
Vol.:(0123456789)1 3

Environmental Science and Pollution Research (2023) 30:80643–80654 
https://doi.org/10.1007/s11356-023-27880-8

RESEARCH ARTICLE

PFAS soil concentrations surrounding a hazardous waste incinerator 
in East Liverpool, Ohio, an environmental justice community

Kaitlin Vollet Martin1,2  · Timothy J. Hilbert3 · Michael Reilly4 · W. Jay Christian1 · Anna Hoover1 · Kelly G. Pennell5 · 
Qunxing Ding6 · Erin N. Haynes1

Received: 27 July 2022 / Accepted: 19 May 2023 / Published online: 10 June 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds widely used in industrial and consumer 
products. While PFAS provide product durability, these chemicals are ubiquitous, persistent, bioaccumulative, and toxic. 
These characteristics make the ultimate disposal of PFAS a challenge. One current disposal method is incineration; however, 
little research has been conducted on the safety and effectiveness of PFAS incineration. The characteristics of communities 
with hazardous waste incinerators that have received PFAS shipments indicate that more individuals with lower incomes 
and individuals with less education than the US average are at higher risk of exposure, which presents important environ-
mental justice and health equity concerns of PFAS incineration. Situated in eastern Ohio, East Liverpool is an Appalachian 
community that is home to a large hazardous-waste incinerator, operated by Heritage WTI, that began accepting PFAS in 
2019. Residents are concerned that the disposal lacks the research necessary to assure safety for the residents. Due to both 
community interest and data gaps regarding PFAS incineration, our research team conducted a pilot study to examine the 
distribution and concentration of PFAS in soil samples surrounding the incinerator. All 35 soil samples had measurable 
amounts of PFAS including perfluorobutanesulfonic acid (PFBS), perfluorooctanesulfonic acid (PFOS), perfluorooctanoic 
acid (PFOA), and hexafluoropropylene oxide dimer acid (HFPO-DA)/GenX. PFOS was measured in the majority of soil 
samples (97%) with a range of 50–8,300 ng/kg. PFOA was measured in 94% of soil samples with a range of 51 ng/kg to 
1300 ng/kg. HFPO-DA/GenX was measurable in 12 soil samples with concentrations of ranging from 150 ng/kg to 1500 ng/
kg. Further research on PFAS disposal will advance knowledge and action related to regulatory requirements and exposure 
prevention, ultimately improving individual and community protections and health equity.

Keywords PFAS · PFAS incineration · Environmental justice · AFFF

Introduction

Often referred to as “forever chemicals,” per- and poly-
fluoroalkyl substances (PFAS) are a class of synthetic com-
pounds that have recently become recognized as a global 
health threat (Environmental Protection Agency 2021f). 
Since the 1940s, PFAS have been widely used in industrial 
and consumer products. Due to water, oil, and heat-resistant 
characteristics, potential PFAS exposure stems from a wide 
range of products such as non-stick cookware, stain-resistant 
fabrics, waterproof materials, food packaging, and aqueous 
film forming foam (AFFF) or firefighting foam. There are 
thousands of PFAS compounds in use such as perfluorooc-
tanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), 
and hexafluoropropylene oxide-dimer acid (HFPO-DA or the 
tradename, GenX). While PFAS provides product durability, 
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these man-made chemicals are persistent, bioaccumulative, 
and toxic (Goodrow et al. 2020).

PFAS molecules are composed of carbon–fluorine bonds, 
which are very short and strong, making PFAS highly resist-
ant to degradation (Lindstrom et al. 2011). Due to a long 
history of use and persistence, PFAS is found in waterways, 
soil, groundwater, dust, animals, and humans. Based on cur-
rent scientific research, humans are exposed largely through 
the ingestion of PFAS-containing food and water. PFAS 
drinking water contamination is particularly prevalent in 
communities surrounding military bases where AFFF was 
used (Anderko & Pennea 2020). A study from the Centers 
for Disease Control and Prevention (CDC) found that 97 
percent of the United States (US) population had detectable 
levels of PFAS in their blood (Lewis et al. 2015); however, 
safe exposure levels are widely debated. Bioaccumulation 
has been linked with a vast array of health effects such as 
those involving fertility (Ding et al. 2020; Tarapore & Ouy-
ang 2021), fetal growth (Xiao et al. 2020), metabolic out-
comes (Shih et al. 2021), lipids, and thyroid disease (Jain & 
Ducatman 2019; Melzer et al. 2010).

