.4
1/n 0.215
R2 0.964

Table 3  Maximum  HzPO4
z−3 

adsorption capacities for LH in 
this study and other PISMs in 
previous researches

Number Name Maximum adsorp-
tion capacity 
(mg/g)

Reference

1 Phoslock® 9.47–10.54 Haghseresht et al. 2009
2 Lanthanum-modified zeolite 64.1 Li et al. 2019
3 Aluminum/lanthanum co-modified attapulgite 10.6 Yin et al. 2020
4 Zirconium-modified zeolite 10.2 Yang et al. 2015
5 Zirconia/zeolite composite 22.62 Fan et al. 2017
6 Ca/Fe-layered double hydroxide-zeolite composite 46.7 Wu et al. 2022b
7 Amended calcium peroxide material 29.28 Zhou et al. 2019
8 Iron rich glauconite sand 0.65–1.23 Xia et al. 2022
9 Aluminum/iron co-modified calcite 27 Lei et al. 2021
10 Drinking water treatment sludge 7.46 Wang et al. 2015
11 Aluminum-modified attapulgite 8.79 Yin et al. 2018b
12 Zirconia/magnetite/zeolite composite 4.1 Lin et al. 2020a
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La–O-P complexes after the uptake of  HzPO4
z−3 by LH. 

As Fig. 3d shows, the O 1 s peak of the raw LH was fit-
ted as three overlapping peaks attributed to oxygen bonded 

lanthanum (La–O−), lanthanum-bonded hydroxyl group 
(La-OH), and adsorbed water molecules  (H2O), respectively 
(Liu et al. 2022). As Fig. 3e shows, the O 1 s peak of the 
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 HzPO4
z−3-adsorbed LH was fitted as three overlapping peaks 

ascribed to La–O−, La-OH + La–O-P, and  H2O + P-O–H, 
respectively (Cheng et al. 2022; Min et al. 2019; Qu et al. 
2023; Yuan et al. 2018). The relative area of La-OH for 
the raw LH was lower than that of La-OH + La–O-P for the 
 HzPO4

z−3-adsorbed LH (Fig. 3d and e). This indicates the 
formation of inner-sphere La–O-P complex after the uptake 
of  HzPO4

z−3 by LH.
All the results mentioned above reveal that the ligand 

exchange and inner-sphere lanthanum-phosphate complex 
formation act as a vital role in the uptake of  HzPO4

z−3 from 
aqueous solution by LH at pH 7.

Effect of capping mode on control of P release 
from sediment by LH without SPM deposition

DO, pH, DRP, and DTP of OW

The changes of DO, pH, DRP, and DTP in OW for the 
control, one-time LH capping, and multiple LH capping 
groups without SPM deposition with incubation time are 
given in Fig. 4. The reduction rates of DRP and DTP from 
OW by the LH capping in the absence of SPM deposition 
are also given in Fig. 4. As Fig. 4a shows, in the absence 
of SPM deposition, the concentrations of DO in OW for 
the control, one-time LH capping, and multiple LH capping 
groups were less than 0.6 mg/L, except for that of OW in 
the multiple capping group on the  5th day, meaning that the 
sediments for the control, one-time capping, and multiple 
capping groups without SPM deposition were incubated in 
anoxic state during the period of 10–197 days’ incubation. 
As Fig. 4b shows, the pH values of OW for the control, one-
time LH capping, and multiple LH capping groups without 
SPM deposition were in the ranges of 6.51–7.36, 6.06–7.38, 
and 6.50–8.44, respectively. In the absence of SPM deposi-
tion, although the one-time or multiple LH capping had a 
certain impact on the OW pH in the early stage of applica-
tion, it had an insignificant influence on the OW pH during 
the later period of application (Fig. 4b). As Fig. 4c and e 
show, the concentrations of DRP and DTP in OW for the 
control group under no SPM deposition condition fluctu-
ated between 0.055 and 0.705 mg/L during 5–197 days’ 
incubation period and between 0.092 and 0.710 mg/L dur-
ing 10–186 days’ incubation period, respectively, which 
were higher than the initial DRP and DTP concentrations. 
Furthermore, when the experimental time rose from 10 to 
30 days, from 45 to 50 days and from 120 to 186 days, the 
DRP and DTP concentrations increased. These results dem-
onstrate that the liberation of internal P can take place under 
anoxic conditions. From Fig. 4c and e, it also can be seen 
that the concentration of DTP in OW for the control group 
without SPM deposition was close to that of DRP, suggest-
ing that the P in OW that is released from sediment exists 

