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Abstract
Over the past decades, air pollution has turned out to be a major cause of environmental degradation and health effects, 
particularly in developing countries like India. Various measures are taken by scholars and governments to control or mitigate 
air pollution. The air quality prediction model triggers an alarm when the quality of air changes to hazardous or when the 
pollutant concentration surpasses the defined limit. Accurate air quality assessment becomes an indispensable step in many 
urban and industrial areas to monitor and preserve the quality of air. To accomplish this goal, this paper proposes a novel 
Attention Convolutional Bidirectional Gated Recurrent Unit based Dynamic Arithmetic Optimization (ACBiGRU-DAO) 
approach. The Attention Convolutional Bidirectional Gated Recurrent Unit (ACBiGRU) model is determined in which the 
fine-tuning parameters are used to enhance the proposed method by Dynamic Arithmetic Optimization (DAO) algorithm. 
The air quality data of India was acquired from the Kaggle website. From the dataset, the most-influencing features such as 
Air Quality Index (AQI), particulate matter namely  PM2.5 and  PM10, carbon monoxide (CO) concentration, nitrogen dioxide 
 (NO2) concentration, sulfur dioxide  (SO2) concentration, and ozone  (O3) concentration are taken as input data. Initially, 
they are preprocessed through two different pipelines namely imputation of missing values and data transformation. Finally, 
the proposed ACBiGRU-DAO approach predicts air quality and classifies based on their severities into six AQI stages. The 
efficiency of the proposed ACBiGRU-DAO approach is examined using diverse evaluation indicators namely Accuracy, 
Maximum Prediction Error (MPE), Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error 
(RMSE), and Correlation Coefficient (CC). The simulation result inherits that the proposed ACBiGRU-DAO approach achieves 
a greater percentage of accuracy of about 95.34% than other compared methods.

Keywords Air Quality · Prediction · Attention Convolutional Bidirectional Gated Recurrent Unit · Dynamic Arithmetic 
Optimization Algorithm · Accuracy

Introduction

Air pollution is a major problem human beings face every 
day all over the world. The main common factor of air 
pollution is urbanization and industrialization. At present, 

this process is continuing and this is growing globally. The 
World Health Organization expresses that 9/10 of the people 
are undergoing this air pollution.  PM2,5,  PM10, CO,   O3, 
and  SO2 are the frequent air pollutants that cause haze, soil 
acidification, and fog. Air pollution can lead to various health 
issues such as heart attacks and lung diseases. To enhance 
the accuracy of predictions in different scenarios, Ma et al. 
(2019) proposed integrating transfer learning techniques and 
a Bi-directional Long Short-Term Memory (BiLSTM) neural 
network as a potential solution to overcome these drawbacks. 
The expansion of industrialization and urbanization has 
resulted in the emergence of air pollution, leading to health 
complications as noted by Bekkar et al. (2021). Consequently, 
the well-being of developed nations has been adversely 
affected by the burden of pollution, as highlighted by Liu 
et al. (2021). The association of morbidity and mortality 
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with a mass of pollutants in the air and the estimation of air 
quality is done earlier (Tiwari et al. 2021). A dimensionless 
indicator, Air Quality Index (AQI), numerically expresses 
the consequences and remarks of the air quality. AQI grows 
the air quality management and measures the sulfur dioxide 
 (SO2), nitrogen dioxide  (NO2), airborne particles  (PM2.5, 
 PM10), and ground-level ozone  (O3) for the welfare of 
human and public health. Adaptation of bidirectional LSTM 
(Bi-LSTM) has forward and backward data for the good 
performance of RNN and regression of  PM2.5 prediction. 
The sequence model of time series air quality helps in 
analyzing the exploration of air quality forecasting by the 
BI-LSTM model (Zhang et al. 2020). Long and short-term 
is a powerful tool that helps in predicting air pollution 
predictions and power grid operations (Dairi et al. 2020). 
The photochemical process creates tropospheric ozone O3 
pollutants that influenced structural materials, human health, 
and plants. This O3 pollutant shows negative consequences 
in industries and even in air managers (Guo et al. 2023a).

To measure air quality, it is necessary to gather time 
series data in a specific order, and often O3 is included as a 
parameter in this process, as noted by Freeman et al. (2018). 
Poor environmental air quality has detrimental effects on 
human health. Thus, taking steps to prohibit environmental 
air pollution is crucial for the continuous development of a 
healthy nation. Air quality modeling and air quality preven-
tion are substantial steps for preventing the quality of air. 
 PM10 is the most dangerous pollutant which affects chil-
dren and aged ones (Samal et al. 2020). Many air pollution 
components affect  PM2.5, and the information on air quality 
accumulated in the experiment contains  PM10,  SO2,  NOx, 
 PM2.5,  NO2, CO,  O3, and NO. In this LSTM is employed for 
training the machine which develops the gradient explosion 
and gradient disappearance experienced by RNN. The fore-
casting result is combined with a warning system when the 
forecasting accuracy  PM2.5 develops considerably. Kristiani 
et al. (2022) suggest that among various methods, LSTM is 
the most suitable model for managing time series datasets. 
On the other hand, CNN has distinct advantages in feature 
capture. Also, the authors propose utilizing LSTM deep 
learning methods to implement comparison and optimi-
zation methods in machine learning. This paper develops 
a novel prediction model to predict the quality of air very 
accurately. The key contributions of this paper are described 
as follows:

• A novel air quality prediction model, Attention Convolutional 
Bidirectional Gated Recurrent Unit based Dynamic 
Arithmetic Optimization (ACBiGRU-DAO), is proposed 
to accurately predict the short-term effect of air quality in 
one health and classify the health risk into different types 
such as moderate, risky for sensitive people, unhealthy, very 
unhealthy, and hazardous.