Increasing regulatory attention has led to several PFAS, 
namely, PFOA and PFOS, being phased out of production 
in the US. However, the proper disposal of these legacy sub-
stances is hotly debated due to the volatility, persistence, 
and ubiquitous nature of PFAS. In 2018, the Department 
of Defense (DoD) awarded contracts to nine facilities to 
dispose of AFFF through incineration in states including 
Arkansas, Illinois, New York, Nebraska, Ohio, and Texas 
(Crunden 2020). To our knowledge, very little peer-reviewed 
research has been conducted on the efficacy of PFAS incin-
eration. The United States Environmental Protection Agency 
(EPA) note that few experiments have been conducted that 
represent field-scale incineration and its effectiveness to 
destroy PFAS compounds; additionally, the formation of 
byproducts is not well understood (Environmental Protection 
Agency 2020). In addition to these questions, the DoD has 
acknowledged that limited air emission data exists (Sullivan 
2019). Both the US EPA and DoD are currently investigating 
optimal PFAS disposal methods (Environmental Protection 
Agency 2021f).

With both the effectiveness and safety of PFAS incinera-
tion in question, communities with incinerators receiving 
these compounds are at risk. Demographic characteristics 
of communities with hazardous waste incinerators that reg-
ularly receive PFAS shipments (Environmental Protection 
Agency 2021d) indicate that potential exposures resulting 
from incineration may affect individuals residing in com-
munities with lower incomes and less education than the 
US average (Table 1). In addition to existing health dispari-
ties arising from these socioeconomic social determinants 
of health (P. Braveman et al. 2011), these communities face 
additional vulnerability related to the unknown hazards 

associated with PFAS incineration. Specifically, Appala-
chian communities often are environmentally exploited, 
which increases the potential for contaminant exposures con-
tributing to health disparities (Haynes et al. 2010; Kozlowski 
& Perkins 2016). Situated in eastern Ohio (OH), East Liv-
erpool is an Appalachian community that is home to a large 
hazardous-waste incinerator, which began accepting PFAS 
in 2019. Local residents are concerned that insufficient sci-
entific evidence about PFAS disposal exists to assure com-
munity safety (Environmental Protection Agency 2021b; 
Ujhelyi 2020). In order to address the community’s con-
cern and research data gaps regarding PFAS incineration, 
our research team conducted a pilot study to examine the 
distribution and concentration of PFAS in soil and surface 
water surrounding the hazardous waste incinerator in East 
Liverpool, OH.

Methods

Soil sampling

A certified industrial hygienist (CIH) and a field technician 
traveled to East Liverpool, OH, to conduct environmental 
surface soil sampling for analysis of 28 PFAS at locations 
surrounding the Heritage WTI waste incinerator facility. 
A professional geologist offered guidance in the prepara-
tion and execution of the sampling. The first round of soil 
sampling occurred on January 30, 2021. A second round of 
soil sampling occurred on December 29, 2021. Surface soil 
sample locations were identified in partnership with input 
from local residents, academic, and the technician. Surface 
soil samples were obtained at locations adjacent to and fur-
ther from the Heritage Thermal Services waste incinerator 
facility located in East Liverpool, OH. Soil sampling loca-
tions were chosen in the field by the field technicians based 
on accessible and vacant public lands with the majority of 
samples collected within a two-mile radius of the facility. 
In addition, Google Maps was utilized in the field to iden-
tify potential sampling locations. To avoid potential PFAS 
cross-contamination associated with sampling in relation to 
the site, areas further from the site were sampled prior to 
locations closer to the site. The upwind direction was based 
on the predominant southwest to northeast wind that histori-
cally traverses the facility. Actual wind direction observed 
during the day of the sampling was not considered during 
the environmental sampling activities.