in the form of inorganic P. As shown in Fig. 4c and e, in the 
absence of SPM deposition, the concentrations of DRP and 
DTP in OW significantly decreased after the one-time or 
multiple LH capping. The elimination rates of DRP from 
OW by the one-time and multiple LH capping without SPM 
deposition were found to be 77.3–100% and 47.9–100%, 
respectively (Fig. 4d), and those of DTP by the one-time 
and multiple LH capping were 84.9–100% and 78.7–100%, 
respectively (Fig. 4f). These results indicate that the one-
time and multiple LH capping both can effectively block the 
release of internal phosphorus from sediment into OW under 
anoxia conditions in the absence of SPM deposition. From 
Fig. 4c–f, it was also observed that under no SPM deposition 
condition, the restraint efficiency of endogenous phosphorus 
release into OW by the one-time LH capping was higher 
than that by the multiple LH capping during the early period 
of application, but the restraint efficiency of internal phos-
phorus release into OW by the former was equal to or lower 
than that by the latter during the later period of application 
on the whole. This means that under no SPM deposition con-
dition, although the transformation of covering mode from 
one-time covering to multiple covering has an insignificant 
negative effect on the performance of LH to resist the endog-
enous phosphorus release to OW during the later period of 
application, it decreases the interception efficiency of LH in 
the early stage of application.

DGT‑labile P and Fe in OW/sediment profile

It is universally known that although the mechanisms of 
internal phosphorus release are numerous and complex, two 
basic sub-processes are included in the migration process of 
internal phosphorus from sediment to OW (Ding et al. 2015; 
Wang et al. 2023; Yu et al. 2017). One basic sub-process 
is the supply of phosphorus from sediment to pore water 
(PW) (Ding et al. 2015; Yu et al. 2017). The other basic sub-
process is the transport of the soluble phosphorus from PW 
into OW via a molecular diffusion mechanism (Ding et al. 
2015; Yu et al. 2017). The flux of P liberation from sediment 
to OW can be assessed by using the Fick diffusive law (Ding 
et al. 2023). A DRP gradient in PW is critical to the deter-
mination of the phosphorus diffusion flux from sediment to 
OW across the interface between sediment and OW (Chen 
et al. 2021a; Ding et al. 2023). In general, the reductive dis-
solution of Fe(III) (oxy)hydroxides is a predominant mecha-
nism that governs the liberation of iron-bound phosphorus 
into PW under anoxia condition (Chen et al. 2019; Wu et al. 
2021; Yuan et al. 2020).

In order to further evaluate the performance of LH cap-
ping to intercept endogenous phosphorus liberation into OW 
in the absence of SPM deposition and determine the inter-
ception mechanism, the impact of one-time and multiple LH 
capping on the concentrations of  UPDGT and  UFDGT in the 
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profile of sediment and OW without SPM deposition was 
investigated. The obtained results are displayed in Fig. 5. 
As Fig. 5a shows, the concentrations of  UPDGT in OW and 
sediment ranged from 0.189 to 0.326 mg/L and from 0.263 
to 0.505 mg/L, respectively. The average concentrations of 
 UPDGT in OW and sediment were calculated to be 0.234 and 

0.417 mg/L, respectively. These results demonstrate that in 
the absence of SPM deposition, the liberation of internal P 
from sediment to PW occurs under anoxia condition, and 
the P in the PW can be diffused into OW via the molecular 
diffusion mechanism. After the one-time or multiple LH 
capping, the  UPDGT concentration of OW was substantially 
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Fig. 4  Changes in (a) DO, (b) pH, (c) DRP, and (e) DTP of OW in control, one-time capping, and multiple capping groups in the absence of 
SPM deposition; reduction efficiencies of (d) DRP and (f) DTP by one-time and multiple capping in the absence of SPM deposition
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Fig. 5  Distributions of (a)  UPDGT and (c)  UFDGT in the profile of OW 
and sediment in the absence of SPM deposition; (b) reduction rates 
of  UPDGT by one-time and multiple capping in the absence of SPM 

