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Abstract
Eutrophication happens when water bodies are enriched by minerals and nutrients. Dense blooms of noxious are the most 
obvious effect of eutrophication that harms water quality, and by increasing toxic substances damage the water ecosystem. 
Therefore, it is critical to monitor and investigate the development process of eutrophication. The concentration of chloro-
phyll-a (chl-a) in water bodies is an essential indicator of eutrophication in them. Previous studies in predicting chlorophyll-a 
concentrations suffered from low spatial resolution and discrepancies between predicted and observed values. In this paper, 
we used various remote sensing and ground observation data and proposed a novel machine learning–based framework, a 
random forest inversion model, to provide the spatial distribution of chl-a in 2 m spatial resolution. The results showed our 
model outperformed other base models, and the goodness of fit improved by over 36.6% while MSE and MAE decreased by 
over 15.17% and over 21.26% respectively. Moreover, we compared the feasibility of GF-1 and Sentinel-2 remote sensing 
data in chl-a concentration prediction. We found that better prediction results can be obtained by using GF-1 data, with the 
goodness of fit reaching 93.1% and MSE only 3.589. The proposed method and findings of this study can be used in future 
water management studies and as an aid for decision-makers in this field.

Keywords Remote sensing · Random forest · Water pollution · Eutrophication · Spatial analysis

Introduction

In recent years, sustainable development is among the 
hot topics that attract the concern of scholars from dif-
ferent fields. One of the main elements in sustainable 
development is environmentally friendly development 

(Han et al. 2023; Karimian et al. 2013; Wang et al. 2022). 
To reach this goal, monitoring and mitigation of pollut-
ants in the environment is one of the main steps, and 
scholars have conducted researches to propose efficient 
methods to mitigate and monitor pollutant concentrations 
in the environment (Jiang et al. 2023; Xia et al. 2023). 
Water is an essential requirement in daily life; however, 
accessing drinkable water is a challenging task for many 
nations due to limited sources of freshwater (Ge et al. 
2019). Water issues are believed to be one of the main 
reasons for security problems at the international level. 
Therefore, water-related issues attract scholars in differ-
ent fields of specialty (Cai et al. 2017; Lv et al. 2022; Qiu 
et al. 2020). In recent years, with the increasing exploi-
tation of environmental resources, the development of 
industry, and the high concentration of urban population, 
a large amount of industrial wastewater and domestic 
sewage has been discharged into lakes and rivers without 
proper treatment (Baladi et al. 2022; Hojjati-Najafabadi 
et al. 2020; Xu et al. 2023). This not only deteriorates the 
water quality due to the growth in the concentrations of 
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oxygen-consuming substances such as nitrogen, phospho-
rus, and potassium in water but also damages the ecosys-
tem (Karimian et al. 2022, Marie and Gallet 2022). Algal 
bloom is one of the important water pollutants that its 
concentration is increased by the existence of eutrophica-
tion in water. Rising temperatures indirectly affect water 
temperature, forming a thermal partition of the water col-
umn, changing the structure of biological communities 
(Cho et al. 2018; Zhou et al. 2020), and increasing the 
nutrients for algal bloom (Wan et al. 2020). It is believed 
that the outbreak of blue-green algal bloom in water bod-
ies is mainly due to two factors: anthropogenic factor and 
climate conditions.

Chlorophyll-a (chl-a) is an important indicator of existing 
algal bloom in water (Mamun et al. 2020). As the feasibility 
of remote sensing has been proved in monitoring other envi-
ronmental pollutants (Chen et al. 2022a; Guan et al. 2019a), 
scholars have conducted a series of studies based on remote 
sensing techniques to estimate chlorophyll-a concentrations 
in water bodies. The methods used can be broadly grouped 
into four categories. (1) The first method is the fluorescence 
peak/reflection peak algorithm. This method was proposed 
by Gower (1980), who measured the concentration of chlo-
rophyll-a in water using a spectrometer and found that the 
chlorophyll-a fluorescence peak signal exhibited high reflec-
tion characteristics at a wavelength of around 685 nm. He 
also pointed out the possibility of inverting chlorophyll-a 
concentration based on fluorescence peak/reflection peak 
signals. However, the wavelength of the fluorescence/
reflection peak signal of chlorophyll-a concentration is not 
unique and it may happen in different wavelengths in the 
fluorescence spectrum. (2) The second method is the empiri-
cal model, which was proposed by Odermatt et al. (2012). 
This method is based on the combination of spectral bands 
that can map chl-a concentrations. This combination can 
be included two or several bands. Scholars have conducted 
research on this, and the results show that the combination of 
more bands can yield better results (Moradi 2014). (3) The 
third method is the water pollution index algorithm, which 
was applied by Hu et al. (2012) to inverse chlorophyll-a con-
centration earlier, such as the normalized digital vegetation 
index (NDVI), enhanced vegetation index (EVI), and float-
ing algal index (FAI). Its basic principle is that chlorophyll-
a concentration in water exhibits spectral characteristics 
similar to terrestrial vegetation. (4) The fourth method is 
APProach by Elimination (APPEL) method, which was 
proposed by Anas et al. (2012). Its basic principle is to use 
the reflection spectral characteristics of strong absorption in 
the near-infrared band of water, while chlorophyll-a exhibits 
high reflectance spectral characteristics to obtain concentra-
tion information of chlorophyll-a. This method has achieved 
good results in inverting chlorophyll-a concentration in riv-
ers and lakes (Ali et al. 2014; Murugan et al. 2014).

