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Abstract
The link between mixed heavy metals (mercury, lead, and cadmium), prediabetes, and type 2 diabetes mellitus (T2DM), 
especially molecular mechanisms, is poorly understood. Thus, we aimed to identify the association between mixed heavy 
metals and T2DM and its components using a data set from the Korean National Health and Nutrition Examination Survey. 
We further analyzed the main molecular mechanisms implicated in T2DM development induced by mixed heavy metals 
using in-silico analysis. Our findings observed that serum mercury was associated with prediabetes, elevated glucose, and 
ln2-transformed glucose when using different statistical methods. "AGE-RAGE signaling pathway in diabetic complica-
tions", "non-alcoholic fatty liver disease", "metabolic Syndrome X", and three miRNAs (hsa-miR-98-5p, hsa-let-7a-5p, and 
hsa-miR-34a-5p) were listed as the most important molecular mechanisms related to T2DM development caused by mixed 
heavy metals. These miRNA sponge structures were created and examined, and they may be beneficial in the treatment of 
T2DM. The predicted cutoff values for three heavy metal levels linked to T2DM and its components were specifically iden-
tified. Our results imply that chronic exposure to heavy metals, particularly mercury, may contribute to the development of 
T2DM. To understand the changes in the pathophysiology of T2DM brought on by a combination of heavy metals, more 
research is required.
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Introduction

Diabetes is a chronic metabolic condition characterized 
by increased blood glucose levels that cause catastrophic 
damage to various organs such as the cardiovascular 
system, kidneys, eyes, and nerves over time. Diabetes 
affects approximately 422 million people worldwide, the 
vast majority of whom live in low- and middle-income 
countries, and is responsible for 1.5 million deaths each 
year (WHO 2021). Therefore, it is important that risk 
factors and diabetes be controlled to improve quality of 
life and minimize the societal disease burden.

Genetics, ethnicity, age, acanthosis nigricans, over-
weight, obesity, prediabetes, dyslipidemia, physical 
inactivity, depression, and gestational diabetes have been 
identified as the risk factors contributing to the develop-
ment of diabetes. Many of the causes of diabetes, such 
as being overweight, being obese, and being physical 
inactive, can be prevented and reversed. Nevertheless, 
both the incidence and prevalence of diabetes have 
been gradually increasing, especially type 2 diabetes 
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(T2DM), over the last few decades. This condition can 
be explained for a variety of reasons. First, as worldwide 
diets have altered over the previous decades, consump-
tion of energy-dense foods high in fat and free sugars has 
surged (Duc et al. 2021b; Duc et al. 2021c; Nguyen and 
Kim 2021; Nguyen et al. 2021a; Nguyen 2022a). Second, 
the percentage of the aging population is increasing in 
parallel with the prevalence of non-communicable dis-
eases (Organization 2021). Third, the changing nature 
of various types of jobs, the increasing availability of 
transportation, and increased urbanization have all con-
tributed to a reduction in physical exercise (WHO 2021). 
Last but not least, as global urbanization and industriali-
zation have accelerated, heavy metal exposure has surged 
(Duc et al. 2021a; Nguyen and Kim 2021; Nguyen et al. 
2021a; Nguyen et al. 2021d).

Heavy metals play a vital role in the pathogenesis of 
obesity, metabolic syndrome, and diabetes (Tinkov et al. 
2017a, 2017b; Duc et al. 2021b; Nguyen et al. 2021a; 
Nguyen et al. 2021c; Nguyen et al. 2021d). Heavy met-
als (such as cadmium, lead, and mercury) are chronic 
environmental pollutants; thus, humans are directly 
exposed to them through eating, drinking, and breathing 
(Duc et al. 2021a; Nguyen et al. 2021a; Nguyen et al. 
2021c; Nguyen et al. 2021d). Therefore, it is unavoid-
able in reality that prevalent environmental pollutants 
can be exposed at the same time. However, most previous 
research concentrated on the effects of a single heavy 
metal on the etiology of diabetes (Asif 2017; Tinkov 
et al. 2017a, 2017b; Ji et al. 2021a, 2021b). Single met-
als should correspond to mixed heavy metals, and diverse 
statistical approaches are necessary when studying chem-
ical exposure in recent years (Keil Alexander et al. n.d.; 
Bobb 2015).

The link between heavy metals and diabetes is still con-
troversial. Several studies reported a positive association 
between heavy metals and diabetes, but others found a 
negative association or no association between heavy met-
als and diabetes (Moon 2013; Rotter et al. 2015; Wu et al. 
2017; Wang et al. 2018; Ji et al. 2021a, 2021b). Though 
numerous researchers have attempted to evaluate the link 
between heavy metals and diabetes, little is known about 
the molecular mechanisms related to diabetes induced by 
heavy metals. Therefore, the environmental predisposing 
factors and molecular mechanisms for diabetes should be 
documented to help in the prevention and early control of 
the disease. The present study aimed to (1) identify the 
relationship between a mixture of serum heavy metals, 
including cadmium, lead, and mercury, and T2DM and its 
components in Korean individuals aged ≥18 years and (2) 
determine the possible molecular mechanisms of mixed 
heavy metal-induced T2DM.