deposition; relationship between  UPDGT and  UFDGT for (d) control, 
(e) one-time capping, and (f) multiple capping groups in the absence 
of SPM deposition
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decreased (Fig. 5a). The elimination efficiencies of  UPDGT 
in OW by the one-time and multiple LH capping were found 
to be 93.9–100% and 77.8–100%, respectively (Fig. 5b), 
which further indicates that the one-time and multiple LH 
capping both can effectively hinder the transport of internal 
phosphorus from sediment into OW during the later period 
of application. The one-time and multiple LH capping also 
can effectively reduce the  UPDGT concentration of sediment 
(Fig. 5a and b). However, the reduction rate of  UPDGT in 
sediment by the one-time and multiple LH capping was 
related to the sediment depth (Fig. 5b). The elimination 
efficiency of  UPDGT in the upper 18 mm sediment by the 
one-time LH covering was very high (92.6–100%), but the 
reduction efficiency tended to decrease until a relatively low 
value was achieved when the depth of sediment varied from 
-20 to -82 mm (the minus sign indicates the depth below the 
interface between OW and sediment) (Fig. 5b). The elimina-
tion efficiency of  UPDGT in the upper 30 mm sediment by the 
multiple LH covering was very high (93.6–99.3%), but the 
reduction efficiency showed decreased trend as the depth of 
sediment varied from -32 to -82 mm (Fig. 5b). These results 
indicate that regardless of whether the capping mode is the 
one-time or multiple capping, LH can inactivate the  UPDGT 
in the upper sediment. As shown in Fig. 5c, the concentra-
tions of  UFDGT in OW ranged from 4.95 to 9.94 mg/L, and 
those in sediment were in the range of 4.46–9.78 mg/L. This 
demonstrates that phosphorus can be released from sediment 
into pore water (PW) through the mechanism of reductive 
dissolution of Fe(III) (oxy)hydroxides. The concentrations 
of  UFDGT in sediment for the one-time capping group ranged 
from 2.93 to 13.4 mg/L, and those for the multiple LH cap-
ping group ranged from 0.497 to 9.14 mg/L (Fig. 5c). In 
addition, for the one-time or multiple LH capping group, 
there was a relatively good relationship between the concen-
trations of  UFDGT and  UPDGT (Fig. 5e and f). These results 
indicate that under the condition of one-time or multiple LH 
capping, phosphorus still can be released from sediment into 
PW via the mechanism of reductive dissolution of Fe(III) 
(oxy)hydroxides. After the one-time and multiple LH cap-
ping, the capping layer can adsorb the DRP in PW via the 
mechanism of inner-sphere lanthanum-phosphate complex 
formation, giving rise to the reduction of the DRP concentra-
tion in the PW. This induces the release of P from  UPDGT to 
make up the decreased DRP concentration of PW. Compared 
to the liberation rate of phosphorus from  UPDGT, the adsorp-
tion rate of DRP onto LH should be larger. This results in 
the very low concentration of  UPDGT in the upper sediment 
and the relatively low concentration of  UPDGT in the lower 
sediment after the one-time and multiple LH capping under 
no SPM deposition condition.

The static and active layers can be applied to character-
ize the stratification features of PW DRP and  UPDGT (Lin 
et al. 2017). The P static layer (SL) has low concentrations 

