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Abstract
The effect of environmental and socioeconomic conditions on the global pandemic of COVID-19 had been widely studied, yet 
their influence during the early outbreak remains less explored. Unraveling these relationships represents a key knowledge to 
prevent potential outbreaks of similar pathogens in the future. This study aims to determine the influence of socioeconomic, 
infrastructure, air pollution, and weather variables on the relative risk of infection in the initial phase of the COVID-19 pan-
demic in China. A spatio-temporal Bayesian zero-inflated Poisson model is used to test for the effect of 13 socioeconomic, 
urban infrastructure, air pollution, and weather variables on the relative risk of COVID-19 disease in 122 cities of China. 
The results show that socioeconomic and urban infrastructure variables did not have a significant effect on the relative risk 
of COVID-19. Meanwhile, COVID-19 relative risk was negatively associated with temperature, wind speed, and carbon 
monoxide, while nitrous dioxide and the human modification index presented a positive effect. Pollution gases presented a 
marked variability during the study period, showing a decrease of CO. These findings suggest that controlling and monitor-
ing urban emissions of pollutant gases is a key factor for the reduction of risk derived from COVID-19.

Keywords  SARS-CoV-2 · Epidemiological analysis · Initial outbreak · Temperature · Pollution · Poverty · Bayesian 
analysis

Introduction

The infectious disease COVID-19 caused by the severe res-
piratory syndrome coronavirus 2 (SARS-CoV-2) has been 
one of the hardest pandemics in recent human history. This 
disease emerged in Wuhan city (China) during late 2019. 
The World Health Organization then declared COVID-19 
an international concern on January 30th and a pandemic 
on March 11th (Srivastava 2021). During 2021 and 2022, 

affected countries implemented a series of effective meas-
ures to cope the pandemic (e.g., quarantines; Coccia 2023), 
which corresponded to containment strategies such as quar-
antines and full lockdowns, as well as mitigation strategies 
such as promotion of social distancing, facemask wearing, 
and school closures (Coccia 2021a). Although the pandemic 
has been widely controlled in several countries, a series of 
variants are still circulating worldwide (e.g., delta, kappa, 
omicron). The virus is mainly transmitted by droplets from 
person to person through direct contact derived from cough-
ing, sneezing, and talking, as well as by touching contami-
nated surfaces (Srivastava 2021). COVID-19 droplets are 
commonly dispersed by air at 2 m, but studies have found 
that airborne transmission could occur at distance up to 10 
m (Setti et al. 2020). Studies supported the essential role 
of environmental factors in COVID-19 transmission and 
mortality, which also interact with social factors, mobility 
(Kraemer et al. 2020; Kephart et al. 2021), and the trade 
market in urban areas (Coccia 2020a; Bontempi and Coccia 
2021; Bontempi et al. 2021). The positive effect of popu-
lation density on COVID-19 transmission has been dem-
onstrated in several countries (Bontempi et al. 2021; Diao 
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et al. 2021), while studies have also suggested a modula-
tor role of socioeconomic status (Mena et al. 2021; Coccia 
2022). Additionally, there is a high correlation between peo-
ple’s mobility within cities and trade market activities, and 
COVID-19 transmission (Kraemer et al. 2020; Kephart et al. 
2021). This implies that a suitable socioeconomic condi-
tion for the spread of COVID-19 is overcrowded low-income 
areas in cities with high levels of mobility and trade market 
interchange. Although population density has been proposed 
as a main factor for COVID-19 transmission, Coccia (2020b) 
found that the effect of this factor is modulated by environ-
mental factors such as air pollution and wind speed.