• The elimination of irrelevant features and misclassifi-
cation issues is overcome by the Attention Convolution 
Bidirectional Gated Recurrent Unit (ACBiGRU) method 
while performing complex tasks.

• The Dynamic Arithmetic Optimization (DAO) approach is 
integrated with ACBiGRU to enhance the prediction model 
and also tune the hyperparameters of the architecture to 
minimize the error rate for severity analysis.

• The air quality data obtained from the Kaggle dataset is 
preprocessed through the imputation of missing values 
using the adaptive sliding window technique and data 
transformation pipeline.

The section left in this article is arranged as follows: various 
literature works based on AQI are reviewed in the “Literature 
Survey” section. The background techniques are elaborated on 
in the “Background” section. The proposed methodology for 
predicting the Air quality index is presented in the “Proposed 
Methodology” section. The experimental results and analysis 
are discussed in the “Experimental Results and Analysis” sec-
tion. Finally, the conclusion of the article and its future direc-
tions are discussed in the “Conclusion” section.

Literature Survey

Benhaddi and Ouarzazi (2021) illustrated a multivariate time 
series (MTS) forecasting using WaveNet-temporal-convolu-
tional neural network (WTCNN) method. The WTCNN model 
was compared with long short-term memory (LSTM) and gated 
recurrent unit (GRU) for identifying its memory consump-
tion, flexibility, stability capabilities, flow control, structure, 
and robustness. For experimental purposes, Marrakesh city of 
Morocco was selected for urban air quality prediction by using 
multivariate time series datasets and six types of real-world 
multi-sensors. The WTCNN method outperformed compared to 
other state-of-art methods. But multi-step time series forecasting 
is complex compared to single-step forecasting. Xu and Yoneda 
(2019) illustrated a long short-term memory auto-encoder mul-
titask learning (LSTM-AML) model for predicting  PM2.5 time 
series. Guo and He (2021) employed the Beijing dataset for 
monitoring the air quality concerning wind speed, temperature, 
wind direction, weather conditions, humidity, and pressure. The 
performance metrics like root mean square error (RMSE), mean 
absolute error (MAE), and symmetric mean absolute percentage 
error (SMAPE) were evaluated to attain a better performance 
rate. The information about gas emissions and economic fac-
tors was not included in the prediction of the  PM2.5 time series.

Lin et al. (2020) discussed the time series prediction by 
air quality prediction system–based neuro-fuzzy modelling 
(AQPS-NFM). The neuro-fuzzy model is trained by Steep-
est Descent Backpropagation (SDB). The Taiwan air quality 
hourly datasets were utilized by using a few parameters like 



86806 Environmental Science and Pollution Research (2023) 30:86804–86820

1 3

wind speed, temperature, humidity, and wind direction. The 
result showed that the attained fuzzy rules have high quality, 
and the parameters were optimized very effectively. Ma et al. 
(2019) described the prediction of air quality based on trans-
fer learning-based bi-directional long short-term memory 
(TL-BiLSTM). The developed method was used to enhance 
the prediction accuracy of air pollutants at larger resolutions. 
Various machine learning methods were compared to the 
TL-BiLSTM model in performance evaluation. The result 
showed that the TL-BiLSTM model has small error values 
and large temporal resolutions.

The prediction of AQI can be challenging due to the hin-
drances caused by component inter-correlation and volatile AQI 
patterns. To overcome these issues, Jin et al. (2021) introduced 
the multi-task multi-channel nested long short-term memory 
(MTMC-NLSTM) network. The authors implemented the 
root means squared propagation (RMSprop) optimizer to 
minimize the loss function of mean square error (MSE). The 
MTMC-NLSTM approach decomposes data into high- and 
low-frequency parts to facilitate effective learning. However, 
the effectiveness of this method depends on the quality of the 
preprocessing module. Ge et al. (2021) presented multi-scale 
spatiotemporal graph convolution network (MST-GCN) to 
promote strong spatial correlation and design long-term tem-
poral dependencies in forecasting air quality. Based on domain 
categories, the trends and features of air quality were parti-
tioned into numerous groups and encoded the correlation across 
regions utilizing distance and similarity graphs. Then, it used a 
fusion block tensor to combine the separated groups. The draw-
back of this technique was the high computation cost produced 
during exploring dynamic spatial correlation.

Zhang et al. (2021) elaborated to overcome the difficulty 
obtained while predicting the unstable variations of air 
quality by the variational mode decomposition-bidirectional 
long short-term memory (VMD-BiLSTM) method. Here, 
the established method disintegrates actual time series 
data into several components based on frequency domain. 
The BiLSTM model helps to capture extensive feature 
details and thus enhances prediction accuracy but requires 
more training time. To enhance the air quality prediction 
performance, Mao et  al. (2021) developed a temporal 
sliding long short-term memory extended (TS-LSTME) 
approach. Based on the circumstance, the TS-LSTME 
approach selects appropriate influencing factors to forecast 
the targeted variables. The  PM2.5 concentration in the 
air was measured along with the utilization of temporal 
and meteorological data. The underestimation and 
overestimation results of the TS-LSTME approach affect 
air quality prediction accuracy.