of PW DRP and  UPDGT, while the concentrations of PW 
DRP and  UPDGT in the P active layer (AL) were higher than 
those in the P SL (Lin et al. 2017). Some previous studies 
found that the formation of P SL with low concentrations 
of DRP and  UPDGT in the upper sediment played a key role 
in the interception of endogenous phosphorus release into 
OW by Phoslock® (Wang et al. 2017), zirconium-modified 
bentonite (Lin et al. 2019a), magnetite-modified activated 
carbon (Lin et al. 2019c), and lanthanum/iron co-modified 
attapulgite (Qu et al. 2023). Therefore, the formation of P 
SL in the upper sediment due to the inactivation of  UPDGT by 
the LH capping layer played a significant role in the restraint 
of endogenous P release into OW by the one-time and multi-
ple LH capping in the absence of SPM deposition. It should 
be noted that the P SL has two main parameters (Lin et al. 
2017; Wang et al. 2017). One is the average concentrations 
of DRP and  UPDGT in the P SL (Lin et al. 2017; Wang et al. 
2017). The other is the thickness of the P SL (Lin et al. 2017; 
Wang et al. 2017). Under the condition of one-time LH cap-
ping, the thickness of the P SL was 18 mm, and the mean 
 UPDGT concentration in the P SL was 0.010 mg/L. Under 
the condition of multiple LH capping, the thickness of the P 
SL was 30 mm, and the mean  UPDGT concentration in the P 
SL was 0.012 mg/L. It is obvious that the thickness of the P 
SL under the condition of multiple LH capping was larger 
than that under the condition of one-time LH capping, which 
means that the transformation of covering mode from the 
single high dose covering to the multiple smaller doses cov-
ering increases the ability for the immobilization of  UPDGT 
in the upper sediment in the later stage of application. This 
suggests that the change of capping mode from the one-time 
capping to the multiple capping conduces to the application 
of LH as a covering material to restrain the liberation of 
internal phosphorus into OW in the absence of SPM deposi-
tion in the long run.

The potential of P upward release from AL to SL (RAL) 
was calculated using Eq. (9) (Lin et al. 2017):

where CAL and CSL represent the average concentrations of 
PW DRP or  UPDGT in the P AL and SL, respectively (mg/L); 
�
AL

 and �
SL

 represent the thickness of the P AL and SL, 
respectively (mm). In the absence of SPM deposition, the 
RAL values under the conditions of one-time and multiple 
LH capping were calculated to be 23.6 and 1.96, respec-
tively. The RAL value under the condition of multiple LH 
capping was much lower than that under the condition of 
one-time LH capping, which demonstrates that the stabiliza-
tion of P in the static layer in the later stage of application 
increases when the capping mode changes from the one-time 
LH capping to the multiple LH capping. This also conduces 

(9)RAL =
(CAL − CSL) × �AL

CSL × �SL
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to the application of LH as an active covering material to 
restrain the endogenous phosphorus liberation into OW in 
the absence of SPM deposition in the long run.

P fractionation of sediment

The potential of endogenous P release has a close asso-
ciation with its fractionation (Yan et al. 2022). LI-P rep-
resents the immediately available P in sediment, and it is 
the loosely bound or exchangeable fraction of P (Ren et al. 
2022; Ribeiro et al. 2008). RR-P indicates the P related to 
iron and manganese, and this form is mobile because it can 
be released under anoxic conditions (Cavalcante et al. 2018). 
OH-SRP indicates the P associated with metal (mainly 
aluminum and iron) oxides that can be exchangeable with 
hydroxyl ion, and it is relatively stable under common pH 
(5–9) and anoxia condition (Rydin 2000; Wang et al. 2013). 
H-P indicates the P related to apatite, calcium, and carbon-
ates; and this form can be released only when the environ-
ment pH is acidic (Cavalcante et al. 2018). The probability 
of R-P release is low (Meis et al. 2012). To better under-
stand how the one-time and multiple LH capping controls 
the endogenous P liberation into OW, the effect of the one-
time and multiple LH capping under no SPM deposition 
condition on the speciation of P in sediment was researched, 
and the obtained result is listed in Fig. 6. In the absence of 
SPM deposition, the amounts of LI-P in the sediments for 
the control, one-time LH capping, and multiple LH capping 
groups were limited (Fig. 6a). Under no SPM deposition 
condition, the one-time LH capping decreased the amounts 
of RR-P, OH-SRP, and R-P in the 0–1 cm sediment layer, 
but increased the quantity of H-P in the 0–1 cm sediment 
layer (Fig. 6b–e). After the one-time LH capping in the 
absence of SPM deposition, the ratios of RR-P, OH-SRP, 
and R-P to  PTotal in the 0–1 cm sediment layer decreased, 
but that of H-P to  PTotal increased (Fig. 6f and g). These 
results mean that under no SPM deposition condition, the 
one-time LH capping can decrease the content of  PMobile in 
the topmost sediment layer via the transformation of RR-P to 
H-P. After the multiple LH capping without SPM deposition, 
the amounts of RR-P and OH-SRP in the 0–1 cm sediment 
layer decreased, but the quantities of H-P and R-P in the 
0–1 cm sediment layer increased (Fig. 6b–e). The multiple 
LH capping in the absence of SPM deposition brought about 
the decreased proportions of RR-P and OH-SRP to  PTotal in 
the 0–1 cm sediment layer but the increased proportions of 
H-P and R-P to  PTotal in the 0–1 cm sediment layer (Fig. 6f 
and h). Therefore, in the absence of SPM deposition, the 
multiple LH capping can reduce the quantity of  PMobile in 
the topmost sediment layer by the way of the transformation 
of RR-P to H-P and R-P. The  PMobile in sediment is regarded 
as the internal phosphorus loading of water bodies (Rydin 
2000; Yin et al. 2022). Thus, the immobilization of  PMobile 