The role of air pollution in COVID-19 has been explored 
by multiple studies worldwide, revealing contrasting effects. 
For example, Bashir et al. (2020) found a negative associa-
tion between PM2.5, PM10, SO2, and NO2, and the number of 
infected people in California during March and April 2020. 
In contrast, Menchaca et al. (2021) discovered a positive 
correlation between PM2.5 and COVID-19 associated mor-
tality in the USA, which is coincident with the results of 
Song et al. (2022) for PM2.5, PM10, SO2, and CO in China. 
In fact, the literature reviewed by Srivastava (2021) agrees 
with this positive correlation, which is also identified for 
NO2, CO, and O3. However, the same study of Song et al. 
(2022) reported a negative correlation of O3 with COVID-
19 infected cases. The medical evidence suggests that pol-
lutant gases could contribute to COVID-19 transmission and 
mortality by promoting viral replication through increased 
patient vulnerability (chronical inflammation as evidenced 
by Lai et al. 2021), while the lung epithelial and vascu-
lar endothelial expression of the angiotensin-converting 
enzyme-2 (ACE2) receptors to which SARS-CoV-2 spikes 
glycoproteins tends to increase with pollutants (Lai et al. 
2021). Thus, one of the main hypotheses suggests that pol-
lutant gases should increase the transmission and mortal-
ity of COVID-19, due to an increase in host vulnerability 
and virus fatality (Liang et al. 2020). However, a series of 
studies have suggested that pollutant gases could interact 
with factors such as temperature, humidity, and wind speed, 
producing suitable conditions for COVID-19 transmission 
(Coccia 2021b).

A strong hypothesis about the interaction between air pol-
lutants and weather conditions suggests that stable atmospheric 
conditions associated with a low wind speed promote COVID-
19 by reducing air circulation and increasing pollutant concen-
tration, which allows for extended permanence of viral particles 
in the air (Coccia 2020b, 2021b). Coccia (2020a2021b) also 
identified a negative association of wind speed with COVID-
19 cases at a global scale. In contrast, Coşkun et al. (2021) 
revealed an opposite pattern for Turkey, proposing that wind 
speed promotes COVID-19 spread by increasing air circulation 
with viral particles. These differences could derive from several 
sources, including geographic, economic, and social context, 

highlighting the need to test for these contrasting hypotheses. 
Regarding temperature, Coccia (2020b) proposed a direct influ-
ence on wind speed increase, which would reduce air pollu-
tion and suitable conditions for COVID-19 transmission. This 
same negative correlation between temperature and COVID-
19 cases was identified in Brazil by Rosario et al. (2020), and 
by Sarkodie and Owusu (2020) across 20 analyzed countries. 
Nevertheless, Xie and Zhu (2020) reported a positive corre-
lation in the case of China, which is not coincident with the 
studies mentioned above. In this sense, Li et al. (2022) propose 
that season, latitude, and scale could play an important role in 
the determination of the directionality of effects derived from 
meteorological conditions on COVID-19 transmission. Addi-
tionally, the behavior of COVID-19 in China, associated with 
the effects of air pollutants and weather conditions compared 
to other countries, as well as its role as “source zone” of this 
pathogen, creates a need to expand our knowledge about the 
early stages of the COVID-19 pandemic. Therefore, the impli-
cations of environmental conditions on the early stage of the 
COVID-19 outbreak in China can be crucial to improve our 
preparedness against the emergence of future potential pan-
demics. In this sense, the present study aims to determine the 
influence of socioeconomic, infrastructure, air pollution, and 
weather variables on the relative risk of infection during the 
initial phase of the COVID-19 pandemic in China.

Methods

Sample and data

The open access COVID-19 infection case database from 
Xu et al. (2020), updated for near real time, was used as 
input data. This database provides a geographically specific 
location of cases (latitude and longitude), detailing sex, age, 
travel history, date of symptom onset and date of confirma-
tion, and among other parameters. All the cases confirmed 
since January 18th, 2020, were used, because previous data 
do not provide a specific confirmation date. The cases were 
associated with urban areas of Chinese cities (n= 122) using 
the urban surface reported by Long and Huang (2017). This 
study analyzed all the infected population reported by Xu 
et al. (2020) in the urban areas mapped by Long and Huang 
(2017), reaching a total number of 30,787 cases analyzed 
between January 18th and February 29th, 2020.