Zhao et al. (2019) illustrated the determination of air 
quality by spatiotemporal collaborative convolutional 
neural network combined with a long-short term memory 
(STCNN-LSTM). At first, regional air quality prediction 

problems helped with the analysis of closely connected 
areas and the prediction of several locations. Next, the uti-
lization of time-sliding windows, correlation analysis of 
factors, and clustering algorithm supported in constructing 
Relevance data cube (3-dimensional data structure). At last, 
STCNN-LSTM was constructed with the combination of 
CNN and LSTM by dealing with other neural networks. 
Therefore, this model was efficient and appropriate for the 
air quality field and predicted accurately. But, this method 
led to emitting pollution and caused dispersion.

Zhang et al. (2019) elaborated the LightGBM model to 
predict  PM2.5 concentration and to overcome the issue of high-
dimensional large-scale data. A sliding window mechanism 
was applied for increasing training dimensions. Hence, this 
method was appropriate for excavating the characteristics with 
a powerful connection. But, this model’s performance accuracy 
was limited. Guo et al. (2023b) studied the climate change has a 
significant impact on air quality and human health, emphasizing 
the need for accurate predictions. Their results indicate that air 
temperature in the Sahara region will experience a sustained 
increase throughout the twenty-first century. These predictions 
hold crucial implications for climate policy-making and 
underscore the urgent requirement for proactive measures to 
address the multifaceted challenges posed by climate change.

Ma et al. (2020) established a prediction of air quality 
using transfer learning-based stacked bidirectional long 
short-term memory (TLS-BLSTM). The main subjective of 
this work is to control air pollution and minimize its impacts 
on human beings. Using various machine learning methods 
to provide an accurate prediction of air quality meanwhile, 
it requires several data to train the model. The experimental 
analyses were conducted and evaluated that TLS-BLSTM 
diminished the average RMSE rate upto 35.21% which 
improved the performance. On the other hand, it is easy to 
overfill, and dropout is much harder to implement.

Maleki et al. (2019) illustrated a prediction of air pollution 
by using an artificial neural network (ANN) model. To 
mitigate the adverse health effects of air pollution, forecasting 
air quality has become crucial. Decision-makers and 
practitioners in urban air quality rely on ANNs to estimate 
the spatiotemporal distribution of air pollutants and indices 
of air quality. However, after the ANN training, the data may 
produce output even with incomplete information.

Wang and Song (2018) discussed the deep spatial ensemble 
design for predicting air quality. The data-driven method 
utilized the meteorological data and historical air quality for 
predicting the air quality. The deep LSTM was utilized for 
learning the short-term and long-term dependencies of the 
air quality. The experimental results showed that the scheme 
improved the predicting accuracy. In order to improve the 
prediction accuracy, some additional information such as 
overseas air pollution, climate satellite information, and 
microsensor information was required.
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Zou et al. (2021) discussed the air quality prediction for 
the spatiotemporal attention process. The predicted air qual-
ity area gathers the influences of relative sites by spatial 
attention process. The experimentation results showed that 
the scheme achieved higher performance when compared to 
other methods. This spatiotemporal attention process was 
only used to predict single-city air pollution.

Li et al. (2019) established a modified least squares sup-
port vector machine–based multi-objective multi-verse 
optimization (LSSVM-MOMVO) algorithm for addressing 
air quality monitoring issues. The data pre-processing for 
forecasting AQI was carried out by integrating the decom-
position method with the feature selection model, and the 
MOMVO method was employed to eliminate noise and 
choose optimal input structures. The LSSVM-MOMVO 
algorithm was then utilized for AQI forecasting, which 
exhibited strong stability and high accuracy, as indicated by 
comparative analysis. Moreover, it was found to be a reliable 
and efficient approach for air quality monitoring. However, 
it is worth noting that the LSSVM-MOMVO algorithm has 
limitations in solving optimization problems.

Zhu et al. (2018) developed a machine learning approach 
for air quality forecasting, which utilized an optimiza-
tion algorithm to solve the problem of multi-task learning 
(MTL) and improve convergence speed. The results showed 
improved performance in predicting air pollution; however, 
nearby meteorology stations needed to exhibit similar char-
acteristics to enhance the prediction performance.

While numerous machine learning and deep learning tech-
niques have been established for predicting and mitigating air 
pollution, these methods have some limitations such as high 
computational cost, poor prediction performance, minimum 
accuracy, and high error rate. To overcome these limitations, 
the present study proposes a novel approach called attention 
convolutional bidirectional gated recurrent unit based dynamic 
arithmetic optimization (ACBiGRU-DAO).

Background

This section provides a comprehensive description of the 
proposed ACBiGRU-based DAO approach. The proposed 
approach is formed by the integration of Dynamic Arithme-
tic Optimization (DAO) with an Attention Convolutional 
Bidirectional Gated Recurrent Unit (ACBiGRU) model. The 
detailed elaboration of the technique is listed as follows.

Attention Convolutional Bidirectional Gated 
Recurrent Unit (ACBiGRU)

Various deep learning models possess their own merits and 
demerits for predicting air quality. A convolution neural net-
work (CNN) provides quick and accurate results in extracting 

features (Liu et al. 2019). The BiGRU learns data sequences 
in frontward and backward modes. The attention strategy 
efficiently computes the significant features of the data. But 
when extracting key features, the CNN eliminates the data 
features corresponding to positions that make the network 
face misclassification results while handling complex tasks. 
This complexity is avoided by the enhanced feature predic-
tion activities of BiGRU and attention mechanism, making 
the convolution network more capable to extract main data 
features. So, considering all these advantages, the ACBiGRU 
model is formed. The AQI,  PM2.5,  PM10, CO,  NO2,  SO2, and 
 O3 are considered inputs in which each layer is determined by 
the BiGRU layer. Each layer generates an individual output 
based on air quality prediction. The input layer is estimated 
by a hidden layer in both forward and backward directions 
which is performed by BiGRU and is directed to the attention 
layer which emphasized each output layer for predicting and 
validating the control of air pollution.