in the topmost sediment layer played a significant role in 
the restraint of endogenous phosphorus liberation into OW 
by the one-time and multiple LH capping in the absence of 
SPM deposition.

Effect of capping mode on control of P release 
from sediment by LH with SPM deposition

DO, pH, DRP, and DTP of OW

The changes of DO, pH, DRP, and DTP in OW for the con-
trol, one-time LH capping, and multiple LH capping groups 
with SPM deposition with the incubation time are displayed 
in Fig. 7. The reduction rates of DRP and DTP in OW by 
the one-time and multiple LH capping with SPM deposi-
tion are also shown in Fig. 7. As depicted in Fig. 7a, the 
DO concentrations of OW in the control and multiple LH 
capping groups with SPM deposition during the whole sedi-
ment incubation period were lower than 0.5 mg/L. For the 
one-time LH capping group with SPM deposition, the DO 
concentration of OW was 1.79 mg/L on day 5, but after 
that, it was below 0.5 mg/L (Fig. 7a). These results indi-
cate that the sediments for the control, one-time LH cap-
ping, and multiple LH capping groups with SPM deposition 
were maintained in anoxic conditions during the period of 
10–197 days’ incubation. As Fig. 7b shows, the pH values 
of OW for the control, one-time LH capping, and multi-
ple LH capping groups with SPM deposition ranged from 
6.58–7.59, 6.44–7.34, and 6.86–8.00, respectively, during 
the period of 5–197 days’ incubation. As shown in Fig. 7c, 
under the condition of SPM deposition, with the increase in 
the incubation time from 5 to 20 days, from 25 to 30 days, 
from 60 to 66 days, and from 77 to 197 days, the DRP con-
centration of OW in the control group increased. This sug-
gests that the liberation of internal P from sediment into 
OW under anoxia and SPM deposition condition occurs. As 
Fig. 7e shows, the concentrations of DTP in OW for the 
control group with SPM deposition were between 0.041 and 
0.300 mg/L, which were higher than the initial DTP concen-
tration of OW. In addition, when the incubation time rose 
from 60 to 66 days and from 100 to 186 days, the DTP con-
centration of OW for the control group with SPM deposition 
obviously increased (Fig. 7e). These results further suggest 
that during the sediment incubation period, the release of 
internal phosphorus into OW in anoxia environments under 
SPM deposition condition takes place. During the period 
of 5–50, 66–71, and 120–197 days’ incubation, the one-
time LH capping brought about the decrease in the con-
centration of DRP in OW under SPM deposition condition 
(Fig. 7c), and the elimination efficiencies were 5.88–84.1%, 
7.14–35.7%, and 18.8–79.7%, respectively (Fig. 7d). During 
the period of 5–50, 60, 71, and 120–186 days’ incubation, 
under SPM deposition conditions, the one-time LH capping 
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reduced the concentration of DTP in OW (Fig. 7e), and the 
elimination rates were 29.4–81.3%, 11.8%, 12.0%, and 
21.8–67.2%, respectively (Fig. 7f). These results mean that 
in the presence of SPM deposition, the one-time LH cap-
ping has the capability to inhibit the release of endogenous 

phosphorus into OW during the early and later periods of 
application. Similarly, under SPM deposition conditions, the 
multiple LH capping can restrain the liberation of endoge-
nous P into OW (Fig. 7c–f). However, under SPM deposition 
condition, the efficiency of endogenous phosphorus release 