In total, 35 surface soil samples were collected in the 
lands surrounding the facility, 15 were collected in January 
2021, and 20 were collected in December 2021. The 15 soil 
samples collected in January 2021 were comprised five sam-
ples obtained in East Liverpool, OH, eight samples obtained 
in Chester, West Virginia, one sample obtained in Ohioville, 
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Pennsylvania, and one sample obtained in Georgetown, 
Pennsylvania. On the day of sampling in January 2021, the 
temperature ranged from 8 to 30 degrees Fahrenheit, the 
relative humidity was 56–80%, and the observed wind speed/
direction was 3 to 10 miles per hour Southeast. The 20 soil 
samples collected in December 2021 included eight samples 
obtained in East Liverpool, Ohio, five samples obtained in 
Chester, West Virginia, three samples from Ohioville, Penn-
sylvania, one sample was collected in Glasgow, Pennsylva-
nia, and two samples were obtained in Georgetown, Penn-
sylvania. Additionally, one equipment blank was collected 
in the field. On the day of sampling in December 2021, the 
temperature ranged from 40 to 50 degrees Fahrenheit, the 
relative humidity was 80–90%, and the observed wind speed/
direction was 0 to 10 miles per hour Southwest.

The onsite field technician obtained environmental soil 
samples in accordance with current US EPA methods/pro-
tocols for sampling PFAS in surface soil. Samples were 
shipped to the analytical laboratory (ALS Environmental, 
Holland, MI) on ice (convenience store ice bagged in 1-gal-
lon Ziploc® bags) in coolers provided by the analytical labo-
ratory. The soil samples were analyzed by a liquid chroma-
tography mass spectrometry mass spectrometry (LC tandem 
MS, LC–MS/MS) compliant with Table B-15 of U.S. DoD’s 
Q Quality Systems Manual (QSM) 5.3.

We used QGIS version 3.16 to create a map of the study 
region using cartographic boundary files and other spatial 
data from the U.S. Census (Bureau 2021). On Fig. 1, we 
plotted the locations of the soil sampling sites and used pie 
charts to visualize the relative concentrations of all quantifi-
able PFAS chemicals in the soil at each site.

Water sampling

On January 30, 2021 and February 03, 2021, nineteen sur-
face water samples were collected in the Ohio River, as 
well as creeks and streams surrounding the facility. The 
nineteen samples comprised nine samples obtained in East 
Liverpool, Ohio, eight samples obtained in Chester, West 
Virginia, one sample obtained in Ohioville, Pennsylvania, 
and one sample obtained in Georgetown, Pennsylvania. 
One field blank was collected on January 30, 2021.

Surface water samples were obtained utilizing three 
200 ml (ml) high-density polyethylene (HDPE) contain-
ers provided by the analytical laboratory. The HDPE con-
tainers did not have a preservative. The field technician 
obtained surface water samples from the shoreline of the 
Ohio River, creeks, and streams, occasionally wading into 
the waterway to obtain moving water. Efforts were made to 
sample at the middle of the water column, as well as sam-
pling downstream locations prior to sampling upstream. 
The field technician opened each individual 200  ml 
sampling container underwater and capped the sample 

underwater after the container filled. The three contain-
ers were then labeled, bagged, and placed in the sampling 
cooler over ice in preparation for shipment to the analyti-
cal laboratory. Field blanks for surface water samples were 
obtained in the field by pouring PFAS-free DI water pro-
vided by the analytical laboratory into three 200 ml HDPE 
blank containers. The blanks were capped and processed 
as described above. The surface water samples were ana-
lyzed by a liquid chromatography mass spectrometry mass 
spectrometry (LCMSMS) compliant with Table B-15 of 
U.S. DoD’s Q Quality Systems Manual (QSM) 5.3.

We used QGIS version 3.16 to create a map (Sup-
plemental Fig. 1) of the study region using cartographic 
boundary files and other spatial data from the U.S. Census 
(Bureau 2021). On the map, we plotted the locations of the 
surface water sampling sites and used pie charts to visual-
ize the relative concentrations of all quantifiable PFAS 
chemicals in the water at each site.