In recent years, machine learning techniques have gained 
remarkable attention especially due to their feasibility in dis-
covering trend in nonlinear phenomena (Chen et al. 2022b; 
Fang et al. 2022; Li 2022; Wu et al. 2018). It was demonstrated 
that by carefully considering influencing factors, models can 
yield acceptable results (Guan et al. 2019b; Karimian et al. 
2020). Following other environmental issues, machine learn-
ing approaches have been also practiced in water-related stud-
ies (Chen et al. 2020). With the gradual application of machine 
learning algorithms to the inversion of chlorophyll-a concen-
trations, superior inversion results have been achieved in res-
ervoirs (Kupssinskü et al. 2020), lakes (Li et al. 2021; Zhang 
et al. 2022), rivers (Chen et al. 2021), and seas (Awad 2014). 
Random forest, a representative model based on Bagging, is 
one of the current popular machine learning algorithms and a 
typical representative of the integration algorithm, which has 
shown its feasibility in many fields. As an efficient machine 
learning algorithm for classification and regression modelling, 
the random forest has advantages over decision trees in solving 
practical problems, is less likely to cause overfitting problems, 
and can better handle small sample data sets (Mo et al. 2021). 
Based on this, several scholars have applied this technique 
to monitor water quality. Maciel et al. (2021) assessed water 
quality in Brazilian using machine learning algorithms and 
empirical models based on Sentinel-2 imagery and water qual-
ity data. They showed that the random forest results were more 
accurate and better results can be achieved through that. Zhou 
et al. (2021) used least squares, support vector machines, and 
random forests to establish an inversion model to study the 
soil heavy metals. They claimed that the accuracy of the ran-
dom forest model was significantly higher than the other two 
models. Ao et al. (2019) discussed the learning ability and 
robustness of the random forest in-depth and confirmed the 
superiority of the random forest model over linear regression 
models.

Although there are several attempts to monitor algal bloom 
from space, most of these studies suffer from low spatial resolu-
tion and low inversion accuracy. Moreover, they seldom used big 
data from various sources. Therefore, in this study, we propose a 
novel algorithm to construct a chlorophyll-a concentration inver-
sion model. Moreover, we investigate the spatial distribution of 
chl-a and the influencing factors. This study aims to provide data 
support for ecological environmental protection and algal bloom 
management and accumulate reference materials for ecological 
departments to have more efficient water management.

Materials and methods

Study area

The study area is the Huancheng River located in Zhejiang 
Province, and it is one of the sources of Taihu Lake, the 
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third largest lake in China (Fig. 1). The river is located in 
the subtropical region with a mild and humid climate. The 
temperature in summer is high, and the precipitation is low 
that provides favorable conditions for the formation of algal 
bloom. According to the meteorological data, during our 
study period, the highest temperature in the area was 40℃, 
and the lowest temperature was 11℃.

Data source and pre‑processing

Water quality data and pre‑processing

To comprehensively collect the chl-a concentrations in the 
study area, a group of monitoring stations was set up in the 
Huancheng River at certain distances; the distance between 
each group of monitoring stations is approximately 500 m. 
Each group included three monitoring points mainly for 
monitoring the chlorophyll-a concentration values in the 
center and both banks of the river, as shown in Fig. 1. In 
total, 33 monitoring points were set up in the Huancheng 
River. We used water quality sensor AP-7000 to collect 
water quality data from May 1 until September 30, 2020. 

The collection time was set from 9:00 to 18:00 to meet the 
time for satellite overpass time. Sample point data recording 
mainly includes the following two steps: (1) use the device’s 
built-in GPS module to collect geographic coordinates and 
display data in real-time using Aquameter, which can also 
be used to calibrate electrodes and assign each optional sen-
sor to the appropriate AUX interface; (2) use the Aquaread 
standard output, SDI-12, and RS485 interfaces to connect 
to any telemetry or data logging devices via the probe for 
long-term recording. The collected data is transmitted to the 
server via the 4G DTU and saved in a MySQL database. Due 
to the impact of extreme weather, network transmission sta-
bility, etc. (Lv et al. 2022), it is necessary to pre-process the 
data collected by the AP-7000 sensor, including the average 
of the 2 data collected simultaneously, eliminating outlier 
data, etc.

Remote sensing data and pre‑processing

The remote sensing images used in this paper are from 
Gaofen-1 and Sentinel-2 dataset. The GF-1 PMS camera 
can acquire panchromatic images in 2 m and multispectral 

Fig. 1  The geographical loca-
tion of the study area and the 
distribution of chlorophyll-a 
concentration monitoring sta-
tions
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images in 8 m. During the study period, only two images of 
GF-1 data were available, on May 31 and July 22, 2020. Sen-
tinel-2 carries a multispectral imager (MSI) that collects 13 
spectral bands with ground resolutions of 10 m, 20 m, and 
30 m, respectively, offering advantages such as high tem-
poral resolution and multi-band combination. Sentinel 2A 
(L2A level) and Sentinel 2B (L2A level) data were imaged 
on May 13, August 1, August 11, August 16, September 5, 
and September 30, 2020.

The preprocessing of GF-1 image data mainly includes 
radiometric calibration, atmospheric correction, resampling, 
and land and water separation. Due to the L2A level of Sen-
tinel-2 image data collected, there is no need for radiometric 
calibration and atmospheric correction. The preprocessing 
of Sentinel-2 image data mainly includes resampling and 
land water separation.

Radiation calibration converts the digital number (DN) 
which is assigned to each pixel to radiance (Eq. 1). This can 
be done through the calibration coefficient which is normally 
provided in image meta data (Song et al. 2022).

where L is the radiance, g is the calibration coefficient and 
L0 is the offset.

Because the solar radiation reflected from the surface 
is affected by atmospheric molecules and aerosols during 
atmospheric transmission (Karimian et al. 2016), atmos-
pheric correction is used to obtain the actual surface reflec-
tance (Li et al. 2020). In this study, atmospheric correction 
of multispectral data is performed based on the FLAASH 
(Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-
cubes) model. Resampling is done by merging GF-1 mul-
tispectral images with panchromatic band images to obtain 
2 m resolution products, and Sentinel-2 images are resam-
pled to produce 10 m resolution products.