Fig. 6  Contents of (a) LI-P, (b) 
RR-P, (c) OH-SRP, (d) H-P, 
and (e) R-P in sediments from 
control, one-time capping, and 
multiple capping groups in the 
absence of SPM deposition; 
percentages of each P fraction 
to total P in sediments from (f) 
control, (g) one-time capping, 
and (h) multiple capping groups 
in the absence of SPM deposi-
tion
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into OW by the one-time LH capping was different to that by 
the multiple LH capping. From Fig. 7d and f, it was observed 
that under SPM deposition condition, the elimination rates 
of DRP and DTP in OW by the one-time LH capping in 
the early stage of application were higher than that by the 

multiple LH capping, but the elimination efficiencies of DRP 
and DTP in OW by the former in the later stage of applica-
tion were lower than those by the latter. This demonstrates 
that under SPM deposition condition, although the change 
in the covering mode from the one-time high dose covering 
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Fig. 7  Changes in (a) DO, (b) pH, (c) DRP, and (e) DTP of OW in control, one-time capping, and multiple capping groups under SPM deposi-
tion condition; reduction efficiencies of (d) DRP and (f) DTP by one-time and multiple capping under SPM deposition condition
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to the multiple smaller doses covering reduces the control-
ling ability of endogenous phosphorus liberation into OW 
by LH during the early period of application, it enhances the 
performance of LH to reduce the endogenous phosphorus 
release to OW during the later period of application.

DGT‑labile P and Fe in OW/sediment profile

To further evaluate the effectiveness of one-time and mul-
tiple LH covering to restraint the liberation of internal 
phosphorus into OW in the presence of SPM deposition 
and illustrate the interception mechanism, the impact of 
one-time and multiple LH capping on the concentrations of 
 UPDGT and  UFDGT in the OW/sediment profile was studied. 
The obtained results are given in Fig. 8. As observed from 
Fig. 8a, the concentrations of  LPDGT in OW and sediment for 
the control group with SPM deposition were in the range of 
0.010–0.152 mg/L and 0.091–0.454 mg/L, respectively, with 
mean concentrations of 0.067 and 0.310 mg/L, respectively. 
Moreover, there were certain concentrations of  UFDGT in 
OW and sediment for the control group with SPM deposi-
tion (Fig. 8c), and the concentration of  UFDGT correlates 
to some extent with that of  UPDGT (Fig. 8d). These results 
demonstrate that phosphorus can be released from sediment 
via the mechanism of the reductive dissolution of Fe(III) 
(oxy)hydroxides under anoxic and SPM deposition condi-
tion. Under SPM deposition condition, the concentration of 
 UPDGT in OW at depths of between 2 and 34 mm decreased 
by 2.2–69.7% after the one-time LH capping, and the  UPDGT 
concentration of OW decreased by 64.0–100% after the mul-
tiple LH capping (Fig. 8a and b), demonstrating that the one-
time and multiple LH capping can inhibit the endogenous 
P release into OW in the later stage of application under 
SPM deposition condition. Under SPM deposition condi-
tion, the concentration of  UPDGT in sediment decreased by 
13.2–100% after the one-time LH capping, and it decreased 
by 5.6–98.3% after the multiple LH capping (Fig. 8a and 
b). This suggests that no matter whether the capping mode 
is the one-time capping or the multiple capping, the LH 
capping can inactivate the  UPDGT in sediment. This can be 
explained as follows. After the one-time or multiple LH cap-
ping, under SPM deposition condition, there were certain 
concentrations of  UFDGT in the OW/sediment profile, and 
the concentration of  UFDGT correlated to some extent with 
that of  UPDGT. This indicates that under LH capping and 
SPM deposition condition, phosphorus still can be released 
from sediment into PW due to the reductive dissolution of 
Fe(III) (oxy)hydroxides. However, the LH capping layer can 
adsorb the DRP in PW, which brought about the decreased 
DRP concentration in the PW. After the DRP concentration 
of PW decreased, the  UPDGT in sediment was released to 
compensate the decrease of the DRP concentration due to 
the adsorption of DRP by the LH capping layer. The rate of 