Results and discussion

Soil concentrations of PFOS and PFOA

All 35 soil samples had measurable amounts of PFAS 
(Table 2); however, due to the study design, we cannot 
directly link the observed PFAS levels in our study to 
the hazardous waste incinerator. Concentrations of PFOS 
and PFOA were quantifiable in the majority (97% and 
94%, respectively) of the soil samples. As depicted in 
Fig. 1, Table 2, and Supplemental Table 1, the quantifi-
able PFOS concentrations were higher than PFOA. The 
average concentration of PFOS was 1225 ng/kg with a 
range of 50–8,300 ng/kg. Site C had the highest PFOS 
concentration (8,300 ng/kg). Interestingly, site C is located 
over one kilometer upwind of the incinerator. This loca-
tion is located in a residential area along the Ohio River 
with no known source of PFAS. A recent pilot study of 
water and soil samples completed by faculty and students 
at Bennington College in Vermont described a similar 
trend with PFOS soil concentrations being higher than 
PFOA levels in sampling sites surrounding a plant incin-
erating AFFF (Bond and Enck 2020). The study found a 
maximum PFOS concentration of 1.2 ng/g in soil located 
adjacent (250 m) to the plant (Bond and Enck 2020). In 
our study, we detected even higher PFOS concentrations 
at 7 of our sampling locations, sites C, H, and J1. Inter-
estingly, each of these sites is upwind of the incinerator 
making it unlikely to have stemmed from the incinera-
tor. At site H, which is located closest to the incinerator, 
we detected a PFOS concentration approximately 7 times 
higher than the maximum observed in New York. A review 
study investigating global background concentrations of 
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PFOA and PFOS observed median maximum concentra-
tions of 2,700 ng/kg for both PFOS and PFOA among the 
included studies (Brusseau et al. 2020). The PFOS and 
PFOA levels detected in our study are within the range 
detected in several studies investigating PFOS soil deposi-
tion near PFAS releasing sources (Conservation 2021; Zhu 
et al. 2019); however, our mean PFOS level of 1,225 ng/kg 
was greater than the hypothesized background PFOS level 
of approximately 610 ng/kg in a study near an industrial 
source in the northeastern US (Schroeder et al. 2021). We 
cannot link the observed PFOS and PFOA levels in our 
study to the hazardous waste incinerator. It is possible that 
there are other sources of PFAS in the area that have not 
been reported, similar to the observations made in nearby 
Wooster, OH (Pike et al. 2021).

The US EPA has listed both PFOS and PFOA as emerg-
ing contaminants of concern (Environmental Protection 
Agency 2017) and in 2016 established a chronic reference 
dose (RfD) for PFOA of 0.00002 mg/kg-day and a chronic 
RfD for PFOS of 0.00002 mg/kg-day. These RfDs are cur-
rently under reevaluation with the US EPA and may be 
updated in the future (Environmental Protection Agency 
2021c). Due to the documented human health effects asso-
ciated with PFOA and PFOS exposure, the bioaccumula-
tion of the chemicals, and environmental persistence, these 
long-chain PFAS have been phased out of production in 
the United States; however, industry has shifted to produc-
ing short-chain PFAS as replacements with limited data to 
support safety. Additionally, despite the fact that PFOS and 
PFOA are being phased out of production in the US, these 

substances are ubiquitous in the environment, making safe 
and effective disposal a challenge.

Soil levels of replacement PFAS including GenX

In East Liverpool, OH, we detected quantifiable perfluorobu-
tanesulfonic acid (PFBS) levels in 12 of our soil samples. In 
2002, the production of PFOS was phased out and replaced 
by PFBS due to its shorter carbon chain length and, thus, 
subsequent shorter half-life in human serum (approximately 
44 days vs. approximately 1,200 days) (Li et al. 2018; Xu 
et al. 2020). In addition to PFBS-containing products, PFBS 
may also be a byproduct of the degradation of longer-chain 
PFAS. Notably, previous research suggests that PFBS does 
not readily adsorb to soil; therefore, concentrations are 
more likely to be detected in water (Norwegian Geotechni-
cal Institute 2018). While there is limited health data on 
PFBS, animal studies suggest that PFBS is associated with 
adverse fetal, reproductive, renal, hepatic, and endocrine 
health outcomes (Bogdan 2019; Environmental Protection 
Agency 2018). Questions surrounding the carcinogenicity of 
PFBS remain. Although the current literature suggests that 
PFBS is less toxic than PFOA and PFOS, the US EPA has 
established a RfD of 0.0003 mg/kg-day for PFBS based on 
oral exposure (Environmental Protection Agency 2021e).