Measures of variables

Environmental conditions corresponded to four variable 
subtypes (Table 1): (A) socioeconomic, (B) urban infra-
structure, (C) air pollution, and (D) weather. Socioeco-
nomic and infrastructure variables were based on Long 
and Huang (2017), who provide a detailed database of 
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socioeconomic, urban infrastructure, and vitality variables 
from government agencies, previous studies, and their own 
data. Socioeconomic variables included population den-
sity and income, while urban infrastructure included total 
roads, amenities, access to transit, distance to train sta-
tions, distance to green areas, distance to hospitals, and 
human modification index (Table 1). A series of variables 
related to air pollution and weather were generated using 
the cloud-based platform Google Earth Engine (Gore-
lick et al. 2017); air pollution included carbon monoxide 
and sulfur dioxide based on the satellite products from 
the Sentinel-5 Precursor sensor, while weather variables 
included mean daily temperature, wind speed and relative 
humidity (Table 1).

Models and data analysis procedure

This study aims to estimate the influence of the previously 
mentioned variables on the relative risk of COVID-19 con-
tagion. First, the relative risk of infection of COVID-19 dis-
ease was estimated on a weekly basis for the initial stage of 
the outbreak in Chinese cities (6 consecutive weeks) using 

the Besag, York, and Mollie (BYM) model (Besag et al. 
1991) within a Bayesian framework (Lawson et al. 2003). 
One hundred twenty-two cities were analyzed considering 
cities where at least one case was reported during the study 
period (18th January to 29th February. A zero-inflated Pois-
son (ZIP) distribution was implemented to the model due to 
the excess zeros in the COVID-19 case data (y; see model 
code available in Supplementary material 1). The ZIP model 
contained two link functions: first, the probability (pi, j) of 
true zeros (i.e., presence of the disease) in city i during the 
jth week was specified as:

where α is a global intercept and Β describes the temporal 
increase (or decrease) in the probability that the COVID-19 
disease spreads to a city (considering a spatial adjacency 
matrix). Second, disease count data in each city and week 
was assumed to be a Poisson process, with the mean param-
eter λijEi, where Ei is the number of expected cases based on 
city population. Based on the BYM model, the relative risk 
( RR =

y

E
 ) of COVID-19 disease was estimated as:

logit
(

pi,j
)

= � + B weekj

Table 1   Description of predictor variables used in the analysis

Variable type Variable Description

Socioeconomic Population density Mean density in individuals per hectare for the last Chinese census data (2010), structured by 
Long (2016)

Income Mean income per each person within the city, based on  Long & Huang (2017)
Urban infrastructure Total roads Total long of roads per city in kilometers based on Song et al. (2018) and Long et al. (2016)

Amenities Mean number of amenities per square kilometer at the city level considering bus stops, educa-
tion, research and governmental facilities and convenient stores for 2014. Based on Long 
(2016) and Long & Huang (2017)

Accessibility Mean distance of each city block to the closest city center, subcenter, green space, shopping 
center, hospital and subway station. Based on Long & Huang (2017) and Long (2016)

Distance to train stations Mean distance to subways and train stations in kilometers based on Long (2016)
Distance to green areas Mean distance to subways and train stations in kilometers based on Long (2016)
Distance to hospitals Mean distance to hospitals in kilometers based on Long (2016)
Global human modifica-

tion index (gHM)
Corresponds to a measure of human modification of terrestrial lands. It includes information 

of human settlement, agriculture, transportation, mining, energy production and electrical 
infrastructure. Based on Kennedy et al. (2019)

Air pollution Nitrogen dioxide (NO2) Vertically integrated NO2 column density in mol/m2, based on the sensor Sentinel-5 Precursor 
(6788 images processed)

Carbon monoxide (CO) Vertically integrated CO column density in mol/m2, based on the sensor Sentinel-5 Precursor 
(6608 images processed)

Weather Median daily temperature Median of daily temperature at 2 meters above the ground in Celsius degrees based on the 
coupled model (Ocean, land/soil and sea ice) from NOAA Global Forecast system (Buehner 
et al. 2013)

Wind speed Wind speed in meters per second based on NASA Global Land Data Assimilation System Ver-
sion 2 (GLDAS-2) (Rodell et al. 2004)