DRP concentration decrease due to the adsorption should 
be larger than the rate of P release from  UPDGT, resulting in 
that the concentration of  UPDGT in sediment under one-time 
or multiple LH capping condition was lower compared to 
that under no LH capping condition. Under the condition of 
no external P input, the P in OW came from sediment. The 
decrease in the  UPDGT concentration of sediment induced 
the decline in the diffusion flux of phosphorus from the sedi-
ment to the overlying water, thereby causing the decreased 
concentration of DRP, DTP, and  UPDGT in the overlying 
water after the one-time or multiple LH capping. Conse-
quently, the inactivation of  UPDGT in sediment by LH was 
extremely important for the inhibition of endogenous phos-
phorus release from sediment to OW by the one-time and 
multiple LH capping under SPM deposition condition. It 
should be noted that under SPM deposition condition, the 
one-time and multiple LH capping resulted in the stratifica-
tion of  UPDGT in the sediment profile, forming the phos-
phorus SL in the upper sediment (between -2 and -28 mm) 
and phosphorus AL in the lower sediment (between -30 and 
-82 mm). Obviously, the formation of phosphorus SL in the 
upper sediment acted as a significant role in the restraint of 
endogenous phosphorus release into OW by the one-time 
and multiple LH capping under SPM deposition condition.

Under SPM deposition condition, the average concentra-
tions of  UPDGT in OW for the one-time and multiple LH cap-
ping groups were computed to be 0.0418 and 0.00535 mg/L, 
respectively. Clearly, under SPM deposition condition, the 
mean  UPDGT concentration of OW after the one-time LH 
capping was higher compared to that after the multiple LH 
capping. This further confirms that under SPM deposition 
condition, the change in the covering mode from the one-
time covering to the multiple covering increases the effi-
ciency of endogenous phosphorus liberation into OW by 
LH in the later period of application. Under SPM deposition 
condition, the  UPDGT concentrations of sediments at depths 
of between -2 and -14 mm for the one-time LH capping 
group were higher than those for the multiple LH capping 
group (Fig. 8a), and the  UPDGT reduction efficiency of the 
one-time LH capping was lower than that of the multiple 
LH capping (Fig. 8b). This indicates that the change in the 
covering mode from the one-time covering to the multiple 
covering increases the immobilization ability of  UPDGT in 
the topmost sediment by the LH covering layer during the 
later period of application. This is conductive to the utiliza-
tion of LH as a capping material to restrain the endogenous 
phosphorus release into OW under SPM deposition condi-
tion in the long run.

P fractionation of sediment

To further illustrate the mechanism that governs the control 
of internal phosphorus liberation into OW by the one-time 



79042 Environmental Science and Pollution Research (2023) 30:79026–79048

1 3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
-90
-80
-70
-60
-50
-40
-30
-20
-10
0

10
20
30
40
50
60

)
m

m(
ht

pe
D

Concentration of UP
DGT

 (mg/L)

 Control (SPM)

 One-time capping (SPM)

 Multiple capping (SPM)

(a)

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

0

10

20

30

40

50

60

70

80

90

100

P
U

f
o

yc
neiciffe

n
oitc

u
de

R
T

G
D

)
%(

Depth (mm)

 One-time capping (SPM)

 Multiple capping (SPM)

(b)

0 1 2 3 4 5 6 7 8 9 10 11

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

)
m

m(
ht

pe
D

Concentration of UF
DGT

 (mg/L)

 Control (SPM)

 One-time capping (SPM)

 Multiple capping (SPM)

(c)

0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48

1

2

3

4

5

6

7

8

y=7.20x+3.07

R2
=0.555

F
U

f
o

n
oitart

nec
n

o
C

D
G

T
)

L/
g

m(

Concentration of UP
DGT

 (mg/L)

(d)

Control (SPM)

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36

0

1

2

3

4

5

6

7

8

9

10

11

y=23.3x+0.734

R2
=0.673

F
U

f
o

n
oitart

nec
n

o
C

D
G

T
)

L/
g

m(

Concentration of UP
DGT

 (mg/L)

(e)

One-time capping (SPM)

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36

0

1

2

3

4

5

6

7

8

9

10

11

y=23.2x+1.30

R2
=0.738

F
U

f
o

n
oitart

nec
n

o
C

D
G

T
)

L/
g

m(

Concentration of UP
DGT

 (mg/L)

(f)

Multiple capping (SPM)