Quantifiable levels of HFPO-DA (GenX) were detected 
in 12 of the sampling locations (range: 150 ng/kg and 
1100 ng/kg). The majority of the soil samples with quanti-
fiable GenX concentrations were to the east of the incinera-
tor. According to the US EPA’s Toxic Release Inventory 
(TRI), no facilities located near these sampling locations 

Fig. 1  Map of PFAS concentra-
tions at soil sampling sites in 
East Liverpool, Ohio
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(Beaver County, Pennsylvania; Columbiana County, Ohio; 
and Hancock County, West Virginia) have reported GenX 
releases due to the self- report nature and recent addi-
tion of PFAS to the TRI (EPA Toxic Release Inventory 
2021). GenX was developed to be a safer alternative to 
replace the longer-chain PFOA. GenX can be generated as 
a byproduct of manufacturing processes. The concentra-
tions observed in East Liverpool, OH, are similar to the 
2018 GenX levels (1.00 ng/g and 1.20 ng/g) measured in 
soil near Veto Lake in Washington County, OH, located 
approximately 8 km from a fluorochemical facility (Gal-
loway et al. 2020). However, it is important to note that 
the emissions near Veto Lake were attributed to the use of 
GenX in the manufacturing process. While data on human 
exposure to GenX is lacking, animal studies have linked 
GenX exposure with adverse health outcomes similar to 
those observed with PFOA and PFOS exposure such as 
gestational (Blake Bevin et al. 2020), developmental (Con-
ley et al. 2021), gut microbiota (Xie et al. 2021), hepatic, 
renal, hematologic, and immune health effects (Environ-
mental Protection Agency 2018, 2021c). In 2021, the US 
EPA established a subchronic (0.00003 mg/kg-day) and 
chronic (0.000003 mg/kg-day) RfD for GenX chemicals 
(Environmental Protection Agency 2021c). The RfD for 
GenX is lower than the RfDs established in 2016 for PFOS 
and PFOS. Markedly, the chronic RfD for GenX is 100 
times lower than the established RfD for PFBS (Environ-
mental Protection Agency 2021c). Interestingly, GenX is 
not known to be a component of AFFF. GenX is produced 
by Chemours in Fayetteville, NC. We are unable to deter-
mine the source of GenX at the sampling sites; it is possi-
ble that aside from AFFF, other sources of PFAS are being 
incinerated at Heritage WTI. Additionally, there may be 
other GenX sources such as waste disposal sites or other 
PFAS-releasing industrial sites; however, our research team 
has been unable to identify other potential PFAS sources 
(EPA Toxic Release Inventory 2021).

Concentrations of “other quanitifiable PFAS”

Perfluorononanoic acid (PFNA) was quantifiable in 33 
of the 35 soil samples collected in our study. Additional 
PFAS compounds were quantifiable in our soil sampling 
and are indicated by the gray shading in Fig. 1. Perfluoro-
decanoic acid (PFDA) was detected in 23 of the 35 sam-
pling sites. Perfluorodecanesulfonic acid (PFDS) was 
quantifiable at 4 samplings sites. Detectable concentra-
tions of n-methylperfluorooctanesulfonamidoacetic acid 
(NMeFOSAA), perfluorododecanoic acid (PFDoA), per-
fluorononanesulfonic acid (PFNS), perfluorooctanesul-
fonamide (PFOSA), perfluoropentanoic acid (PFPeA), 
and perfluoroundecanoic acid (PFUnA) were observed in 
several locations.

The epidemiologic literature regarding these PFAS is 
limited. A cross-sectional study using National Health and 
Nutrition Examination Survey (NHANES) data described 
an association between PFNA serum concentrations and 
cholesterol levels (Nelson et al. 2010). Moreover, animal 
studies suggest a relationship between PFNA and immune 
response (Fang et al. 2008). The US EPA is in the pro-
cess of conducting human health toxicity assessments 
for PFNA and PFDA (Environmental Protection Agency 
2019). NMeFOSAA, PFDoA, PFNS, PFOSA, PFPeA, 
PFUnA, and PFDS are currently included on the US EPA’s 
working list of PFAS chemicals with research interest 
(Environmental Protection Agency 2019, 2021e). Over 
4,700 PFAS currently exist, with this number growing as 
industry generates new substances (National Institute of 
Environmental Health Sciences), creating a burdensome 
challenge for epidemiologic research.