Material and Methods

Study participants

A data set from the Korean National Health and Nutrition 
Examination Survey (KNHANES), from 2009-2013 to 
2016-2017, was used to examine the association between 
a mixture of heavy metals and T2DM (Duc et al. 2021b; 
Welfare 2021). The KNHANES surveys, which are a 
national surveillance system, used a multi-stage, strati-
fied cluster-sampling method that considered the geo-
graphic region, the level of urbanization, the stage of 
economic growth, and the distribution of age and gender 
conducted by the Korean Ministry of Health and Welfare 
and the Korea Centers for Disease Control and Preven-
tion (KCDC). These surveys, which are nationally rep-
resentative cross-sectional studies, recruit approximately 
10,000 participants each year. These surveys include 
three sections: a health examination, a health interview, 
and a nutrition survey, which were used to obtain infor-
mation on health-related behaviors, biochemical and 
clinical characteristics for dietary intakes and common 
diseases, socioeconomic status, quality of life, health-
care utilization, and anthropometric measures. These 
surveys were conducted at a mobile evaluation center or 
participants’ homes, by trained workers, including health 
interviewers, doctors, and medical technicians (Kweon 
et al. 2014). In total, 60,362 individuals participated in 
these surveys from 2009 to 2017. We removed 13,281 
participants less than 18 years old and 41,477 without 
data, including serum heavy metals (28,783), diabetes 
(3,474), glycated hemoglobin (HbA1c, 3652), energy 
intake (893), body mass index (BMI, 17), family history 
of diabetes (135), and urine cotinine (4,820). Finally, a 
total of 5,304 participants were eligible for data analysis 
(Fig. S1) (Nguyen et al. 2021a).

Serum heavy metal measurement

Analyses of mercury, lead, and cadmium have been pre-
viously reported (Nguyen, 2021; Nguyen et al, 2021b, 
e). Briefly, after an eight-hour fast, blood samples were 
evaluated in accordance with protocol during a medical 
checkup. Blood samples were rapidly prepared, refrig-
erated, and sent to the main testing center in cold stor-
age (NeoDin Medical Institute, Seoul, South Korea). All 
samples underwent 24-hour analyses. Graphite furnace 
atomic absorption spectrometry (model AAnalyst 600; 
Perkin Elmer, Turku, Finland) was used to quantify serum 
lead and cadmium levels. A direct mercury analyzer (type 
DMA-80 Analyzer; Bergamo, Italy) and gold amalgam 
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(Korea Centers for Disease Control and Prevention) were 
used to measure the serum total mercury levels. Commer-
cial standards (Lyphochek Whole Blood Metals, Bio-Rad, 
CA, USA) were used as reference materials for internal 
quality assurance and control. The limits of detection for 
these heavy metals were 0.223 μg/dL for lead, 0.05 μg/L 
for mercury, and 0.087 μg/L for cadmium.

Covariates

Sociodemographic information (such as cotinine levels, age 
group, etc.,) as well as detailed information on laboratory 
data were available elsewhere (Duc et al. 2021b; Duc et al. 
2021c; Yun et al. 2021). Potential covariates in the present 
study were applied based on the previous study (Duc et al. 
2021a). Continuous variables were energy consumption 
(kcal), BMI (kg/m2), age (years), and ln2-transformed coti-
nine levels. Other covariates included: family history of dia-
betes (yes, no), smoking (non/ex-smoker, current smoker), 
educational level (≤ middle school, high school, ≥ college), 
physical activity (yes, no), monthly household incomes (< 
2,000, ≥ 2,000 and < 4,000, ≥ 4,000 and < 6,000, ≥ 6,000), 
sex (males, females).

Outcomes

The HbA1c levels (%) were determined using high per-
formance liquid chromatography-723G7 (Tosoh, Tokyo, 
Japan). A Hitachi automatic analyzer 7600 was used to 
measure fasting glucose levels (mg/dL) (Hitachi, Tokyo, 
Japan). The intra- and inter-assay coefficients of variation 
for HbA1c were 3.12% and 2.80%, respectively, and 2.93% 
and 2.41 percent for fasting glucose levels (Nguyen et al. 
2021d). T2DM, elevated glucose, and elevated HbA1c were 
identified according to the American Diabetes Association 
criteria. Serum HbA1c of ≥6.0% was considered elevated. 
Elevated fasting glucose was defined as a fasting glucose 
level of ≥100 mg/dL or the use of a drug to treat elevated 
fasting glucose. Prediabetes was defined as having a fasting 
glucose ranging from 100-125 mg/dL, or an HbA1c rang-
ing from 5.7 to 6.4% without a previous diabetes diagnosis. 
T2DM was defined as having a HbA1c of ≥ 6.5%, fasting 
plasma glucose of ≥126 mg/dl, or being on anti-diabetic 
medication (Association 2021).

Statistical analysis

The statistical analysis was performed by using STATA (ver-
sion 16.0; StataCorp, Texas, USA) and R (version 4.1.0) 
(Nguyen et al. 2021c; Nguyen 2022a). Heavy metal levels 
were ln2 transformed in this investigation because the range 
of heavy metals was right-skewed (Nguyen et al. 2021c; 
Nguyen 2022b).

Logistic and linear regression approaches

First, we used multivariate logistic regression to compare the 
higher quartiles to the lowest quartile of studied heavy met-
als to examine the link between each heavy metal and T2DM 
and its components (Duc et al. 2021b). Second, we looked at 
multivariate linear regression using the ln2-transformed levels 
of each heavy metal and the ln2-transformed glucose, and ln2-
HbA1c as continuous outcome variables. Third, we further 
analyzed how these heavy metals interacted with T2DM and 
its components. Fourth, we analyzed threshold regression (Duc 
Nguyen et al. 2022b).

Secondary analysis approaches

The three most popular novel methodologies used to assess 
the effects of a chemical combination are well known: 
Bayesian kernel machine regression (BKMR), quantile 
g-computation (qgcomp), and weighted quantile sum 
(WQS) regression (Bobb et al. 2015; Renzetti et al. 2016; 
Keil et al. 2020). However, each approach has a unique set 
of drawbacks (Duc Nguyen et al. 2022b; Nguyen 2022c; 
Nguyen 2022d). Thus, we evaluated the impact of mixed 
heavy metals on diabetes and its components using these 
approaches to ensure the results are reliable (Nguyen 
2022c; Nguyen 2022e).