Relative humidity Relative humidity at 2 m above ground expressed in percentage (%) based on NOAA Global 
Forecast system (Buehner et al. 2013)
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where vi is a spatially unstructured error (i.e., an intercept 
parameter for each city), and ui is a spatially structured error 
(i.e., correlation of neighboring cities on a spatial adjacency 
matrix). A set of 14 covariates was included, with their cor-
responding regression parameters (β), characterizing socio-
economic, urban infrastructure, air pollution, and weather 
conditions in each city (Table 1); some of them varied over 
time (Zij, e.g., temperature), while others were stationary 
during the study period (Xi, e.g., infrastructure). Normal 
non-informative distributions were used first for uncorre-
lated spatial heterogeneity, while correlated spatial hetero-
geneity was specified with conditional autoregressive (CAR) 
priors (see prior distributions for all parameters and models 
fitting in Supplementary material 1). To compare the mag-
nitude of the coefficients, covariates were standardized to 
have equal unit variance and mean zero. Correlated variables 
(rs>0.7) were not included in the same model to avoid col-
linearity. To implement the CAR model, a geographic adja-
cency matrix through a Dirichlet tessellation process was 
used, in which the country was divided into smaller, contigu-
ous non-overlapping tiles, one per city. Models with different 
combinations of environmental variables were ranked based 
on the deviance information criterion (DIC) values. Model 
fit was determined based on DIC differences with respect 
to the best-supported model (∆DIC) and by assessing the 
agreement between the observed and expected values. The 
model was run by calling the OpenBUGS version 3.2.3 
from R using the R2openbugs package (Lunn et al. 2009). 
Model convergence was assessed by examining the plots of 
posterior parameters and using R-hat statistics. Each model 
was run using three chains until the chains converged. The 
results could be understood as the ratio of the probability 
of an adverse outcome in an exposure group divided by its 
likelihood in an unexposed group (relative risk = (probabil-
ity of event in exposed group) / (probability of event in not 
exposed group) (Richardson et al. 2004).

The weekly behavior of air pollution and weather condi-
tions was analyzed across the six studied weeks, showing 
their temporal patterns and changes.

Results

Geographic distribution of COVID‑19 relative risk 
in China

The provinces with cities that showed the highest relative 
risk (RR > 10) of COVID-19 disease corresponded to Hubei, 
Henan, and Guangdong (Fig. 1). Seven cities were identi-
fied with the highest relative risk (78 < RR > 10): Xiongan, 

log
(

�ij
)

= vi + ui +
∑

i

� Xi +

∑

ij

� Zij
Ezhou, Wuhan, Suishou, Jingzhou, Jingmen, and Xianning, 
all of them in the Hubei province. In addition to the latter, a 
total of 17 cities presented a high relative risk (RR > 1), with 
the five more affected being Xiogfan, Fuyang, Yichang, Shi-
yan, and Karamay. In the coastal zone the most affected cit-
ies (RR > 1) were Putian, Zhonghan, Wenzhou, and Huizou.

Variables explaining COVID‑19 relative risk

No significant effect was found for urban infrastructure 
variables, except for the human modification index, which 
presented a positive effect on COVID-19 relative risk (RR) 
(mean = 0.621; SD = 0.47; R-hat = 1.154; Table 2 and 
Fig. 2). Air pollution variables presented significant effects 
on RR, identifying that nitrogen dioxide had a positive effect 
(mean = 0.101; SD = 0.015; R-hat = 1.031; Fig. 2), with a 
relatively low concentration during the period, except for the 
third week, when it reached a peak (Figs. 2 and 3). Mean-
while, CO exhibited a negative correlation with COVID-19 
RR (mean = −0.48; SD = 0.016; R-hat = 1.051; Fig. 1), 
which presented a decreasing trend in their concentration 
during the studied period in the analyzed cities (Figs. 2 and 
3).

Regarding temperature, a strong negative effect on 
COVID-19 relative risk was identified (mean = −1.10; SD = 
0.058; R-hat = 1.068; Table 2 and Fig. 2), presenting a sus-
tained increasing trend from weeks 1 to 6. Relative humid-
ity presented a positive correlation with RR of COVID-19 
(mean = 0.67; SD = 0.024; R-hat = 1.008; Table 2 and 
Fig. 2), increasing from weeks 1 to 5 and then stabilizing at 
week 6. Wind speed presented a negative effect on COVID-
19 relative risk (mean = −0.079; SD = 0.023; R-hat = 1.021; 
Table 2 and Fig. 2) showing an increase until week 4 and 
then decreasing until week 6.