In the input layer, the most significant data features used to 
analyze and predict air quality are inputted into the framework. 
In the BiGRU layer, the inputted data patterns are learned in 
both frontward and backward directions. A gated recurrent 
unit is a modified form of recurrent neural network that helps 
to design the data sequences. However, its vanishing gradient 
problem creates certain issues in analyzing data sequences. 
Therefore, the BiGRU model is introduced that learns the data 
patterns in a two-way direction and initializes weights to resolve 
the gradient issues. Moreover, the GRU measures all the pass-
ing data features and outputs a vector with a constant dimension 
and its architecture is shown in Fig. 1a. The major operations 
performed by GRU are as follows: (i) using the reset gate, the 
GRU decides which data to be discarded from the preceding 
moment; (ii) using the update gate, GRU chooses the data to 
be uploaded from the current moment. Fig. 1b. shows the block 
diagram of ACBiGRU model. The numerical expression for the 
functioning of the reset gate is given by

From the above equation,  It-1 represents the candidate 
activation vector,  Rt is the input vector,  Ur and Wr represents 
the weight information, Cr represents bias, and  St represents 
the reset gate. The numerical expression for the functioning 
of the update gate is given by

From the above equation, GRU computes the candidate 
memory content, which is the main step for calculating the 
current moment output, Yt denotes the update gate, Cz repre-
sents bias, and Uz and Wz denote weight information.

(1)St = �
(
UrRt + WrIt−1 + Cr

)

(2)Yt = �
(
UzRt + WzIt−1

|| + Cz

)

(3)Ît = tani ⇄
(
URt +WStIt−1 + C

)
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From the above equation, C represents bias, U and W 
represents the weight of information.

The output It obtained through the BiGRU network is allot-
ted with weights by attention strategy in the attention layer. The 
attention strategy is utilized to emphasize the effects related to 
data patterns. The weight assigned to each feature vector is repre-
sented by a value, with higher weights indicating more significant 
feature vectors. Therefore, more attention is given to feature vec-
tors with higher weights, as these play a crucial role in enhancing 
the air quality prediction efficiency of the model. The mathemati-
cal formulation of the attention mechanism is modeled as

(4)It =
(
1 − Yt

)̂
It + YtIt−1

(5)Bt =

th∑
t=1

bpqIt

where bpq represents attention weight’s size, It represents the 
length of sequence data;  Ub1 and  Ub2 are weights. To select 
very deep key features in air quality data, different dimen-
sioned convolution kernels are utilized. This work utilized 
three diverse convolution kernels such as the pooling layer, 
dropout layer, and fully connected layer for the extraction of 
significant features. The intermediary semantic data meas-
ured using the attention mechanism is provided as input to 
the convolution network. The term Bp∶q represents the splic-
ing of pth to the feature vector.

(6)bij = sof t
(
Ub2 tani

(
Ub1It

))
max

(7)Bp∶q = Bp ⊕ Bp+1 ⊕…⋯⊕ Bj

(8)tp = g
(
UBp∶p+n−1

+ c
)

Fig. 1  (a) GRU Architecture 
and (b) ACBiGRU Architecture

(a) GRU architecture

(b) Block diagram of ACBiGRU model 
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From the above equation, g represents the hyperbolic tan-
gent function, U represents weight data, n is the breadth of 
weight data, and c represents bias. By means of maximum 
pooling, the deep key feature vectors are extracted. At last, 
the prediction results obtained by the pooling layer are con-
nected concurrently as an output of the convolution layer. 
The computations are made as follows:

The term q represents the number of convolution kernels 
and m implies the number of convolution results. The output 
obtained by the convolutional layer is fed into a fully con-
nected layer and then to the SoftMax layer to measure the 
probability of classified output.

From the above equation,  UD represent the weight of 
the network,  DC which is biased. The block diagram of the 
ACBiGRU model is portrayed in Fig. 1 b.

Dynamic Arithmetic Optimization (DAO) Algorithm

Khodadadi et al. (2022) proposed the development of a 
function by integrating a new accelerator with two dynamic 
features in the fundamental arithmetic optimization. The 
investigation and candidate solution phases are changed 
during the optimization process due to the dynamic ver-
sion's characteristics of investigation and utilization. The 
DAO algorithm reduces the effort required to improve 
parameters using metaheuristic, which is a significant 
advantage of the algorithm.

Dynamic Accelerated Function

During the search period, Dynamic Accelerated Function 
(DAF) plays a vital role as a unique function. Balancing the 
maximum and minimum basic variables  are essential for the 
arithmetic optimization algorithm. Additionally, achieving 
better internal parameters in this algorithm is influenced by 
the new descending functions that are obtained from DAO. 
The numerical expression of the modification component in 
this algorithm is given below.

(9)tq =
[
t1, t2,………tm−1, tm

]

(10)t̂ = max
{
tq
}

(11)t̂ =
[̂
t1, t̂2, t̂3

]

(12)Rv = UD̂t + DC

(13)Si =
exp

�
Si
�

∑
k exp

�
Si
�

From the above equation, the maximum and current iterations 
are indicated by  Imax and I, ω representing the constant value. 
While repeating every algorithm the performance is reduced.