Weighted quantile sum (WQS) regression 
model

This approach has previously been reported (Duc et al. 2021a; 
Nguyen et al. 2021c). In summary, as part of the strategy, the 
study population was randomly split into a training dataset 
(40 percent, n = 2,212) and a validation dataset (60 percent, n 
= 3,182). Bootstrapping was employed to determine empiri-
cal weights for each heavy metal in the mixture using the 
training dataset. In this study, heavy metals with estimated 
weights greater than 0.333 (1/3) were found to have a signifi-
cant impact on the WQS score (Duc et al. 2021b). Because 
the WQS technique predicts that all mixture components will 
act in the same directionality on T2DM and its components, 
we developed and examined both a positive and a negative 
WQS score. gWQS, a R package, was used to do the analysis 
(Nguyen 2022d).

Quantile G‑Computation (qgcomp)

The purpose and process of this technique have been 
described elsewhere (Duc et  al. 2021a; Nguyen et  al. 
2021c). In brief, the gqcomp.noboot function, which sep-
arates all heavy metals into quintiles, gives a positive or 
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negative weight to each heavy metal, and fits a linear model 
for continuous outcomes using Bayesian variable penali-
zation, was used to assess exposure effects. In the current 
study, heavy metals with an estimated weight greater than 
0.05 were determined to have a significant impact on the 
gqcomp score. gqcomp.boot was also used to assess the lin-
earity of the overall exposure effect. To represent the joint 
intervention levels of heavy metal exposure to T2DM and 
its components, the plot was created using g-computation 
and bootstrap variance with B up to 200. The analysis was 
carried out using the qgcomp package.

Bayesian kernel machine regression (BKMR) 
model

This approach's aim and process have been discussed else-
where (Duc et al. 2021b; Nguyen et al. 2021c). In this study, 
a Gaussian kernel function was applied with a component-
wise variable technique to set a Gaussian kernel function. 
After setting the final model with the Markov Chain Monte 
Carlo sampler for 10,000 iterations, the posterior inclusion 
probabilities (PIPs) for each heavy metal were measured, 
and estimations of the exposure-outcome function were 
established (Duc et al. 2021a). The analysis was carried out 
using the R package bkmr (Nguyen 2022e).

In silico analysis for mixed heavy metals 
and T2DM

The purpose of this method and its methodology have been 
described elsewhere (Nguyen 2022f, 2022g, 2022h). The 
link between T2DM and mixed heavy metals was deter-
mined by using data from the Comparative Toxicogenom-
ics Database (CTD, (http:// CTD. mdibl. org) (Duc Nguyen 
et al. 2022a; Nguyen 2022h, 2022i). The data downloaded 
on July 21, 2022, was used for the analysis reported in this 
study. Then, it was determined which genes contributed to 
the development of T2DM and heavy metal toxicity. We 
developed a network of overlapping genes activated by 
the examined heavy metals as well as other relevant genes 
associated with T2DM using GeneMANIA (http:// geneM 
ANIA. org/ plug- in/) (Nguyen 2022c). The ToppGeneSuite 
portal (https:// toppg ene. cchmc. org) and its ToppFun func-
tion (https:// toppg ene. cchmc. org/ enric hment. jsp) were used 
to connect T2DM-related molecular mechanisms (e.g., 
diseases, biological processes, and signaling pathways) to 
heavy metal mixture-induced genes. miRNA-target interac-
tion networks and miRNA sponge structure were constructed 
and analyzed using MIENTURNET (http:// userv er. bio. uniro 
ma1. it/ apps/ mient urnet/), and miRNAsong (http:// www. 

med. muni. cz/ histo logy/ miRNA song), respectively (Licursi 
et al. 2019; Duc Nguyen et al. 2022a; Nguyen 2022i).

Results

Study participant characteristics

This study comprised 912 adult individuals with T2DM, 
2,134 individuals with prediabetes, 1950 individuals with 
elevated glucose, and 1,222 individuals with elevated 
HbA1c. Table 1 shows demographic information stratified 
by the presence or absence of T2DM, elevated glucose, and 
elevated HbA1c. Participants with T2DM, elevated glucose, 
and elevated HbA1c were more likely to be older, married, 
live in rural areas, be unemployed, be less educated, come 
from low-income families, usually drink, and have a fam-
ily history of diabetes and dyslipidemia. Also, compared to 
their counterparts, they had significantly higher body mass 
index, waist circumference, triglycerides, high-sensitivity 
C-reaction protein, systolic and diastolic blood pressure, 
aspartate aminotransferase, and alanine aminotransferase.

Characteristics of heavy metal exposure

Table 2 shows the mean and geometric mean levels stratified 
by the presence or absence of T2DM, prediabetes, elevated 
glucose, and elevated HbA1c of three heavy metals. Serum 
levels of the studied heavy metals were more likely to 
be higher in subjects with T2DM, prediabetes, elevated 
glucose, and elevated HbA1c compared with those that did 
not.

The Pearson correlation coefficients (r) between serum 
heavy metals and cardiometabolic risk variables are shown 
in Fig. 1 (P value<0.001, r ranged from -0.36 to 0.85). ln2-
transformed fasting glucose and ln2-transformed HbA1c 
(r= 0.80), body mass index and waist circumference (r= 
0.85), and diastolic blood pressure and systolic blood 
pressure (r= 0.63) all had a strong correlation. The rest 
of the relationships were weak to moderate. For instance, 
the link between ln2-transformed serum lead and cadmium 
(r=0.32) and ln2-transformed serum mercury and cadmium 
(r =0.14).

Findings from multivariate logistic 
and linear regression models

Serum cadmium showed a significant trend (P for trend 
<0.001) with prediabetes, ln2-transformed glucose, and 
ln2-transformed HbA1c) in the upper two quartiles. 

http://ctd.mdibl.org
http://genemania.org/plug-in/
http://genemania.org/plug-in/
https://toppgene.cchmc.org
https://toppgene.cchmc.org/enrichment.jsp
http://userver.bio.uniroma1.it/apps/mienturnet/
http://userver.bio.uniroma1.it/apps/mienturnet/
http://www.med.muni.cz/histology/miRNAsong
http://www.med.muni.cz/histology/miRNAsong
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Table 2.  Distribution of heavy metal exposure in type 2 diabetes and its components (n = 5,304), KNHANES, Korean, 2009–2017.