Water and land separation is a segmentation operation on 
images and can be done using multi-scale segmentation. The 
purpose of multi-scale segmentation is to obtain vector files 
of river boundaries. Although GPS provides coordinates 
in high accuracy (Sun et al. 2021) and they were collected 
during the data collection stage, they are located inside the 
river, and we cannot obtain the vector boundaries of the 
river through GPS coordinates. Multi-scale segmentation is 
a method of classifying remote sensing images based on 
object-oriented idea (He et al. 2022). It takes into account 
the spectral characteristics and shape characteristics of an 
image and uses each pixel in the image as the starting point 
to divide the image into polygonal objects with different 
attributes through applying a top-down iterative merging 
algorithm (Yang et al. 2014; Zhang et al. 2013). This algo-
rithm aims to ensure the homogeneity between the pixels 
within an object is maximized. In the analysis of remote 

(1)L = DN∕g + L0

sensing images, the spectral features directly affect the qual-
ity of segmentation results. The normalized difference water 
index (NDWI) is used to extract the vector boundary of the 
river. During the experiment, the effect of segmentation is 
used to find the suitable threshold interval of NDWI, and 
the study area vector is obtained by merging the segmented 
objects several times. The whole process was done in eCogn-
tion 9.0 software to extract river waters. Finally, we used 
ENVI5.3 software to realize the extraction of remote sensing 
reflectance information for monitoring points.

where �NIR is the near-infrared band reflectance and �MIR is 
the mid-infrared band reflectance.

Inverse model of chlorophyll‑a concentration

Research framework

The general idea of the random forest inversion of chloro-
phyll-a concentration in the Huancheng River is as follows: 
First, the remote sensing dataset corresponding to the collec-
tion date of the measured water quality data is screened out, 
among which 80% of the dataset is used to build the model, 
and the remaining 20% is used to evaluate the accuracy of 
the inverse model. Second, a suitable band combination was 
constructed based on the spectral characteristics, and a ran-
dom forest inversion model was established. Moreover, we 
compare the performance of our proposed model with the 
empirical model and APPEL model to determine the most 
feasible model. Finally, the spatial and temporal distribution 
of chl-a concentrations in the Huancheng River is obtained. 
The specific process is shown in Fig. 2.

Chlorophyll‑a concentrations through band combinations

Based on the remote sensing images of GF-1 and Senti-
nel-2, the spectral reflectance of the monitoring stations 
in the study area was extracted and was plotted with the 
wavelength as the X-axis and the reflectance (data value) 
as the Y-axis (Fig. 3). Figure 3 shows the spectral reflec-
tance of each monitoring station, with each color repre-
senting one monitoring station. Our purpose in doing so 
is to display the overall reflectance of chlorophyll-a con-
centration in the station. According to the spectral curve 
of GF-1, it can be seen that there is an absorption valley 
in the spectral curve of chlorophyll-a at the wavelength of 
680 nm (Fig. 3a); from that, we can infer the presence of 
chlorophyll-a on the surface of a water body (Juarez et al. 
2008). Moreover, the reflectance at the near-infrared band 
has a certain elevation (Dall'Olmo et al. 2005). Compared 

(2)NDWI =
�NIR − �MIR

�NIR + �MIR
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Fig. 2  The framework of chlorophyll-a retrieval in Huancheng River

Fig. 3  Reflection of spectral 
characteristics of monitoring 
stations based on remote sens-
ing image data

1-FG)a(

2-lenitneS)b(
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with GF-1 remote sensing image data, Sentinel-2 has a 
more detailed delineation of electromagnetic wavelengths. 
As shown in Fig. 3b, the spectral curve of chlorophyll-
a concentration showed four reflection peaks and three 
absorption valleys. In the visible part, a reflection peak 
appears near 559 nm (corresponding to the green band) 
and an absorption valley near 664 nm (corresponding to 
the red band). In addition, the reflection peaks appear 
around 704 nm (corresponding to the B5 band), 782 nm 
(corresponding to the B7 band), and 945 nm (correspond-
ing to the B9 band); the absorption valleys appear around 
740 nm (corresponding to B6 band) and 864 nm (cor-
responding to B8A band), respectively. As can be seen 
from Fig. 3, an effect similar to the vegetation red edge 
appears between the reflection peak and the absorption 
valley. Therefore, the two bands corresponding between 
the reflection peak and the absorption valley are selected 
to construct a suitable inversion band model. In GF-1 data, 
bands b3 (680 nm) and b4 (810 nm) are selected, and in 
Sentinel-2 data, bands b2 (492.7 nm) and b3 (559.8 nm), 
b4 (664.6 nm) and b5 (704.1 nm), b6 (740.5 nm) and b7 
(782.8 nm), and b8A (864.7 nm) and b9 (945.1 nm) are 
selected. A band inversion model is built by combining 
the two bands.

According to Fig. 3, it can be seen that the spectral 
curve of chlorophyll-a concentration in water exhibits an 
effect similar to the red edge of vegetation. Therefore, we 
construct band combinations in the form of common veg-
etation indices, such as the normalized difference vegeta-
tion index (NDVI) and enhanced vegetation indices (EVI).

To determine the correlation between chlorophyll-
a concentration and band inversion models, correlation 
analysis was performed. In this study, the Pearson’s cor-
relation coefficient (Pearson) was used to determine the 
correlation between the two. The formula is as follows:

where n is the number of samples, Xi and Yi are the meas-
ured values of chlorophyll-a concentration and the reflec-
tance of the band model at point i, respectively, and X and Y  
are the mean values of chlorophyll-a concentration and the 
mean values of the reflectance of the band model.

From the results in Table 1, the highest correlation between 
the reflectance of the b4/b3 combination and the measured 
chlorophyll-a concentration was observed in the GF-1 band 
combination, p < 0.01, indicating that the reflectance of the b4/
b3 combination was considerably correlated with the measured 
chl-a concentrations within the 99% confidence interval, with r 
reaching 0.532. The results in Table 2 show that the reflectance 

(3)r =

∑n

i=1

�
Xi − X

��
Yi − Y

�

�
∑n

i=1

�
Xi − X

�2
�

∑n

i=1

�
Yi − Y

�2

of the (b9 − b8A)/(b9 + b8A) band combination had the highest 
correlation with the measured chlorophyll-a concentration, and 
the reflectance of the (b9 − b8A)/(b9 + b8A) combination was 
significantly correlated with the measured chlorophyll-a con-
centration at the 99% confidence interval, with r reaching 0.326. 
In summary, b4/b3 was chosen as the characteristic variable of 
the inverse model of chlorophyll-a concentration for GF-1 data, 
and (b9 − b8A)/(b9 + b8A) was selected as the characteristic 
variable of the inverse model of chlorophyll-a concentration for 
Sentinel-2.