Surface water concentrations of PFAS

In our study, we collected surface water samples in addition 
to soil samples. The majority of the surface water samples 
had quantifiable levels of PFOS and PFOA (Supplemental 
Table 2 and Supplemental Fig. 1). Quantifiable PFOS con-
centrations ranged from 4.5 ng/L to 19 ng/L, and quantifi-
able PFOA concentrations ranged from 2.1 ng/L to 11 ng/L. 
We also detected quantifiable levels of PFHxS at site W-5 at 
a concentration of 8.8 ng/L. No other PFAS were detected 
in the surface water samples. Overall, the PFOS concentra-
tions were higher than the PFOA concentrations. Previous 
research examining surface waters near US Air Force Instal-
lations with histories of AFFF use suggests that PFOS is 
the most critical PFAS related to AFFF (East et al. 2021). 
The PFOS levels in our study are similar to those observed 
in a recent study investigating PFAS in surface water col-
lected from the Truckee River near Reno, Nevada (range: not 
detectable to 17.4 ng/L) (Bai & Son 2021). Notably, in our 
study, we more readily detected quantifiable levels of PFAS 
in soil than in surface water samples. This finding aligns 
with previous research that has demonstrated that PFAS are 
more prominent in soil when compared to other media such 
as surface water (Abunada et al. 2020).

Challenges with PFAS incineration

Properties such as high thermal stability and persistence 
that make PFAS ideal for use also make PFAS disposal an 
extremely complex issue. An investigation into three Chi-
nese municipal solid waste incineration plants found low 
concentrations of PFAS present in fly ash and bottom ash 
and higher levels in the leachates (Liu et al. 2021). Interest-
ingly, short chain PFAS comprised the majority of the PFAS 
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in the leachate. This study concluded that while incineration 
destroyed the majority of the PFAS, incomplete incineration 
resulted in the production of byproducts. Among the incin-
erators, PFAS concentrations were correlated with site-spe-
cific conditions such as the type of incinerator, temperature, 
and time. A study in Sweden found that ash from munici-
pality incineration facilities contained PFAS and may be 
a source of environmental pollution (Wohlin 2020). While 
we detected PFAS concentrations near a hazardous waste 
incinerator, our study did not directly evaluate the safety 
and effectiveness of PFAS incineration. More research is 
needed to address the concerns surrounding PFAS incinera-
tion including the formation of products of incomplete com-
bustion, incineration ash containing PFAS, and the emission 
of air pollutants such as greenhouse gasses (Environmental 
Protection Agency 2020; Stoiber et al. 2020).

Hazardous waste incineration and environmental 
justice

Poverty rates are greater than the US average for half of 
the communities with hazardous waste incinerators receiv-
ing PFAS for incineration (Table 1). Three of which have 
poverty rates more than two times greater than the national 
average. Seven of the eight communities have populations 
with a lower educational attainment (< Bachelor’s degree) 
than the US estimate. 62 percent of the communities have a 
higher disability rate compared to the US. The populations 
of all of the included communities are 50 percent or more 
White, and three (37.5%) of the communities have popu-
lations between 30 and 50 percent Black, Indigenous, and 
people of color (BIPOC).

In Cohoes, New York, a designated environmental justice 
area by the New York State Department of Environmen-
tal Conservation, the Norlite Hazardous Waste Incinerator 
is located within 400 feet from public housing (Benning-
ton College 2021). Due to unknown risks and vocal pub-
lic concern, the city of Cohoes banned the incineration of 
AFFF in 2020 (Times Union 2020). Several months later, 
the state of New York followed suit, citing environmental 
health concerns (Times Union 2020). Due to this success, 
the Norlite Incinerator has received few shipments of PFAS; 
therefore, the city is not included in Table 1. Other commu-
nities have expressed similar concerns surrounding potential 
PFAS contamination stemming from incineration (Flaherty 
2020). While these facilities have received PFAS shipments 
intended for incineration (Environmental Protection Agency 
2021d), the amount that has been incinerated at each site is 
unknown.