*P value using Wilcoxon rank-sum test; GM: geometric mean 95% confidence intervals; SD: standard deviation; elevated HbA1c (≥6.0%); ele-
vated glucose (≥ 100mg/dL).

Variables Indicators Serum cadmium (μg/L) p-value* Serum lead (μg/dL) p-value* Serum mercury (μg/L) p-value*

Study population (n=5,304) GM 95%CI 0.96 (0.94-0.97) -- 1.86 (1.84-1.88) -- 3.34 (3.28-3.40) --
Mean (SD) 1.13 (0.66) 2.06 (1.05) 4.12 (3.22)

T2DM (n=912) GM 95%CI 1.11 (1.08-1.15) 2.14 (2.08-2.20) 3.64 (3.48-3.81)
Mean (SD) 1.27 (0.68) <0.001 2.36 (1.27) <0.001 4.62 (3.66) <0.001

Without T2DM (n=4,392) GM 95%CI 0.93 (0.91-0.94) 1.80 (1.70-1.83) 3.28 (3.22-3.34)
Mean (SD) 1.10 (0.65) 1.99 (0.99) 4.02 (3.11)

Prediabetes (n=2,134) GM 95%CI 1.09 (1.06-1.11) 2.01 (1.97-2.04) 3.59 (3.50-3.69)
Mean (SD) 1.24 (0.66) <0.001 2.20 (1.10) <0.001 4.46 (3.62) <0.001

Without T2DM (n=3,170) GM 95%CI 0.88 (0.86-0.90) 1.76 (1.74-1.79) 3.18 (3.11-3.25)
Mean (SD) 1.05 (0.65) 1.96 (1.01) 3.89 (2.90)

Elevated glucose (n=1,950) GM 95%CI 1.06 (1.04-1.09) 2.06 (2.02-2.10) 3.77 (3.66-3.88)
Mean (SD) 1.22 (0.66) <0.001 2.28 (1.21) <0.001 4.72 (3.76) <0.001

Non-elevated glucose 
(n=3,354)

GM 95%CI 0.90 (0.88-0.92) 1.75 (1.72-1.78) 3.11 (3.05-3.18)
Mean (SD) 1.08 (0.65) 1.93 (0.92) 3.77 (2.80)

Elevated HbA1c (n=1,222) GM 95%CI 1.13 (1.10-1.17) 2.09 (2.04-2.14) 3.72 (3.58-3.86)
Mean (SD) 1.29 (0.66) <0.001 2.31 (1.21) <0.001 4.65 (3.64) <0.001

Non-elevated HbA1c 
(n=4,082)

GM 95%CI 0.91 (0.89-0.93) 1.79 (1.77-1.82) 3.23 (3.17-3.30)
Mean (SD) 1.08 (0.65) 1.98 (0.99) 3.96 (3.07)

Fig. 1.  Pairwise Pearson correlations among cardiometabolic risk 
factors and ln2-transformed levels of heavy metals (n = 5,304), 
KNHANES, Korean, 2009–2017. BMI: body mass index, WC: waist 
circumference, DBP: diastolic blood pressure, SBP: systolic blood 

pressure, EN: energy, HDL-C: High-density lipoprotein cholesterol, 
ln2Glu: ln2-transformed glucose, ln2COT: ln2-transformed cotinine; 
Chol: cholesterol.
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There were significant links between serum mercury, 
prediabetes, elevated HbA1c, elevated glucose, and 
ln2-transformed glucose, with a significant trend (P 
for trend <0.001). Serum lead, on the other hand, was 
linked to prediabetes and ln2-transformed HbA1c in the 
fourth quartiles (P for trend <0.001).. Next, we analyzed 
the relationship between heavy metals and T2DM and 
its components when the studied heavy metals were 
considered continuous variables. Serum cadmium was 
linked to T2DM, elevated glucose, prediabetes, ln2-
transformed glucose, and ln2-HbA1c. Prediabetes, 
elevated glucose, HbA1c, and ln2-glucose were found 
to be associated with serum mercury. We further 
investigated how heavy metals interact with T2DM and 
its components. After adjusting for potential variables, 
we found an interaction between serum lead and mercury 
levels and elevated glucose levels, as well as between 
mixed three heavy metals and prediabetes and elevated 
glucose levels (Tables S1A and 1B).

Findings from the WQS models

The WQS indices were found to be associated with 
prediabetes, elevated glucose, and ln2-transformed glucose 
(Table S2 and Fig. 2A-F). In fully adjusted models, the 
WQS indexes were found to be associated with prediabetes 
(OR: 1.92, 95%CI: 1.22–3.01), elevated glucose (OR: 1.86, 
95%CI: 1.14–3.02), and ln2-transformed glucose (OR: 1.03, 
95%CI: 1.02–1.05). In almost all models, serum mercury had 
the highest weight. The serum cadmium was then given a 
medium weight, while the serum lead was given the lightest 
(Table S3).