Inversion method of chlorophyll‑a concentration based 
on random forest algorithm

In the random forest technique, the decision tree is the basic unit. 
Its essential idea is the bagging method, which determines the 
outcome of the integrated evaluators by constructing multiple 

Table 1  Correlation between GF-1 band combination and measured 
chlorophyll-a concentration

Note: ** indicates a significant correlation at a confidence level (two-
sided) of 0.01

Band combination Correlation coefficient

(b4 − b3)/(b4 + b3) 0.529**
1/(b4 − b3)  − 0.213
1/(b4 + b3)  − 0.338
b4/b3 0.532**

Table 2  Correlation between Sentinel-2 band combination and meas-
ured chlorophyll-a concentration

Note: ** indicates a significant correlation at a confidence level (two-
sided) of 0.01; * indicates a significant correlation at a confidence 
level (two-sided) of 0.05

Band combination Correlation coefficient

(b3 − b2)/(b3 + b2) 0.051
1/(b3-b2)  − 0.031
1/(b3 + b2)  − 0.032
b3/b2 0.056
(b5 − b4)/(b5 + b4) 0.131
1/(b5 − b4)  − 0.041
1/(b5 + b4)  − 0.040
b5/b4 0.114
(b7 − b6)/(b7 + b6) 0.016
1/(b7 − b6)  − 0.173
1/(b7 + b6)  − 0.156
b7/b6 0.021
(b9 − b8A)/(b9 + b8A) 0.326**
1/(b9 − b8A) 0.237
1(b9 + b8A)  − 0.280*
b9/b8 0.309*
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mutually independent evaluators with the principle of average 
or majority voting. Random forest randomly selects individual 
decision trees during training. It converges to a lower generali-
zation error as the number of evaluators increases, which has 
better robustness and is suitable for modelling and analyzing 
small sample data (Su et al. 2018). Therefore, this paper uses 
the random forest algorithm to establish the nonlinear relation-
ship between the measured chlorophyll-a concentration and the 
spectral features.

During the experiment, first, given all the data sets:

where n is the number of samples and m is the number of 
features per sample.

Divide all data sets into training and test sets, where the 
training set is:

where T is the number of training sets.
The algorithmic framework of the random forest is shown 

in Fig. 4, with the following steps:

(1) Randomly select N times from the training set Sn by 
bootstrap method with put-back, one sample each time, 
resulting in N samples, and train a decision tree with 
the randomly selected N samples.

(4)D =
[(
xi, yi

)](
|D| = n, xi ∈ Rm, yi ∈ R

)

(5)ST =
[(
x1, y1

)
,
(
x2, y2

)
,…… ,

(
xT , yT

)]

(2) Build multiple regression models ( M1,M2,……,MN ) 
separately using the new training set obtained in step 1.

(3) Bring the test set into the trained regression tree model 
to get the predictive values [ M1(X),M2(X),……,MN(X)].

(4) The results of the predicted values of all regression 
trees are averaged, and the results are used as the final 
prediction of the random forest model.

In this study, a random forest algorithm was used to 
construct an inverse model of chlorophyll-a concentration 
using the Python language. The pre-processed image data-
set is selected according to the sensor type. The input vari-
able for the GF-1 inversion model is b4/b3, and the input 
variable for the Sentinel-2 inversion model is (b9 − b8A)/
(b9 + b8A). The complete dataset is generated based on 
the measured chlorophyll-a concentration and the input 
variables of the model, and 80% of the dataset is randomly 
selected as the training data and the remaining 20% as the 
test data. During the random forest model training, the 
hyper parameters were selected using the Randomized-
SearchCV provided by Scikit-learn. Table 3 provides the 
hyper parameter details for GF-1 and Sentinel-2.

After the model training is completed, the obtained model 
is applied to the corresponding remote sensing data to obtain 
the chl-a concentrations in those pixels without an in situ 
sensor. During the experiment, the pixel values of GF-1 and 
Sentinel-2 remote sensing images were extracted through 

Fig. 4  Random forest algorithm 
framework
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coding in Python. Through this step, all image element val-
ues of the b4/b3 band combination of GF-1 image and all 
image element values of the (b9 − b8A)/(b9 + b8A) band 
combination of Sentinel-2 image were extracted over the 
study area. It is worth mentioning that to avoid extra com-
putation tasks, we used the segmented images in this stage 
which only contain the Huanghe River.

Model evaluation

Comparison based on empirical model inversions The empirical 
model establishes an equation algorithm for chlorophyll-a con-
centration mainly through the reflectance of band combinations 
and uses the obtained equation to invert the chlorophyll-a con-
centration for the study area (Dev et al. 2022; Rotta et al. 2021).

We select the b4 and b3 bands of GF-1, the near-infrared 
and red bands, respectively, and use the band ratio model 
(b4/b3) to generate the corresponding image data. The reflec-
tance information of the monitoring stations of the two GF-1 
images was extracted by ENVI5.3 software, and the extracted 
data were organized into a table containing reflectance data 
and measured chlorophyll-a concentration data, and 80% 
of the data were randomly selected for modelling analysis. 
Using reflectance as the explanatory variable and in situ 
measured chl-a concentrations as the dependent variable, a 
scatter distribution was established and a curve fit was used 
to construct an inverse model of chlorophyll-a concentration. 
Linear, exponential, logarithmic, quadratic polynomial, and 
multiplicative power inverse models of chlorophyll-a con-
centration were constructed by statistical regression analysis. 
The optimal model for chlorophyll-a concentration inversion 
was selected by the goodness of fit ( R2).

We select Sentinel-2 b8A and b9 bands, which are near-
infrared (narrow) and water vapor bands, respectively, and 
generate the corresponding image data by the band combina-
tion model ((b9 − b8A)/(b9 + b8A)). The reflectance infor-
mation of all monitoring stations of Sentinel-2 images was 
extracted by ENVI5.3 software to generate a data table with 

reflectance information and measured chlorophyll-a concen-
tration. The same process as GF-1 treatment was used to 
establish the regression equation using scatter plots. The 
better-fitting curve equation was selected as the model for 
the inversion of chlorophyll-a concentration by Sentinel-2.