Fig. 8  Distributions of (a)  UPDGT and (c)  UFDGT in the profile of OW 
and sediment in the presence of SPM deposition; (b) reduction rates 
of  UPDGT by one-time and multiple capping under SPM deposition 

condition; relationship between  UPDGT and  UPDGT for (d) control, (e) 
one-time capping, and (f) multiple capping in the presence of SPM 
deposition
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and multiple LH capping, the influence of one-time and 
multiple LH covering on the fractionation of phosphorus in 
sediment in the presence of SPM deposition was researched, 
and the results are displayed in Fig. 9. According to Fig. 9, 
we can make a conclusion that the one-time LH capping can 
reduce the  PMobile in the topmost sediment by the transforma-
tion of RR-P to H-P, and the multiple LH capping can reduce 

the  PMobile in the topmost sediment by the transformation of 
RR-P to H-P and R-P. Since the risk of phosphorus release 
from  PMobile is high (Rydin 2000; Yin et al. 2022), the inac-
tivation of  PMobile in the topmost sediment by LH acted as a 
vital role in the restraint of endogenous phosphorus libera-
tion to OW by the one-time and multiple LH capping under 
SPM deposition condition.

Fig. 9  Contents of (a) LI-P, (b) 
RR-P, (c) OH-SRP, (d) H-P, 
and (e) R-P in sediments from 
control, one-time capping, and 
multiple capping groups in the 
presence of SPM deposition; 
percentages of each P fraction 
to total P in sediments from (f) 
control, (g) one-time capping, 
and (h) multiple capping groups 
under SPM deposition condition 60-100
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Implication for application of LH to control internal 
P release

This study observed that in the absence of SPM deposition, 
the one-time and multiple LH covering both can effectively 
restrain the migration of endogenous phosphorus into OW 
under anoxia condition. Therefore, LH has great potential to 
be used as a capping material to restrain endogenous phos-
phorus liberation into OW in the absence of SPM deposi-
tion. It should be noted that SPM is ubiquitous in aquatic 
environments (Ho et al. 2022; Walch et al. 2022). This work 
showed that in the presence of SPM deposition, the one-time 
or multiple LH capping still had the capability to mitigate 
the risk of endogenous phosphorus release into OW under 
anoxia condition. Furthermore, under SPM deposition con-
dition, although the change of the covering mode from the 
one-time high dose covering to the multiple smaller doses 
covering led to the decline in the efficiency of LH to resist 
the release of internal phosphorus during the early period 
of application, it increased the performance of LH to sup-
press phosphorus release from sediment into OW during the 
later period of application. Therefore, the multiple LH cap-
ping has high potential to be used as a sediment remediation 
strategy for reducing the risk of internal phosphorus release 
from sediment in surface water bodies where SPM deposi-
tion often takes places in the long run.

Conclusions

(1) In the absence of SPM deposition, the one-time and 
multiple LH capping can effectively restrain the inter-
nal phosphorus release to OW under anoxia conditions, 
and the immobilization of  UPDGT and  PMobile in the top-
most sediment acted a significant role in the restraint of 
internal phosphorus release into OW by the LH capping

(2) In the absence of SPM deposition, although the change 
in the covering mode from the one-time high dose cov-
ering to the multiple smaller doses covering brought 
about a certain negative influence on the performance 
of LH to intercept the release of internal phosphorus 
from sediment into OW during the early period of 
application, it increased the ability of LH to inactivate 
 UPDGT in sediment during the later period of applica-
tion

(3) Under SPM deposition condition, the one-time and 
multiple LH capping had the capability to mitigate the 
risk of phosphorus release from sediment into OW dur-
ing anoxia, and the inactivation of  UPDGT and  PMobile in 
the topmost sediment acted as a vital role in the mitiga-
tion in the risk of endogenous phosphorus liberation 
into OW by the LH capping

(4) Under SPM deposition condition, the change of the cov-
ering mode from the one-time covering to the multiple 
covering reduced the efficiency of endogenous P libera-
tion into OW by LH under the circumstance of anoxia 
during the early period of application, it increased the 
controlling efficiency of LH capping during the later 
period of application

(5) The multiple LH capping is a promising approach for 
reducing the internal phosphorus release from sedi-
ments in surface water bodies where SPM deposition 
often occurs in the long run.
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