Findings from the gqcomp models

The gqcomp indices were found to be significantly linked 
with prediabetes. In the fully adjusted models, a quartile 
increase in the gpcomp index was significantly related to 

Fig. 2.  WQS model regression index weights for (A) type 2 diabetes 
(positive weights), (B) prediabetes (positive weights), (C) elevated 
glucose (positive weights), (D) elevated HbA1c (positive weights), 
(E) ln2 glucose (positive weights), and (F) ln2 HbA1c (negative 
weights). Models were adjusted for sex (males, females), BMI (kg/

m2), age (years), energy intake (kcal), family history of diabetes (yes, 
no), physical activity (yes, no), smoking (non/ex-smoker, current 
smoker), ln2 cotinine (mg/dL), educational level (≤ middle school, 
high school, ≥ college), monthly household incomes (< 2,000, ≥ 
2,000 and < 4,000, ≥ 4,000 and < 6,000, ≥ 6,000).
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prediabetes (OR = 1.53, 95%CI: 1.25–1.88) (Table S4). The 
predicted weights of heavy metals for each gqcomp index, 
as well as the joint effect of mixed heavy metals on T2DM 
and its components, are shown in Table S5 and Fig. 3A-F. 
In almost all models, serum mercury had the largest positive 
weight, similar to the WQS model. After that, serum cad-
mium observed a moderately negative weight, while serum 
Pb observed the lowest weight.

Findings from the BKMR models

In order to further analyze the effects of combining three 
heavy metals, we applied the BKMR method due to the lin-
earity and interaction limitations of the earlier techniques. In 
all models in the current study, the PIPs of serum mercury 
were shown to be greater than those of other heavy metals 
in all models (Table S6).

Figures 4 A-F show the overall relationships between 
the mixed heavy metals, T2DM, and its components. When 
mixed heavy metals were at or above the 60th percentile 
compared to the 50th percentile, prediabetes, elevated glu-
cose, and ln2-transformed glucose increased considerably, 
demonstrating significant positive associations with pre-
diabetes, elevated glucose, and ln2-transformed glucose, 
respectively. Despite the lack of statistical significance 
between the T2DM, elevated HbA1c, and ln2-transformed 
HbA1c models, there was an increased and decreased incli-
nation, respectively.

On the other hand, we investigated the univariate (inde-
pendently heavy metal) exposure-response functions of 
T2DM and its components after being exposed to heavy 
metal (Fig. S2 A-E). Serum mercury, cadmium, and lead 
revealed growing associations with T2DM and its compo-
nents at the highest levels when these heavy metals were at 
their median levels. Three heavy metals were observed to 
have a positive relationship with prediabetes, elevated glu-
cose, and ln2-transformed glucose, respectively. Further-
more, the investigated heavy metals in this study were found 
to interact (Fig. S3 A-F). Table 3 presents the results of four 
distinct statistical models. In these models, we observed that 
mercury and cadmium had the strongest negative or positive 
associations.

Molecular mechanisms related to mixed 
heavy metals and type 2 diabetes

As shown in Table 4A, cadmium, mercury, and lead altered 
60, 35, and 39 genes that were involved in the pathogenesis 
of T2DM, respectively (Table 4A). Eighteen genes were 
impacted by mixed heavy metals, and this interaction was 

linked to the development of T2DM (Fig. 5A). The most 
prominent interactions between T2DM genes were identi-
fied as “physical interactions” (32.8%), “co-expressions” 
(28.9%), and “predicted by the server” (26.2%) (Fig. 5B). 
"Apoptosis", "AGE-RAGE signaling pathway in diabetic 
complications", "oxidative stress", and "IL-18 signaling 
pathway" were key signaling pathways implicated in com-
bined heavy metals and T2DM. "Oxidative stress" and 
"apoptosis" were found to be the two main biological pro-
cesses that were related to the etiology of T2DM induced by 
mixed heavy metals. The most prevalent condition associ-
ated with combined heavy metals was "diabetes" (Table 4B).

We next assessed the association between single and 
mixed heavy metals in the pathophysiology of T2DM. 
As shown in Fig. S4, cadmium altered two key miRNAs 
(hsa-miR-155-5p and hsa-miR-34a-5p), lead altered three 
key miRNAs (hsa-miR-34a-5p, hsa-miR-155a-5p, and hsa-
miR-21-5p), whereas mercury altered five key miRNAs 
(hsa-miR-34a-5p, hsa-miR-98-5p, hsa-let-7a-5p, has-miR-
9-5p, and hsa-miR-155-5p). "AGE-RAGE pathway”, "non-
alcoholic fatty liver disease”, "gestational diabetes”, and 
“type 2 diabetes mellitus” were listed as the most important 
signaling pathways and related diseases induced by cad-
mium, lead, and mercury (Fig. S5 and Table S7). In terms 
of mixed heavy metals, the key miRNAs associated with 
T2DM and mixed heavy metals were identified as hsa-miR-
98-5p, hsa-let-7a-5p, and hsa-miR-34a-5p (Fig. 5 C-D). 
"AGE-RAGE signaling pathway in diabetic complications" 
and "non-alcoholic fatty liver disease”, "metabolic syndrome 
X", "gestational diabetes”, and “type 2 diabetes mellitus” 
were listed as key signaling pathways associated with T2DM 
and mixed heavy metals (Fig. 5 E-F). The template of the 
miRNA sponges for these miRNAs was then generated and 
analyzed (Fig. 5 G and Table S8) (Barta et al. 2016).

Discussion

Four different statistical models were used in this study to 
explore the impact of heavy metal combinations on T2DM 
and its components in Korean people aged ≥18 years. We 
found that serum mercury was the most powerful predictor 

Fig. 3.  gqcomp model regression index weights and Joint effects 
(95% CI) of the mixture on (A) type 2 diabetes, (B) prediabetes, (C) 
elevated glucose, (D) elevated HbA1c, (E) ln2 glucose, and (F) ln2 
HbA1c. Models were adjusted for sex (males, females), BMI (kg/m2), 
age (years), energy intake (kcal), family history of diabetes (yes, no), 
physical activity (yes, no), smoking (non/ex-smoker, current smoker), 
ln2 cotinine (mg/dL), educational level (≤ middle school, high 
school, ≥ college), monthly household incomes (< 2,000, ≥ 2,000 
and < 4,000, ≥ 4,000 and < 6,000, ≥ 6,000).