Validate the inversion of the random forest model based 
on the inversion results of the empirical model. First, we 
apply the empirical model to obtain chlorophyll-a concentra-
tion and compare the accuracy of the two models through 
evaluation indicators, such as  R2 and MSE. Second, the dif-
ferences between the inversion effects of the random forest 
model and the empirical model are derived through com-
parative analysis. Finally, the inverse effect of the random 
forest model is evaluated.

Comparison of inversion based on the APPEL model Anas 
et al. (2012) proposed a model called APProach by Elimination 
(APPEL) for the inversion of chlorophyll-a concentration, which 
is a polynomial on the reflectance of the green band ( Rrs(�green) ), 
red band ( Rrs(�red) ), and near-infrared band ( Rrs(�nir) ). Its basic 
principle is to obtain chlorophyll-a concentration information 
by using the property that water bodies show reflectance spec-
tral features with strong absorption in the near-infrared band. In 
contrast, chlorophyll-a exhibits high reflectance spectral features. 
Related scholars (Ali et al. 2014; Oyama et al. 2015) have used 
the APPEL model to invert chlorophyll-a concentration in large 
lakes and obtain valid results.

The difference between the above two methods is that the 
empirical model estimates chlorophyll-a concentration by 
statistically analyzing the correlation between remote sens-
ing data synchronized with groundwater quality analysis 
data, selecting the optimal band combination, and conduct-
ing statistical analysis of the correlation between remote 
sensing data synchronized with groundwater quality data. 
The APPEL model combines known spectral characteristics 
of water quality parameters (based on empirical knowledge 
that chlorophyll a concentration in water exhibits strong 
absorption characteristics in the near-infrared band) with 
statistical models and selects the optimal band as the rel-
evant variable to estimate water quality parameter values.

The expression of the model is:

where APPEL is the spectral index; Rrs(�blue) , Rrs(�red) , and 
Rrs(�nir) represent the reflectance of the blue band, red band, 
and near-infrared band, respectively.

The blue, red, and near-infrared bands of GF-1 data corre-
spond to b1, b3, and b4 bands, respectively, and the APPEL 
model is used to generate the corresponding image data. The 
reflectance information of the two image data monitoring 
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(7)Cchl−a = A + B ∗ Sappel

Table 3  Parameters of random forest model

Sensor type Parameter Value

GF-1 n 45
max_depth 10
max_feature log2
criterion Poisson
min_impurity_decrease 0

Sentinel-2 n 360
max_depth 17
max_feature sqrt
criterion Poisson
min_impurity_decrease 0
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stations was extracted by ENVI5.3 software to create table data, 
and 80% of the data were randomly selected for analysis and 
modelling. The blue, red, and near-infrared bands of Sentinel-2 
correspond to the b2, b4, and b8 bands, respectively, and are 
processed in the same way as the GF-1 data, which are used for 
modelling and analysis.

Inversion results are based on the APPEL model to verify the 
inversion effect of the random forest model. First, the goodness 
of fit of the two models when trained was compared by the R2 
index, and the APPEL model was applied to the inversion of 
chlorophyll-a concentration. Secondly, the differences between 
the inversion effect of the random forest model and the inversion 
effect of the APPEL model are derived through comparative 
analysis. Finally, the inverse effect of the random forest model 
is evaluated.

Evaluation indicators To evaluate the inversion accuracy of 
each inversion model, the remote sensing reflectance data cor-
responding to 20% of the measured chl-a data was used as the 
test dataset. It was evaluated using four indicators: coefficient of 
determination ( R2 ), mean square error (MSE), mean absolute 
error (MAE), and median absolute error (ME).

In the above, ŷi is the inverse value of chlorophyll-a concen-
tration, yi is the mean of the measured chlorophyll-a concen-
tration, yi is the measured chlorophyll-a concentration value, 
subscript i indicates different stations and n is the number of 
samples.

Results

Inversion results of chlorophyll‑a concentration 
based on random forest

In the experiments, the goodness of fit ( R2 ), root mean 
square error (MSE), mean absolute error (MAE), and median 
absolute error (ME) are used to evaluate the training results 

(8)R2 = 1 −

∑n
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(ŷi − yi)

2

∑n

i=1
(yi − yi)

2
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1
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2
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(11)ME = Median
|||||

yi − ŷi
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of the model. The training results of each sensor inversion 
model are shown in Table 4.

The inversion model was constructed using the results of the 
hyper parameter search and applied to the inversion of chlo-
rophyll-a concentration in the Huancheng River based on the 
trained random forest model, and the inversion results are as 
follows:

On May 31 and July 22, the water quality in the river 
was good, with only minor algal bloom occurring. Dur-
ing the rest of the period, the river showed varying 
degrees of algal bloom and poor water quality condi-
tions. On May 13, the overall chlorophyll-a concentration 
in the river was high, and the degree of algal bloom was 
more serious. Combined with the measured chlorophyll-
a concentration, Fig. 5 reflects the overall chlorophyll-
a concentration in the water quality of the Huancheng 
River during the period.

The main distribution of chlorophyll-a concentration values 
in the river: High values of chlorophyll-a concentrations are 
more often found along the river banks, and relatively low val-
ues of chlorophyll-a concentrations are found in the center of 
the river. Such a situation may be due to the influence of wind 
speed, direction, and water flow, which can easily aggregate 
the formed blue-green algal bloom to the riverbank, resulting 
in high chlorophyll-a concentration values on both sides of the 
river. For example, on July 22, the chlorophyll-a concentration 
on the bank of the river upstream was higher, 10 ~ 15 µg/L, and 
the chlorophyll-a concentration in the middle of the river was 
lower, less than 5 µg/L. The results of the inversion on August 
1 showed that the high chlorophyll-a concentration area of the 
whole river appeared on the bank of the river, the overall con-
centration is 10 ~ 15 µg/L, there are also chlorophyll-a concen-
trations greater than 15 µg/L, and the chlorophyll-a concentra-
tion in the center of the river is less than 10 µg/L. Therefore, the 
algal bloom on that day gathered in the bank area of the river.