East Liverpool residents have raised concern about the 
environmental health risks associated with the hazardous 
waste incinerator since its inception in 1982, as well as 
expressing concerns about a local warehouse facility that 

emits air pollutants, primarily manganese (Haynes et al. 
2018). The poverty rate in East Liverpool, OH, is more 
than 2 times that of the US (27.9% vs. 11.4%) and the 
local median income level is nearly half of the US estimate 
($32,119 vs. $62,843). It has been well-established that pov-
erty is associated with health inequities such as increased 
risk of chronic disease (Braveman et al. 2010) and reduced 
life-expectancy (Chetty et al. 2016). In East Liverpool, 
approximately 2,500 children are under the age of 18 years. 
Two schools are located within two kilometers of the incin-
erator, and many houses are located even closer. Children are 
especially vulnerable to environmental insults (Landrigan 
et al. 2004), and PFAS exposure has been associated with 
pediatric asthma, early puberty onset, neurodevelopmental 
effects, decreased vaccine response, and cardiometabolic 
outcomes (Rappazzo et al. 2017). In a nearby community in 
Appalachian Ohio, the introduction of unconventional natu-
ral gas development, an industry with similar uncertain envi-
ronmental health impacts, has been linked with heightened 
psychological and social stress among the residents (Fisher 
et al. 2018). It is important to examine how the compound-
ing effects of environmental and socioeconomic inequities 
in communities such as East Liverpool contribute to height-
ened health and psychosocial impacts.

PFAS legislation

The US House of Representatives passed the PFAS Action 
Act of 2021, a comprehensive initiative aimed at limiting the 
use of PFAS and remediating contamination. This legislation 
would require the US EPA to designate PFOA and PFOS 
chemicals as “hazardous substances” under CERCLA or the 
Superfund law within one year of enactment of the legisla-
tion (PFAS Action Act of 2021 (H.R. 2467)). Within five 
years of enactment of the legislation, the agency would have 
to determine whether to designate all other PFAS chemicals 
as hazardous substances. The US EPA would be required 
to determine if PFAS are toxic pollutants under the Clean 
Water Act and/or considered hazardous air pollutants. Addi-
tionally, the Agency would regulate the disposal of all prod-
ucts containing PFAS. Further, in October 2021, the US EPA 
proposed plans to add PFOA, PFOS, PFBS, and GenX as 
hazardous waste under the Resource and Conservation and 
Recovery Act (Environmental Protection Agency 2021a). 
Thus, research is needed to determine the efficacy of burn-
ing PFAS and the extent to which communities are at risk 
of exposure to unburned PFAS or other chemicals resulting 
from the incineration or partial incineration process.

Limitations

While quantifiable levels of PFAS were detected in every 
soil sample in our pilot study, we are unable to pinpoint 
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the direct source of contamination. In 2020, the US EPA 
Toxics Release Inventory was updated to include the 
reporting of 172 PFAS (Gillespie 2020); thus, industrial 
sources of PFAS releases will be more apparent in the 
future. Therefore, it is possible that the PFAS concentra-
tions quanitified in our study may be attributed to other 
pollution sources such as wastewater discharges or other 
industrial sites. Additionally, we were unable to col-
lect soil samples before the incinerator began accepting 
AFFF; therefore, we do not have comparison samples.. 
Future research is critical to investigate timely research 
questions related to PFAS distribution in the environment 
as a result of attempted incineration.

Conclusions

In summary, all soil samples in our study had measurable 
amounts of PFAS, including PFBS, PFNA, PFOS, PFOA, 
and GenX. The concentrations of PFOS were the highest 
in our soil samples. It is noteworthy that GenX was found 
in nearly half of our soil samples. More research is nec-
essary to determine the source of the GenX. Critical and 
timely research on the disposal of PFAS could contribute 
to informed policy determinations about its safety. Spe-
cifically, the US EPA has stated the need to evaluate the 
effectiveness of PFAS disposal (Gillespie 2020). Impor-
tantly, if PFAS are determined to be hazardous in the 
PFAS Action Act of 2021, further research on disposal 
safety could increase knowledge about potential risks 
and inform the evolution of regulatory requirements, 
ultimately expanding opportunities to protect vulnerable 
individuals and communities from PFAS exposure.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 023- 27880-8.
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