◂
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of T2DM and its components (prediabetes, elevated glu-
cose, elevated HbA1c, ln2-transformed glucose, and ln2-
transformed HbA1c) in the generalized linear regression. 
Prediabetes and elevated glucose interacted with all serum 
cadmium, mercury, and lead levels. Furthermore, predia-
betes, elevated glucose, and ln2-transformed glucose were 
demonstrated to be influenced by mixed heavy metals, par-
ticularly serum mercury, in the QWS and gqcomp models 
(only for prediabetes). The BKMR model revealed a posi-
tive relationship between prediabetes, elevated glucose, ln2-
transformed glucose, and serum levels of the heavy metals 
studied. Prediabetes, elevated glucose, and ln2-transformed 
glucose were also found to have a significant relationship 
with overall mixed exposure. Although there was no statisti-
cally significant association between overall mixed exposure 
and T2DM, elevated HbA1c, or ln2-transformed HbA1c, an 
increasing and decreasing tendency were observed, respec-
tively. These findings imply that long-term exposure to 
heavy metals, especially mercury, will induce the develop-
ment of T2DM.

We observed that mercury was the most important heavy 
metal related to the risk of T2DM, prediabetes, elevated 
glucose, and elevated HbA1c. This result can be attributed 
to the consumption of more tainted seafood in Korea, such 
as crabs, fish, and shellfish, as well as the consumption of 
tainted water from defunct mines (Choi et al. 2017; Kim 
et al. 2021; Duc Nguyen et al. 2022b). In the current study, 
we found that a combination of heavy metals, notably serum 
mercury, was not significantly related to the prevalence of 
T2DM in Korean adults, which concurs with the previous 
studies (Moon 2013; Wu et al. 2017). Moon et al. observed 
that there was no significant association between serum 
lead (geometric mean (GM) of 2.47 μg/dL), cadmium (1.16 
μg/L), and mercury (4.42 μg/L) and diabetes in Korean 
adults during 2009-2010 (Moon 2013). A systematic review 
and meta-analysis of 11 cohort and cross-sectional studies 
observed that urine and serum cadmium were not linked 
with an increased risk of T2DM (OR = 1.16; 95% CI = 
0.84-1.62) in the general population (Wu et al. 2017). How-
ever, our findings were inconsistent with previous research 
findings. A study in the US population reported a positive 
association between mixed heavy metals (cadmium (mean 
0.37 μg/L), lead (1.32 μg/dL), and mercury (0.93 μg/L)) and 
the risk of T2DM (Wang et al. 2018). Several cross-sectional 

studies conducted in China observed that blood cadmium 
(mean of 1.70 μg/L) was linked to prediabetes (Nie et al. 
2016; Chang et al. 2021). A cross-sectional study of Tai-
wanese adults observed that blood mercury levels (geometric 
mean of 18.95 ppb (95%CI, 15.66, 22.93)) were linked with 
T2DM risk (Tsai et al. 2019). Participants in these investiga-
tions had lower levels or similar levels of cadmium, lead, and 
mercury exposure than those in the current study. The find-
ings of this study suggest that low levels of cadmium, lead, 
and mercury exposure may not be linked with T2DM devel-
opment. The primary source of exposure, the study's design, 
the age of the participants, the route of exposure, the length 
of time they were exposed, the size of the sample, and the 
location of the study can all be used to explain the significant 
differences between these studies (Nguyen 2022g, 2022h). 
Because T2DM is a chronic disease, detecting heavy metals 
only once may underestimate the true level of exposure and 
increase the risk of T2DM. The diet or drinks consumed 
just before the survey could have an impact on the internal 
heavy metal exposure level. Therefore, a longer assessment 
of exposure, like evaluating the heavy metals at least twice, 
would be more important to assess the link between T2DM 
risk and heavy metals. Having in mind that the cutoff crite-
ria for clinically meaningful exposure levels are necessary, 
we calculated the cutoff values for exposure levels that are 
important for T2DM and its components (Table S9).

Interestingly, we observed that the link between prediabe-
tes and elevated glucose was related to mixed heavy metals. 
According to a meta-analysis review, the risk of diabetes 
rises above 1 μg/L of serum cadmium levels, whereas the 
risk of prediabetes rises until it reaches 2 μg/g creatinine, at 
which point it plateaus (Filippini et al. 2022). A prospective 
cohort of 3,875 American adults aged 20 to 32 years discov-
ered that high mercury exposure in adolescence can increase 
the risk of diabetes later in life. Furthermore, higher mercury 
levels were associated with higher glucose and insulin levels, 
a lower HOMA of the β-cell function index, and a higher 
HOMA-IR (He et al. 2013). In an in vivo study, lead expo-
sure can cause prediabetes in obese rats via fasting hyper-
glycemia and glucose intolerance (Tyrrell et al. 2017). In a 
case-control study of 45 Nigerian individuals, the authors 
reported that participants with poor glycemic control had 
considerably greater cadmium levels than those with good 
glycemic control (Anetor et al. 2016).

We also found that mixed heavy metals were not signifi-
cantly related to HbA1c, which was consistent with a previ-
ous study. A cross-sectional study of Chinese adults aged ≥ 
30 years reported that serum lead (median 5.18 μg/dL), cad-
mium (0.19 μg/L) were not significantly linked with HbA1c 
(Cai et al. 2022). However, another cross-sectional study of 
Taiwanese adults observed a strong positive link between 
serum lead (mean 17 μg/L) and HbA1c in a non-diabetic 
population (Chang et al. 2021). It could be explained that 
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Fig. 3.  (continued)
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Fig. 4.  Cumulative effect (95% CI) of the heavy metal mixture on (A) 
type 2 diabetes, (B) elevated glucose, (C) elevated HbA1c, (D) ln2 
glucose, and (E) ln2 HbA1c, when all the heavy metals at particular 
percentiles were compared to all the chemicals at their 50th percen-
tile. The results were assessed by the BKMR models, adjusted for sex 
(males, females), BMI (kg/m2), age (years), energy intake (kcal), fam-

ily history of diabetes (yes, no), physical activity (yes, no), smoking 
(non/ex-smoker, current smoker), ln2 cotinine (mg/dL), educational 
level (≤ middle school, high school, ≥ college), monthly household 
incomes (< 2,000, ≥ 2,000 and < 4,000, ≥ 4,000 and < 6,000, ≥ 
6,000).
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low levels of heavy metal exposure may not be linked with 
HbA1c.