Inversion model evaluation

Comparison of inversion results based on empirical models

To select the most suitable empirical model, the goodness-
of-fit ( R2 ) of each model was calculated, and the GF-1 
empirical model had the highest goodness-of-fit for the 
quadratic model with R2 of 0.507. The fitting results are 

Table 4  Training results of random forest model

Sensor type R
2 MSE (µg/L) MAE (µg/L) ME (µg/L)

GF-1 0.889 2.196 0.959 0.686
Sentinel-2 0.812 0.974 0.802 0.649
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Fig. 5  Inversion results of chlorophyll-a concentration in Huzhou Huancheng River based on random forest model
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shown in Fig. 6a. Compared with the other six models, it can 
more effectively invert the chlorophyll-a concentration in the 
Huancheng River. Therefore, the quadratic model was cho-
sen as the empirical model for the inversion of chlorophyll-a 
concentration in GF-1. The calculation formula is as follows:

where Y is the chlorophyll-a concentration value and X is 
b4/b3.

There are some negative cases in the Sentinel-2 band 
combination data, so there is no logarithmic function and 
power function model, and only five models are fitted. The 
highest goodness of fit of the model is the quadratic model 
with R2 of 0.246, and the fitting results are shown in Fig. 6b. 
Compared with the other three models, it is more effective 
in inverting the chlorophyll-a concentration, so the quadratic 
model was chosen as the empirical model for the inversion 
of chlorophyll-a concentration in Sentinel 2. The calculation 
formula is as follows:

where Y is the chlorophyll-a concentration value and X is 
(b9 − b8A)/(b9 + b8A).

Based on the modelling results of the empirical model, 
it can be seen that the goodness of fit of the GF-1 and Sen-
tinel-2 random forest models is significantly higher than 
the empirical models of GF-1 and Sentinel-2, as shown in 
Table 5. Among them, the R2 index of the GF-1 random 
forest model is 38.2% higher than that of the empirical 
model, and the R2 index of the Sentinel-2 random forest 
model is 56.6% higher than that of the empirical model.

Application of empirical inversion model to GF-1 
remote sensing data. From the inversion effect, it can be 
seen that on May 31, the inversion result of the empirical 
model showed that the chlorophyll-a concentration of the 
river was less than 10 µg/L (Fig. 7a), and the inversion 
result of the random forest showed that the chlorophyll-a 
concentration of the river was both greater than 10 µg/L 
and less than 10 µg/L on that day (Fig. 7b). Combined 
with the measured chlorophyll-a concentration on the 
same day, the measured concentration values were ranged 
from 3 to 19 µg/L. According to research investigations 
(Amorim et al. 2020; Qin et al. 2015), slight hydration 
occurs when chlorophyll-a concentration is greater than 
10 µg/L. The inversion of the random forest model results 
in a little algal bloom in each small section of the river. In 
contrast, the empirical model inversion results in no algal 
bloom. On July 22, the inversion results of the empirical 
model showed a region of low chlorophyll-a concentration 
(less than 5 µg/L), as shown in Fig. 7c. The results of the 
random forest model inversion reflected both low-value 
areas and higher-value areas (> 10 µg/L) of chlorophyll-a 

(12)Y = −1.601X2 + 13.459X − 4.657

(13)Y = −3.531X2 − 3.0931X + 13.065

concentrations, as shown in Fig. 7d, and therefore a slight 
water bloom phenomenon. The measured chlorophyll-
a concentration on the day was less than 10 µg/L, and 
the measured values at a few stations were greater than 
10 µg/L. The water quality condition was good on the 
whole. Based on the comparative analysis of the inver-
sion results graph, the inversion results of the random for-
est model are closer to the results of the measured chlo-
rophyll-a concentration cases, and the inversion effect is 
better.

In the inversion results on May 13, the empirical 
model inversions showed results between 10 and 15 µg/L 
(Fig.  8a). The inversion results of the random forest 
model showed regions greater than 15 µg/L, which are 
more finely represented in the resulting plot (Fig. 8b). 
On August 1, the inversion results of the empirical model 
appeared to have areas with chlorophyll-a concentrations 
less than 10 µg/L, but the resulting map showed slight 
overall hydrophobia (Fig. 8c). The inversion results of 
the random forest model are different from the empirical 
model. Although there are also chlorophyll-a concentra-
tions below 10 µg/L, the area of the river below 10 µg/L 
is more extensive, the overall water quality is better, and 
the results are more consistent with the measured results 
(Fig. 8d). Therefore, the inversion results of chlorophyll-
a concentration of Sentinel-2 were better in the random 
forest model.

Comparison of inversion results based on the APPEL model

The low goodness of fit of the APPEL model with chloro-
phyll-a concentration is illustrated in Fig. 9. Specifically, 
the goodness of fit of the APPEL model for GF-1 is only 
0.001, and that of the Sentinel-2 model is only 0.004, as 
shown in Table 6. There is no clear trend in the fitted rela-
tionship plots of the APPEL models for GF-1 and Sentinel-2, 
both of which exhibit underfitting. Therefore, the obtained 
fits are poor. Therefore, the modelling results based on the 
APPEL model are not comparable to those of the random 
forest model due to the low R2 index of the APPEL model.

To investigate more on the feasibility of the APPEL model 
in chl-a concentration prediction, the inversion results of the 
APPEL model on May 31 are illustrated in Fig. 10. As can be 
seen, the chlorophyll-a concentration in the river ranged from 
5 to 10 µg/L, and no other concentration interval appeared. 
The results of the inversion of the random forest showed that 
the chlorophyll-a concentration in the river on that day was 
both greater than 10 µg/l and less than 10 µg/l, and the results 
of multiple intervals of chlorophyll-a concentration values 
appeared (Fig. 10 a and b). Combined with the measured data, 
the inversion results of the random forest model are closer to 
the chlorophyll-a concentration situation on that day. On July 
22, the inversion results of the APEEL model were the same 
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as those on May 31, showing chlorophyll-a concentrations 
of 5 ~ 10 µg/L (Fig. 10c). The random forest model inversion 
results reflect that chlorophyll-a concentration has low-value 
areas. Areas with chlorophyll-a concentrations greater than 
10 µg/L occur in parts of the river (Fig. 10d). As a result, there 
is a slight water bloom on the river.