Discussion

This study supports that air pollution and weather conditions 
played an important role in the early phase of COVID-19 trans-
mission in China. First, the results suggest that urban infrastruc-
ture variables did not present a significant effect on determining 
relative risk of COVID-19. This same effect was also reported 
for China by Diao et al. (2021), who found non-significant rela-
tionship between population density and the spread and decay 
duration of the first wave. The same study also reported signifi-
cant relationships in other countries such as Germany, Japan, 
and England, proposing that this difference is related to the 
early implementation of strict lockdown policies to control peo-
ple movement (Sun et al. 2020; Diao et al. 2021). The human 
modification index presented a positive correlation with RR 
of COVID-19, which suggests a positive correlation between 
human derived disturbances and COVID-19.
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Fig. 1   Map of the estimated median risk per week for Chinese cit-
ies with COVID-19 cases from 18th January to 29th February 2020, 
showing different zoomed zones (A, B, C, D) with the name of cit-
ies and provinces. Each analyzed city is represented by a point with a 

particular color and size, color rank shows the estimated relative risk 
(RR), while the size of the points represents the number of total cases 
during the analyzed period

Table 2   Mean coefficient of 
variables in relation to the 
relative risk of COVID-19 
derived from the Bayesian 
analysis. The table shows 
standard deviation from 
iterations, R-hat statistics, and 
level of the convergence of 
Markov chains presenting the 
relationship between models 
that converged (R-hat < 1.2 = 
*), and did not converged (R-hat 
> 1.2 = n/s)

Type Variable Coefficient SD R-hat statistic Convergence

Parameters of the model Intercept (p) −2.544 0.309 1.001 *
Time 1.122 0.120 1.005 *

Socioeconomic Population density −1.110 0.946 3.185 n/s
Income 1.368 0.794 1.602 n/s

Infrastructure Road −2.102 0.837 2.106 n/s
Amenities −0.311 0.529 1.953 n/s
Accessibility −0.864 0.607 1.987 n/s
Distance to train stations 0.430 0.632 2.567 n/s
Distance to green areas 0.028 0.312 1.761 n/s
Distance to Hospitals 0.363 0.594 1.823 n/s
Human modification index 0.621 0.470 1.154 *

Air pollution NO2 0.101 0.015 1.031 *
CO −0.480 0.016 1.051 *

Weather Temperature −1.100 0.058 1.068 *
Wind speed −0.079 0.023 1.021 *
Relative humidity 0.666 0.024 1.008 *
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A positive correlation of NO2 with the relative risk 
of COVID-19 was found in China, which is coincident 
with the results of Zhu et al. (2020), who suggested that 
short exposure to higher concentrations of this pollutant 
is associated with an increased risk of COVID-19 infec-
tion. Travaglio et al. (2021) and Semczuk-Kaczmarek et al. 
(2022) reported a correlation between NO2 and COVID-
19 deaths in England, while Ogen (2020) found the same 
relationship in Italy, France, Germany, and Spain. In turn, 
a negative correlation of COVID-19 relative risk with CO 
concentrations was identified, which is in contrast with 
studies in other countries (Srivastava 2021). However, this 
pattern could be attributed to the strict lockdown measures 

adopted by China during the initial phase of the epidemic 
outbreak, which have been also identified for spread dura-
tion (Diao et al. 2021) and movability (Kraemer et al. 
2020). Meanwhile, the positive association of NO2 with 
COVID-19 infection risk could be linked to the negative 
effect of this gas on human health, which has been demon-
strated to increase the likelihood of respiratory problems 
(Khaniabadi et al. 2018). One of the main effects of NO2 is 
the inflammation of the lining of the lungs and the reduc-
tion of immunity to lung infections (Dauchet et al. 2018), 
increasing the infection rate by COVID-19.