Chemicals, including heavy metals, from the environment 
are metabolized in the liver and then discharged into the 
intestines through bile (Klaassen 2013; Duc Nguyen et al. 
2022b). Only around 5% of environmental chemicals are 
eliminated in the feces, while 90–95% could be reabsorbed 
through the enterohepatic circulation (Dawson 2018). The 
etiology of T2DM is implicated in a disruption in hepatic 
glucose homeostasis. Furthermore, elevated serum glucose 
levels are caused by impaired liver and kidney functions, as 
well as diminished pancreatic and muscle function. When 
heavy metals enter the human body, they accumulate in the 
liver, kidneys, and pancreas, where they disrupt glucose 
metabolism and its interactions with other metabolic path-
ways, particularly glycolysis, glycogenesis, and gluconeo-
genesis, by changing and affecting the specific activity of 
important enzymes and by damaging the pancreas and adre-
nal glands. Therefore, heavy metals play an important role in 
the pathogenesis of T2DM (Javaid et al. 2021).

There is a potential biological link between heavy metals 
and the development of T2DM. Although the majority of 
cadmium is deposited in the kidney, chronic exposure has 
been linked to cadmium accumulation in the pancreas, par-
ticularly in the beta islets. Cadmium poisoning can impair 
the antioxidant system and energy metabolism, as well as 
cause inflammation and mitochondrial damage in pancre-
atic beta cells (Buha et al. 2020). Furthermore, cadmium 

may activate gluconeogenesis through decreased insulin 
sensitivity by changing glucose transporter expression and 
increasing the activity of gluconeogenic enzymes, resulting 
in decreased glucose uptake (Edwards and Ackerman 2016). 
An elevation in blood glucose and a reduction in insulin lev-
els could be caused by damage to the pancreas (Tinkov et al. 
2017a, 2017b). Although the precise mechanism linking 
mercury to diabetes is uncertain, mercury is a well-known 
oxidative stress-causing toxin. A literature review found 
that mercury may cause T2DM by causing hyperglycemia 
and disrupting pancreatic function through oxidative stress 
on the mitochondria or stimulation of the c-JunN-terminal 
kinase signaling pathway (Schumacher and Abbott 2017). 
An in vivo study revealed that mercury-induced oxidative 
stress produces apoptosis in cells and in the isolated mouse 
pancreas, in addition to pancreatic beta-cell failure (Chen 
et al. 2006b). Another in vivo study observed that mercury 
could induce the activation of phosphoinositide 3-kinase and 
the production of reactive oxygen species, causing inhibition 
of insulin secretion and pancreatic beta-cell dysfunction via 
the Akt signaling pathway (Chen et al. 2006a). On the other 
hand, lead can cause oxidative stress, which is a risk factor 
for T2DM (Fridlyand and Philipson 2006). Lead elevates 
resting intracellular  Ca2+, which could have a direct impact 
on calcineurin function and, as a result, alter calcineurin-
dependent cellular processes like insulin-producing pancre-
atic beta-cells (Soleimanpour et al. 2010). Lead exposure 
can also cause increased gluconeogenesis by lowering the 

Table 3.  A summary of results using the four approaches to evaluate the link between mixed heavy metals and type 2 diabetes and its compo-
nents, (n = 5,304), KNHANES, Korean, 2009–2017.

NS: not significant; PIPs: posterior inclusion probabilities; QWS: weighted quantile sum; qgcomp: quantile g-computation; qgcomp; BKMR: 
Bayesian kernel machine regression. T2DM: type 2 diabetes.

Approaches Indicators T2DM Prediabetes Elevated glucose Elevated HbA1c ln2 glucose ln2 HbA1c

Linear regression 
model

Strong negative 
associations 
(lightest β indi-
cators)

Cadmium -- Cadmium Cadmium Cadmium Cadmium, and lead

Strong positive 
associations 
(highest β indi-
cators)

Mercury Mercury, cad-
mium, and lead

Mercury Mercury Mercury Mercury

QWS model Highest negative 
weights

-- -- NS -- NS

Highest positive 
weights

NS Mercury, cad-
mium, and lead

Mercury, cad-
mium, and lead

NS Mercury NS

Qgcomp model Highest negative 
weights

NS -- NS NS NS NS

Highest positive 
weights

Mercury NS NS NS NS

BKMR model Negative trend 
(highest PIPs)

NS -- Cadmium NS Cadmium NS

Positive trend 
(highest PIPs)

Mercury Mercury NS Mercury NS
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inhibitory effect of Rev-erb-alpha on gluconeogenic gene 
expression (Leff et al. 2018).