In the inversion results on May 13, the inversion results of 
the APPEL model exhibited chlorophyll-a concentrations rang-
ing from 10 to 15 µg/L, and the random forest model inver-
sions showed regions greater than 15 µg/L (Fig. 11 a and b). 
On August 1, the inversion results of the APPEL model still 
showed that the chlorophyll-a concentration ranged from 10 
to 15 µg/L. The inversion effect of the random forest model 
showed that the overall chlorophyll-a concentration was below 
10 µg/L; there were relatively few areas larger than 10 µg/L 
(Fig. 11 c and d), and the overall water quality was better, which 
was more consistent with the actual measurement results.

Comparison of inversion results based on evaluation 
indicators

To test the feasibility of the random forest model, the remote 
sensing reflectance corresponding to 20% of the measured 
chlorophyll-a concentration data was substituted into the 
inversion model as the independent variable. The inversion 
values obtained by using the inversion model were compared 
with the measured values to evaluate the accuracy of the 
model. The empirical inversion model of GF-1 achieves an R2 
index of 0.565, and the data points of the test set are distrib-
uted overall on both sides of the function curve of y = x, with a 
small number of data points falling on the diagonal (Fig. 12a). 
The empirical model of Sentinel-2 has a large waviness, R2 is 
only 0.194, the data points of the test set are scattered on both 
sides of the diagonal, and some data points deviate far from 
the y = x function curve (Fig. 12d). The difference between the 

(a) GF-1 (b) Sentinel-2

Fig. 6  Optimal fitting relationship between empirical model and measured chlorophyll-a concentration

Table 5  Fitting results of 
empirical inversion model

Sensor type Model classification Equation expressions R
2

GF-1 Linear functions Y = 8.283X − 1.213 0.499
Exponential functions Y = 2.789EXP (0.811X) 0.439
Logarithmic functions Y = 11.181lnX + 7.422 0.480
Quadratic functions Y = -1.601 X2+13.459X − 4.657 0.507
Power function Y = 6.496 X1.122 0.496
Composite model Y = 3.625 × 1.933X 0.452
Growth model Y = EXP (1.288 + 0.659X) 0.452

Sentinel-2 Linear functions Y =  − 5.110X + 13.168 0.238
Exponential functions Y = 13.008EXP (− 0.438X) 0.231
Quadratic functions Y =  − 3.531X2 − 3.0931X + 13.065 0.246
Composite model Y = 13.160 × 0.655X 0.232
Growth model Y = EXP (2.577 − 0.423X) 0.232
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error evaluation indexes of GF-1 and Sentinel-2 is slight. The 
APPEL models of GF-1 and Sentinel-2 have poor accuracy, 
low R2 , and significant error indicators. The red trend lines 
are almost parallel to the X-axis. The test datasets are not 
distributed along the diagonal but fluctuate above and below 
the red trend line (Fig. 12 b and e). Therefore, the APPEL 
model exhibits significant volatility and instability. The ran-
dom forest inversion model of GF-1 is more stable. Compared 
with the other two inversion models, there is a more remark-
able improvement in accuracy, with R2 reaching 0.931 and 
relatively small error indicators. Compared to the empirical 
inversion model, more data points are falling on the diagonal, 
as in Fig. 12c. Sentinel-2’s random forest inversion model has 
significantly improved R2 compared with the previous two 
models. The error evaluation indexes are all less than 1, as 
shown by the more evenly concentrated distribution of the test 
data set on both sides of the diagonal (Fig. 12f). Compared 
to the empirical inversion model, no data points are far from 
the diagonal. Therefore, the random forest inversion model is 
more accurate, and the model is more stable.

In order to more intuitively display the accuracy of 
each model, we have summarized the evaluation indica-
tors of the model in Tables 7 and 8.

Inversion model validation

To further validate the effect of the random forest model, we 
substitute the band combination reflectance of the test set as 
the dependent variable in each inversion model. The results 
from the random forest model are analyzed by comparing 
the validation values obtained from the random forest model 
with the measured values and the validation values from the 
empirical and APPEL models.

The comparison between the measured and validated 
chlorophyll-a concentrations based on GF-1 remote sens-
ing data shows that the validated and measured values 
of the empirical model are in good agreement at some 
points. At other points, the validation value of the empiri-
cal model is high when the measured value is low and low 
when the measured value is high, as shown in Fig. 13. 

(a) Empirical model (b) RandomForest model

(c) Empirical model (d) RandomForest model

Fig. 7  Comparison of empirical model inversion results based on GF-1 data
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(a) Empirical model (b) RandomForest model

(c) Empirical model (d) RandomForest model

Fig. 8  Comparison of empirical model inversion results based on Sentinel-2 data

(a) GF-1 (b) Sentinel-2

Fig. 9  Relation between the APPEL model and measured chlorophyll-a concentration. y is the chlorophyll-a concentration and x is the spectral 
index of APPEL
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The curve trend of APPEL model validation values was 
relatively flat, without any fluctuation trend. The gen-
eral trend was quite different from the actual measured 
chlorophyll-a concentration values. The trend between the 
random forest model validation values and the measured 
chlorophyll-a concentrations remained the same, reflect-
ing the same increase and decrease.

In comparing the validated and measured values of 
each model based on Sentinel-2 remote sensing data, the 
curve trend between the validated and measured values 
of the empirical model was more consistent when the 
measured values of chlorophyll-a concentration were in 
the range of 10 to 13 µg/L. When the measured value is 

high or low, the validated value of the empirical model 
differs from the measured value. The validated values 
of the APPEL model fluctuated slightly between about 
12 µg/L and the actual measured values. The difference 
between the validated and measured values of the random 
forest model is slight, the curve trend of the two is more 
consistent without large fluctuations, and the effect of the 
random forest model is better, as shown in Fig. 14.