Dynamic Candidate Solution

Investigation and utilization are the important two stages 
of metaheuristic algorithms which have the quality of 
balancing between these two stages. For accentuating 
the investigation and utilization, each solution needs to 
be upgraded during the processing of optimization from 
a good, attained solution. The function of the dynamic 
candidate solution is given in mathematical expression.

From the above equation, Dcs represents a dynamic 
candidate solution,  Px,y represents  xth position of the  yth 
position, B(py) denotes  yth position in the best-obtained 
phase, ULy denotes the upper limit value of the  yth position, 
LLy denotes the lower limit of the  yth position, � is a 
controlling parameter, μ is a small number to avoid division 
by 0, S2 and S3 denotes random numbers in (0,1). The 
performance of Dcs is proposed because of the reduction 
in the percentage of candidate solutions while iterating and 
the value is decreased.

The speed of the AO algorithm is raised by utilizing 
DAO algorithm’s candidate solutions which are explored in 
iterations and investigations. This Algorithm can function 
without parameters that are supported for metaheuristic 
algorithms (Guo et al. 2020). The leftover approach is similar 
to the AO algorithm while DAO algorithm applies dynamic 
functions is the dissimilarity between AO algorithm and DAO 
algorithm. Several parameters need to be adjusted because the 

(14)Dafunction =

(
Imax

I
()�

)

(15)

px,y(CI + 1)

⎧
⎪⎪⎨⎪⎪⎩

B(py) ÷ (Dcs + 𝜇) × ((ULy − LLy) × 𝛾 + LLy)),

S2 < 0.5

B(py) × Dcs × ((ULy − LLy) × 𝛾 + LLy)),

otherwise

(16)

px,y(CI + 1) =

⎧
⎪⎨⎪⎩

B(py) − (Dcs × ((ULy − LLy) × 𝛾 + LLy),

S3 < 0.5

B
�
py
�
+ Dcs × ((ULy − LLy) × 𝛾 + LLy)),

otherwise

(17)Dcs(0) = 1 −

√
I

Imax

(18)Dcs(n + 1) = Dcs(n) × 0.99



86810 Environmental Science and Pollution Research (2023) 30:86804–86820

1 3

DAO algorithm receives an advantage from it. But it is always 
against rival algorithms due to the demand for parameter 
adjustment for various issues. The modified mechanism-based 
iteration opposition and non-fitness improvement are the main 
disadvantages of this algorithm.

Algorithmic Steps of ACBiGRU‑based DAO Approach

Figure  2 illustrates the flow diagram of the proposed 
ACBiGRU-DAO approach. To gain better prediction 
results, the data learning process of the ACBiGRU model is 
enhanced by modifying or setting optimal parameter values 
using the DAO algorithm, and  this modified version of 
the technique is formally represented as ACBiGRU-DAO 
approach. The algorithmic steps are given as follows:

Step 1:The BiGRU layer, attention layer, and convolution 
layer are the three significant layers determined in the ACBi-
GRU model.

Step 2: At the initial BiGRU layer, the input data patterns 
are learned in both forward and backward directions and 
also it makes use of both future and historical information 
to analyze the long-term data representations.

Step 3: Then, the effects associated with the data patterns 
are highlighted using the attention strategy. In addition, in 
this attention layer, the output obtained from the BiGRU 
layer is assigned with weights.

Step 4: The higher value of weight represents the significant 
feature vectors, so the attention weight is given more 
consideration else it will influence the air quality prediction 
efficiency of the model.

Step 5: Moreover, the deep key features in the data are 
extracted through convolution kernels. The randomly 
selected parameter value at the initial iteration does not 
provide more accuracy in the prediction process.

Step 6: Therefore, to attain a greater prediction accuracy 
rate, the parameters of the ACBiGRU model namely 
network weights and bias factors are tuned using the 
DAO algorithm.

Step 7: This algorithm incorporates dynamic accelerated 
function and dynamic candidate solution strategies to 
enhance the standard performance of the arithmetic 
optimization algorithm.

Fig. 2  Workflow of the 
proposed ACBiGRU-DAO 
approach
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Step 8: The DAO algorithm not only selects the best 
solution (i.e., optimal parameter values) for the model 
but also accelerates the convergence ability of the model.

Step 9: Thus, the proposed ACBiGRU-DAO approach 
effectively predicts the data features and classifies them 
based on the severity levels into different stages.

Proposed Methodology

The air quality assessment becomes an indispensable 
step in many urban and industrial areas to monitor and 
preserve the quality of air. The increasing concentration 
of pollution in the environment creates negative impacts 
on the quality of human life. It requires an air quality 
monitoring system to predict the quality of air by 
gathering details of pollutant concentrations. To fulfill 
the requirement, this paper proposes a novel automated 
prediction model ACBiGRU-DAO for air quality 
prediction and data  is taken from the Kaggle dataset. 
To enhance the results, the data utilized is initially 
preprocessed through the steps namely imputation of 
missing values and data transformation. The preprocessed 

outcome is then fed into the proposed model that 
accurately predicts the air quality and classifies them 
based on severity into 6 AQI stages. Figure 3 shows the 
structure of the air quality prediction model.

Experimental Data Source

The dataset utilized in this work is taken from two Kaggle 
websites namely India Air Quality data (62.54 MB) and Air 
Quality data in India (2015–2020) (2.57 MB). Each of these 
datasets contains AQI ranges calculated on a yearly and daily 
basis respectively from various stations across India.