As mentioned above, oxidative stress and apoptosis play 
important roles in the etiology of T2DM. According to 
our in-silico analysis, the main pathways that mixed heavy 
metals induce in relation to the development of T2DM are 
oxidative stress and apoptosis. Furthermore, we observed 
the “AGE-RAGE signaling pathway in the diabetic 
complication pathway” was one of the key pathways caused 
by mixed heavy metals linked with T2DM development. 
The AGE/RAGE signaling pathway has been extensively 
researched in a variety of disease conditions, including 
T2DM. It has been known that AGEs may be a crucial 
component in the development of diabetes complications. 
These AGEs can cause an inflammatory response and raise 
oxidative stress in the body through numerous pathways, 
which has a significant impact on the onset and worsening 
of diabetic vascular problems (Rhee and Kim 2018). A 
literature review reported that through activation of TGF-
beta-mediated fibrosis, Nox-1, ERK1/2 pathways, NFkB, 
and decreased SOD-1 expression, the AGE/RAGE signaling 
pathway has been linked to oxidative stress associated 
with diabetes-induced vascular calcification (Kay et al. 
2016). On the other hand, the IL-18 signaling pathway, 
and non-alcoholic fatty liver disease were involved in the 
pathogenesis of T2DM induced by mixed heavy metals. A 
case-control study of Bulgarian adults observed that the 
serum level of IL-18 in T2DM patients was higher than in 
healthy controls (Zaharieva et al. 2018). In an in vivo study, 
systemic IL-18 treatment was found to increase diabetes 
development in young nonobese diabetic mice (Oikawa 
et al. 2003). T2DM risk in patients with nonalcoholic fatty 
liver disease is five times higher than in those without 
(Hazlehurst et al. 2016).

In terms of miRNAs, we observed that hsa-miR-
98-5p, hsa-let-7a-5p, and hsa-miR-34a-5p had the highest 
expression and interactions induced by mixed heavy 
metals and were related to T2DM development. Khan et al. 
indicated that miR-98-5p was significantly downregulated in 
five adult T2DM subjects and that miR-98-5p may stimulate 
apoptosis and inhibit proliferation by targeting PPP1R15B 
in keratinocytes (Khan et al. 2020). An in vivo study found 
the level of miR98 expression in SW480 cells cultured 
under high glucose conditions was considerably lower than 
in frequently cultured colon cancer SW480 cells. Colon 
cancer cell growth and invasion are inhibited by increased 
expression of miR98. By targeting the target gene IGF1R, 
miR98 can prevent colon cancer cells from proliferating 
and invading (Liu et al. 2020). Mononen et al. reported 
that hsa-let-7a-5p level was linked with glycemic status in 
Young Finns Study participants (n = 871) (Mononen et al. 
2019). Let-7a-5p was also found to be downregulated in 
diabetic nephropathy by Wang et al., suggesting that it may 

play a role in diabetic nephropathy pathogenesis through 
modulating high-mobility group AT-hook 2 expression 
and the PI3K-AKT signaling pathway (Wang et al. 2019). 
MiR-34a-5p expression was increased in Zucker diabetic 
fatty rats fed a high-fat diet. In comparison to Zucker lean 
rats, the authors suggested that miR-34a-5p could inhibit 
pancreatic cell proliferation by interacting with the Wnt 
signaling pathway. MiR-34a-5p was also observed to affect 
blood glucose levels via regulating insulin secretion via 
the insulin signaling system (Su et al. 2021). Furthermore, 
silencing miR-34a-5p in hepatocyte HepG2 cells reduced the 
formation of cellular triglycerides caused by high glucose 
+ oleic acid/palmitic acid combination (Lee et al. 2022). 
Having in mind that sponges play an important role in 
the process of miRNA regulation, we designed and tested 
a miRNA sponge structure. These miRNA sponges can 
suppress all seed family members and the entire miRNA 
cluster, making them potentially useful in T2DM therapy 
(Barta et al. 2016; Nguyen 2022e, 2022f).

Limitations

To our knowledge, this is the first large-scale study in 
Korea to investigate the cumulative effects of heavy 
metals on T2DM and its components in participants 
aged 18 and older. Our findings were supported by the 
secondary analyses, which employed three unique mixture 
modeling methodologies. This study, however, has several 
drawbacks. First, the cross-sectional technique cannot 
determine whether heavy metals and T2DM are causally 
related. Second, a single serum sample was used to assess 
heavy metal exposure. Thus, the evaluations may not have 
accurately reflected long-lasting exposure circumstances 
because T2DM is a long-term illness (Nguyen et al. 2021c; 
Duc Nguyen et al. 2022b). Third, this study only focused 
on the mixed effects of three common heavy metals that 
were available in the KNHANES database; other potential 
heavy metals that were also related to TD2M (such as 
arsenic, nickel, chromium, etc.) were not analyzed. Fourth, 
the in silico toxicogenomic assessment used in the present 
study to determine the molecular processes involved in the 
etiology of combined heavy metals and diabetes should 
primarily be viewed as preliminary screening results. 
More work (in vivo or in vitro) is required to confirm our 
findings. The miRNA sponges developed in this study can 
only be useful in some cases; therefore, these findings 
should be seen as a precursor to more comprehensive 
in-vitro and in-vivo laboratory testing (Nguyen 2022g, 
2022h). Fifth, even though the CTD database is different 
from the KNHANES database, the findings from the CTD 
database partly support the link between heavy metal 
exposure and T2DM.
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Conclusions

The combined effect of heavy metals was found to be sub-
stantially associated with prediabetes and elevated glucose 
levels. The most important component related to prediabe-
tes and elevated glucose was found to be serum mercury, 
which indicated positive trends. In silico assessment reveal 
that mixed heavy metals interacted with 18 genes and were 
linked to T2DM. Among T2DM-related genes, physical 
interactions were found to be the most common (32.8 per-
cent). “AGE-RAGE signaling pathway in diabetic complica-
tions”, "non-alcoholic fatty liver disease," apoptosis, and the 
“IL-18 signaling pathway”), "type 2 diabetes”, "metabolic 
Syndrome X", hsa-miR-98-5p, hsa-let-7a-5p, and hsa-miR-
34a-5p have been identified as key molecular mechanisms 
associated with heavy metals and T2DM development. The 
cutoff thresholds for exposure levels associated with T2DM 
and its components, in particular, were described. In sum-
mary, our findings suggest that long-term exposure to heavy 
metals, particularly mercury, may play a role in the progres-
sion of T2DM.
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