Discussion

Inversion model feasibility analysis

In the modelling results, the accuracy of the empirical 
inversion model of GF-1 reached 0.565. In contrast, the 
empirical model of Sentinel-2 had a lower accuracy of 
0.194, which might be due to the higher resolution of GF-1 
remote sensing images than Sentinel-2 and the smaller 
data volume of GF-1. The modelling method of APPEL 

Table 6  Fitting results of the APPEL inversion model

Sensor type Equation expressions R
2

GF-1 y = 9E-06x + 7.429 0.001
Sentinel-2 y =  − 8E-06x + 11.642 0.004

(a) APPEL model (b) RandomForest model

(c) APPEL model (d) RandomForest model

Fig. 10  Comparison of APPEL model inversion results based on GF-1 data
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failed to achieve the inversion of chlorophyll-a concentra-
tion in small watersheds, probably because the APPEL 
model was proposed for MODIS data. In contrast, the sen-
sitive bands of chlorophyll-a concentration differed for dif-
ferent sensor data (Moradi 2021), indicating that the model 
was not generalized. Based on the modelling method of 
random forest, the model accuracy of GF-1 and Sentinel-2 
is improved, and the random forest results are closer to the 
measured situation in the inversion effect.

In this study, only 5 months of measured data were avail-
able, and only 8 remote-sensing images were available in the 
corresponding period. Therefore, it was impossible to utilize 
more data for modelling, and the trained model could only 
be applied for short-term inversion of chlorophyll-a con-
centration. The inverse effect of the model for chlorophyll-a 
concentration in other months is unknown. Therefore, the 
model constructed from small sample data has some limita-
tions. The following research is to obtain more data volume, 
match to more remote sensing data sources, and make up for 

the lack of petite sample data modelling. And the means of 
big data mining can be adopted, using more machine learn-
ing algorithms to establish the link between the actual meas-
urement data and remote sensing band information, from 
which the relationship between the two is sought.

Causes of algal bloom and control measures

From the inversion results, we can see that the algal 
bloom in the Huzhou Huancheng River is mainly con-
centrated in summer, primarily influenced by climatic 
conditions (Sha et al. 2021). Therefore, local authori-
ties have taken several measures to reduce the risk of 
algal bloom outbreaks. Their efforts mainly include 
installing aeration devices in the river, salvage by boat, 
and camera monitoring along the river. Installation of 
aeration devices, mainly by increasing dissolved oxy-
gen concentration in the water, alleviates the degree of 
algal bloom in the river aggregation (Visser et al. 2016). 

(a) APPEL model (b) Random Forest model

(c) APPEL model (d) Random Forest model

Fig. 11  Comparison of APPEL model inversion results based on Sentinel-2 data
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(a) (d)

(b) (e)

(c) (f)

Fig. 12  Accuracy evaluation results of each inversion model
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Local departments in Huzhou City organized fishermen 
and boats as emergency forces for algal bloom salvage 
based on professional salvage boats and tools. Regularly 
clean the river and salvage algal bloom during water 
bloom outbreaks (Fig. 15). In addition, camera devices 
are installed on both sides of the river to take pictures of 
the river’s water quality. Once algal bloom appears in the 
river, the device delivers a risk alert to the management.

Conclusions

This paper constructed a random forest inversion model 
of chlorophyll-a concentration based on GF-1 and 
Sentinel-2 remote sensing data and actual measured 

chlorophyll-a concentration data. It was also compared 
and analyzed with the empirical model and APPEL 
model to verify the reliability and efficiency of the ran-
dom forest model to invert the chlorophyll-a concentra-
tion in the study area. Therefore, in the chlorophyll-a 
concentration inversion study, the random forest inver-
sion model can be used to invert the chlorophyll-a con-
centration in the study area more effectively and monitor 
the water quality condition of the area. The R2 for the 
accurate evaluation of GF-1 and Sentinel-2 random for-
est inversion models were 0.931 and 0.875, respectively, 
while the R2 for empirical models were 0.565 and 0.194, 
respectively, and the R2 for APPEL models were 0.303 
and 0.0004, respectively. We also found that for GF-1 
and Sentinel-2, our proposed model outperforms other 
models, and compared with other models, the accuracy 
improved by over 50%. Therefore, our proposed model 
(the random forest inversion model) is feasible to predict 
algal bloom concentrations.

We need to point out that the inversion model used 
in this paper is limited by the time series of the meas-
ured and remote sensing data, and it was not possible to 
use more models to invert the study area. The inversion 
of chlorophyll-a concentration is limited by the time of 
remote sensing images, which is insufficient to construct 
long time series data for the inversion of chlorophyll-
a concentration. We will further study future work in 
depth in the following areas: (1) exploring the effective-
ness of inversion of chlorophyll-a concentration using 
environmental satellite data, medium and high-resolution 
data such as Zhuhai-1, and the construction of long-time 
image sequences and (2) considering the prediction of 

Table 7  Accuracy of each model based on GF-1 data

Model R
2 MSE (µg/L) MAE (µg/L) ME (µg/L)

Empirical models 0.565 4.231 1.646 1.243
APPEL model 0.303 9.356 2.515 1.883
Random forest 

model
0.931 3.589 1.296 0.626

Table 8  Accuracy of each model based on Sentinel-2 data

model R
2 MSE (µg/L) MAE (µg/L) ME (µg/L)

Empirical models 0.194 3.983 1.591 1.335
APPEL model 0.0004 4.859 1.736 1.522
Random forest 

model
0.875 0.99 0.798 0.78

Fig. 13  Line chart of the measured value and verified value of chloro-
phyll-a concentration based on GF-1 remote sensing data

Fig. 14  Line chart of the measured value and verified value of chloro-
phyll-a concentration based on Sentinel-2 remote sensing data
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chlorophyll-a concentration based on big data and build 
more complex models (such as deep learning and other 
models) to solve the problem of prediction and early 
warning of chlorophyll-a concentration through long time 
series of water quality monitoring data.
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