Data Preprocessing Phase

Data preprocessing contains two processes: imputation of 
missing values and data transformation (Huang et al. 2022).

Imputation of missing values

Imputation refers to the process of replacing missing data with 
substitute values, while preserving the most important informa-
tion of the dataset. In regression methods, lagged variables are 
estimated using robust estimates to reduce negative bias coeffi-
cients generated during the regression process. Lagged variables 

Fig. 3  Structure of air quality 
prediction model
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enable the detection of possible associations between current 
and past variables in sequential time, and this process is also 
known as the adaptive sliding window technique.

Adaptive sliding window The adaptive sliding window 
extended the downfall determination under the sample 
downfall point. The outliners are organized in ascending 
order throughout the problem of window sample estimation. 
It is more powerful in interrupting the estimator rather than 
gradually being placed amidst data (Guo et al. 2021). These 
can be done by sequencing the outliners at the due time in 
modification with the window coefficient.

– The sequential monitors are divided into step lengths and 
window breadth for segmenting the series into mutually 
autonomous windows.

– The normalized interquartile range (NIQR) and median 
in every window are approximated as the standard 
divergence of the window sample and mean.

– Several windows with apparent outliners are chosen 
for computing the mean value of t(y) and the threefold 
standard deviation as do.

From the above equation, the supremum is denoted by sup , 
the corrupted samples are indicated by � , y� , t(y) represents 
standard deviation, �∗ represents determining the breakdown 
point is given in the form of numerical expression

From the above equation, inf  represents the infimum. The 
breakdown point of the window sample is formulated as

From the above equation, the standard deviation of three 
or fourfold is indicated by ro.

– The NIQR is utilized as t(y�

) an estimated window 
sample to compute the bias, whereas the initial window 
is higher than the break-down point window.

– After the breakdown point, the monitoring sequence is 
extracted with step length and window breadth.

– The pertaining processing of the monitoring series is 
segmented into the dependent distortion characteristics. 
The above 4 steps are repeated in this adaptive 
processing.

Data Transformation

The climatic condition contains categorical information, 
 PM2.5,  PM10, CO,  NO2,  SO2, and  O3 which is necessary to 

(19)c(ε, y, t) = sup
|||t
(
y

�)
− t(y)|

(20)�∗(y, t) = inf {�|c (�;y, t)|}

(21)�∗(y, t) = inf
{
�|c (�;y, t)| ≥ ro

}

be calculated. These climatic conditions provided as input 
are not statistical data and it has to be transformed into sta-
tistical data (He et al. 2022, 2014). This is carried out by 
utilizing the statistical values in substituting for the meaning 
of information. Table 1 depicts various stages of the AQI 
and its ranges.

The data transformation for the proposed ACBiGRU-
DAO method is performed by the min–max normalization 
approach. In the min–max normalization scheme, the map-
ping range of the attribute based on the upper and lower 
bound is indicated by [dv, hv] with newly generated values [
dvNEW, hvNEW

]
 . The interval for the target range for the nor-

malization is determined as [0, 1] or [− 1, 1]. The expression 
for the normalized range y� is formulated as

ACBiGRU‑DAO Algorithm for Air Quality Prediction

The air quality prediction using the proposed ACBiGRU 
model is presented in Fig. 4. The following steps illustrate 
the step-by-step procedures carried out to determine air 
quality prediction.

(i) Input data

The air quality data collected from the Kaggle dataset is 
comprised of (i) India’s air pollution level over the years and 
(ii) air quality index data with hourly pollutant concentration 
levels from the year 2015 to 2020. From the dataset, the 
seven major air pollutant parameters are taken as input to 
determine the air quality by the proposed model.

 (ii) Data preprocessing

The drastic f luctuations in the concentration level 
of actual air quality data interrupt the prediction 
performance of the model. So, to get better prediction 
results in dealing with the air quality dataset, the 
inputted data is initially preprocessed. The air quality 
data is initially transformed into the statistical format 

(22)y
�

=
y − dv

hv − dv

(
hvNEW − dvNEW

)
+ dvNEW

Table 1  Various AQI stages

AQI stages Ranges Air Pollution Level

Stage 1 0–50 Good
Stage 2 51–100 Moderate
Stage 3 101–150 Unhealthy for sensitive groups
Stage 4 151–200 Unhealthy
Stage 5 201–300 Very unhealthy
Stage 6  > 300 Hazardous
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by the data transformation process and then the missing 
values were imputed using the adaptive sliding window 
technique.

 (iii) Data separation and standardization

After preprocessing, the dataset is partitioned into two 
divisions for testing (20%) and training (80%). Then, both 
the training and testing sets are standardized through the 
z-score standardization technique to ensure uniform-
ity among the data. This standardization process helps 
to improve the prediction accuracy of the model. The 
numerical expression of z-score standardization is given 
by

The term xk indicates standardized data, yk represents input 
data, y signifies the mean value of input data, and � implies 
standard deviation. Moreover, the mean value y and standard 
deviation � of input data are measured using the following 
equation:

(23)xk =
yk − y

�

 (iv) Training phase

The standardized data is provided as input to the proposed 
ACBiGRU-DAO model for training. At this phase, the opti-
mal parameter values for the ACBiGRU model are assigned 
by an adaptive tuning process using the DAO algorithm. By 
using the optimized parameters, the features in the data are 
effectively trained by the ACBiGRU-DAO model.