The obtained results suggest that higher temperatures 
decrease the relative risk of COVID-19 disease (Figs. 1 and 

Fig. 2   Bayesian posterior 
coefficients associated with the 
effects of weather (left panels) 
and air pollution (right panels) 
with Log of relative risk of 
COVID-19. Red lines and 
colored shaded areas represent 
the Bayesian mean and 95% 
confidence interval of predicted 
relative risk. Bayesian estima-
tion of the weekly relative risk 
values of the 122 cities are 
included. Subgraphs show the 
temporal changes of the cor-
responding variable over the six 
studied weeks
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Fig. 3   Map of weekly pollut-
ant gas concentration in China 
based on the analyzed satellite 
images from Sentinel-5 Precur-
sor. The left column shows NO2 
concentrations, while the right 
column corresponds to CO 
concentration
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2). This pattern was identified by a global study that analyzed 
125 countries (Notari 2021), and by a recent study with data 
from 455 cities worldwide (Nottmeyer et al. 2023), conclud-
ing that higher temperatures reduce COVID-19 spread. This 
negative relationship was also identified in Bangladesh by 
Emdadul and Rahman (2020), in Indonesia by Tosepu et al. 
(2020), and in Spain by Pérez-Gilaberte et al. (2023). Regard-
ing humidity, a positive correlation was identified, which is 
coincident with a previous study in China (Song et al. 2022) 
and with a global analysis across 1236 regions from 124 
countries (Zhang et al. 2021); in contrast, other evidence pro-
poses a positive correlation (Nottmeyer et al. 2023). These 
contrasting effects have been argued to be associated with 
geographical factors such as season and latitude (Li et al. 
2022), as well as the implementation of measures to tackle 
the pandemic (Diao et al. 2021). Finally, our results suggest 
a negative correlation with wind speed, which is coincident 
with previous studies (Coccia 2020a, b, 2021b; Islam et al. 
2021; Rosario et al. 2020). In this sense, the identified effect 
of temperature and wind speed on relative risk of COVID-
19 in China could derive from the influence of atmospheric 
stability that promotes transmission (Coccia 2021b). This is 
also in agreement with the positive association of COVID-19 
relative risk with NO2, which has a higher density in com-
parison with CO (Crutzen 1979), which did not present a 
positive correlation. Thus, the results obtained by this study 
are coupled with the hypothesis that atmospheric stability 
promotes COVID-19 transmission (Coccia 2021b).

Conclusions

This study contributes valuable information about the rela-
tionship between urban infrastructure, socioeconomic, air pol-
lution, and weather with COVID-19 during the early stage 
of the pandemic in the first affected country. The used meth-
odology considered a Bayesian approach, which provides an 
improvement in comparison with other methods used, such as 
descriptive statistical analyses (correlation indices or regres-
sion analyses; Nazia et al. 2022). Bayesian methods provide 
advantages for the spatial modeling of infectious diseases 
because spatial units are heterogeneous and have depend-
ency at the same time, while the factors determining risk also 
covariate to measure (Hong et al. 2021)

However, it is noteworthy that some assumptions and limi-
tations from this study aim to ensure a proper understanding of 
the obtained results. Studies have suggested that the direction-
ality and significance of the effects of air pollution and weather 
on COVID-19 could present high variations, derived from sea-
son, latitude, and analyzed scale (Li et al. 2022). Thus, con-
sidering the specific context of each country when analyzing 
this type of dynamics related with COVID-19 is highly recom-
mended. In turn, published evidence also suggests that China 
presents a dissimilar behavior of the relationship between air 

pollution and COVID-19, which is related to the strict lock-
downs policies implemented by the government (Coccia 2022, 
2023). Therefore, this result should be interpreted carefully, 
because the relationship of CO and relative risk of COVID-19 
may result from those governmental actions (Cole et al. 2020; 
Singh et al. 2020).

Regarding the analyzed hypotheses, the results shows that 
NO2 had a positive effect on COVID-19 in China, but CO did 
not present the same trend. Meanwhile, it is highly possible 
that atmospheric stability could play an important role in the 
early stage of COVID-19 in China, due to the configuration of 
the identified effects from wind speed, temperature, and NO2. 
We support that the implementation of policies focused on 
reducing air pollution could hinder the spread and transmission 
of infectious diseases in future pandemics, as shown by the 
evidence we presented here for the case of COVID-19. In this 
sense, the improvement of the quality of urban environmental 
conditions may contribute to the improvement of the prepar-
edness against future pandemics. Finally, we believe that our 
results can be useful for understanding the environmentally 
driven initial dynamics of COVID-19, informing potential 
effects of future pandemics.
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