 (xxii) Testing phase

The standardized testing data are provided to the trained 
network model to formulate further predictions.

 (vi) Prediction

(24)y =
1

N

N∑
k=1

yk

(25)� =

√√√√ 1

N

N∑
k=1

(
yk − y

)2

Fig. 4  Steps of the propose-
dACBiGRU-DAO prediction 
model
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The air quality is accurately predicted and classified 
bythe ACBiGRU-DAO model according to pollutant con-
centration severities into 6 AQI stages. These stages help 
to map the quality of air. The air quality index values 
vary between the range of 0 and 500. The AQI range 
from 0 to 50 indicates normal/good air quality, 51 to 
100 represents acceptable air quality, greater than 100 
implies unhealthy air which might cause health effects 
for sensitive people and the range above 300 indicates 
hazardous air.

This research article determines the air quality data 
obtained all over the world to validate the variations that 
happen in the air quality during pandemic situations. The 
validation of air quality is performed based on compar-
ing various air-polluting input features such as particu-
late matters namely  PM2.5 and  PM10, carbon monoxide 
(CO) concentration, nitrogen dioxide  (NO2) concentra-
tion, sulfur dioxide  (SO2) concentration, and ozone  (O3) 
concentration. The fundamental effects of air quality are 
predicted by quasi-experimental approaches to eject the 
distracting features. Various existing WTCNN, LSTM-
AML, AQPS-NFM, TL-BiLSTM, MTMC-NLSTM, 
STCNN-LSTM, and TLS-BLSTM methods are employed 
to predict air quality index. However the prediction per-
formance is diminished due to the utilization of very 
limited feature parameters, the crucial factors such as 
economic factor details as well as the gas emission warn-
ing was also not given importance. The exploration of 
dynamic spatial correlation is often performed with a 
high computational cost. The air pollution emission is 
increased which leads to generating dispersion and cre-
ating negative impacts in human life. The existing tech-
niques predicted the pollution mostly within the limited 
temporal and spatial scale.

To overcome this problem and handle the high multi-
collinearity present in the input samples, the ACBiGRU-
DAO method is proposed which improves the perfor-
mance and accurately classifies the severity level of the 
air quality and protects the life of humans affected by 
air pollution. The optimal parameter values are deter-
mined which helps to monitor and predict the air qual-
ity in urban and industrial locations. The validation to 
enhance the air quality is offered in polity intervention of 
air quality using the comprehensive data from January 1 
to July 5, 2020, which recovered the AQI independently 
in 597 significant cities by  PM2.5,  PM10, CO,  NO2,  SO2, 
and  O3. The envelope calculation for air quality is con-
tributed which determines the variations while predicting 
the AQI which reduces the air pollution. The prediction 
is performed using the Kaggle dataset which enhanced 
the effectiveness and prediction accuracy.

Experimental Results and Analysis

To analyze the effectiveness, the various parameter met-
rics namely Accuracy, Maximum Prediction Error (MPE), 
Mean Absolute Error (MAE), Mean Squared Error (MSE), 
Root Mean Square Error (RMSE), and Correlation Coef-
ficients (CC) are utilized. The different methods such as 
WTCNN, LSTM-AML, AQPS-NFM, TL-BiLSTM, and 
the proposed ACBiGRU-DAO algorithm are applied for the 
comparative analysis to get high performance in the proposed 
ACBiGRU-DAO algorithm.

Parameter Setting

The parameter setting of the proposed ACBiGRU-DAO 
algorithm is explained in Table 2.

Performance Measures

The performance rate evaluation for the proposed method 
is validated by MPE, MAE, MSE, RMSE and Correlation 
Coefficient are employed to evaluate the performance rate.

Accuracy: Accuracy is defined as the ratio of accurate prediction 
of the true value to the total prediction and is formulated as

The terms p(i) and a(i) indicate the predicted air concentra-
tion and actual air concentration, respectively.

MPE: It is the ratio of the maximum difference between the 
actual error and predicted error to the actual error value.

(26)Accuracy =
TP + TN

TP + TN + FP + FN

(27)MPE = max

{|p(i) − a(i)|
a(i)

× 100

}

Table 2  Parameter setting

Methods Parameters Values

ACBiGRU Optimizer Adam
Batch size 128
Loss function Cross entropy
Epoch 50

DAO Exploration 1
Exploitation 1.5
Population size 50
Number of iterations 100
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MAE: The magnitude difference between observed air 
concentrations to the predicted air concentration is referred 
to as mean absolute error.

Here, n represents the maximum number of data samples.

MSE: It is the measurement of the amount of error obtained 
in estimating the statistical samples.

RMSE: The root mean square error signifies the square root 
of residual variance.

Correlation Coefficient (CC): It computes the statistical 
relationship between two independent data variables y and z.

(28)MAE =
1

n

n∑
i=1

|p(i) − a(i)|

(29)MSE =
1

n

∑n

i=1
(p(i) − a(i))2

(30)RMSE =

√
1

n

∑n

i−n
(p(i) − a(i))2

(31)CC =
n(
∑

yz) −
�∑

y
��∑

z
�

�
n
∑

y2 − (
∑

y2)
�
n
∑

z2 − (
∑

z2)
��

Performance Analysis

Table 3 represents the set of data features provided to the 
proposed ACBiGRU-DAO framework to determine the air 
quality. The most influencing factors in the air quality data 
are taken as input data which includes the features such 
as current  PM2.5 and  PM10, AQI, CO,  NO2,  SO2, and  O3 
concentration.

Table 4 illustrates the statistical results achieved using the 
proposed ACBiGRU-DAO approach and various other exist-
ing approaches in terms of different evaluation indicators 
namely accuracy, precision, recall, specificity, F-measure, 
and total no. of days the AQI stages predicted accurately. 
The proposed ACBiGRU-DAO approach attained air quality 
prediction accuracy of about 95.34%with a minimal error 
rate (4.66%).

Figure 5 represents the graphical analysis of prediction 
accuracy analysis concerning different methods. From the 
graph, it came to know that the proposed ACBiGRU-DAO 
approach gained more accuracy than other compared meth-
ods. The accuracy rate of the proposed ACBiGRU-DAO 
approach is 95.34%.

Figure 6 describes the graphical illustration of the error 
rate (%) concerning different methods. The error rate 
achieved by the proposed ACBiGRU-DAO approach is 4.6% 
whereas the other methods produced a greater error rate than 

Table 3  Training features 
are taken from the air quality 
dataset

Sl. no Features Description

1 AQI Current Air Quality Index value
2 PM2.5 and  PM10 Particulate matters at an hour ago
3 CO Carbon monoxide (CO) concentration was recorded at an hour ago
4 NO2 Nitrogen dioxide  (NO2) concentration was recorded at an hour ago
5 SO2 Sulfur dioxide  (SO2) concentration was recorded at an hour ago
6 O3 Ozone  (O3) concentration was recorded at an hour ago

Table 4  Statistical results of 
proposed ACBiGRU-DAO and 
another approach

Evaluation Indicators WTCNN LSTM-AML AQPS-NFM TL-BiLSTM ACBiGRU-DAO

Accuracy 86.03% 91.51% 85.21% 87.67% 95.34%
Precision 94.37% 93.67% 91.33% 87.83% 95.31%
Recall 76.67% 79.56% 80.05% 89.56% 90.59%
Specificity 89.49% 87.21% 91.24% 88.94% 93.58%
F-measure 88.94% 87.83% 81.43% 89.56% 90.33%
Error rate 13.97% 8.49% 14.79% 12.33% 4.66%
Maximum prediction error 4.3 3 2.4 3.4 1
Mean absolute error 0.3 0.4 0.76 0.3 0.059
Mean square error 0.6 0.4 0.81 0.3 0.057
Root mean square error 0.72 0.84 0.94 0.54 0.238
Correlation coefficient 0.54 0.62 0.69 0.71 0.8
The total no. of days the AQI 

stages predicted accurately
314 334 311 320 348
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the proposed approach. This indicates the proposed approach 
is well effective than other compared methods with a very 
less error rate in air quality prediction. Figure 7 represents 
the MPE rate analysis of proposed and existing methods. 
The maximum prediction error achieved by the proposed 
ACBiGRU-DAO approach is 1 (very low) as compared to 
existing methods. The lower the prediction error, the greater 
will be prediction accuracy.

The correct prediction of air quality index stages con-
cerninga total number of days is shown in Fig. 8. The graph 

displays that the proposed ACBiGRU-DAO approach cor-
rectly predicted the AQI stages for about 348 days while the 
other compared methods namely WTCNN, LSTM-AML, 
AQPS-NFM, and TL-BiLSTM correctly predicted for 
314 days, 334 days, 311 days, and 320 days, respectively. 
This illustrates the proposed method accurately predicte the 
AQI stages in more number of days than other compared 
methods. Figure 9 portrays the graphical results of MAE for 
different methods. The validation of the proposed approach 
is 0.059 which is less compared to MAE values of existing 

Fig. 5  Accuracy analysis

Fig. 6  Error rate evaluation
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Fig. 7  MPE analysis

Fig. 8  Estimation of correctly 
predicted days of AQI
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methods. The lower the error rate, the greater will be the 
prediction performance.

Figures 10 and 11 represent the diagrammatic representation 
of MSE analysis and RMSE analysis respectively with respect 
to different methods. The error rates (MSE and RMSE) 
achieved by the proposed ACBiGRU-DAO approach are very 
less when compared to existing methods such as WTCNN, 
LSTM-AML, AQPS-NFM, and TL-BiLSTM. The MSE 
and RMSE rate achieved by the proposed ACBiGRU-DAO 
approach is 0.057 and 0.238, respectively.

Conclusion

This paper presents a novel air quality prediction model 
“ACBiGRU-DAO approach” to accurately predict air 
quality and classify predicted results based on severity 
ranges into 6 air quality index (AQI) stages. The utilization 
of the DAO algorithm in the ACBiGRU model enhances 
prediction accuracy. The effectiveness of the proposed 
method is validated by air quality data of India that is 
acquired from the Kaggle website. The performance of the 

Fig. 9  MAE analysis

Fig. 10  MSE analysis
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proposed ACBiGRU-DAO approach is examined using 
diverse evaluation indicators namely Accuracy, MPE, MAE, 
MSE, RMSE, and Correlation Coefficient. The accuracy 
rate achieved by the proposed ACBiGRU-DAO approach 
is greater than other compared methods with a percentage 
of 95.34%. In addition, the error rates validation namely 
MPE, MAE, MSE, and RMSE for the proposed method 
is diminished when compared to the existing WTCNN, 
LSTM-AML, AQPS-NFM, and TL-BiLSTM methods. This 
indicates the effectiveness of the proposed ACBiGRU-DAO 
approach over other existing methods. In future work, the 
prediction of accuracy in air quality will be further improved 
by exploring spatial domain features.
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