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Abstract
Endocrine disrupting chemicals (EDCs) are increasingly concerned substance endangering human health and environment. 
However, there is no unified standard for identifying chemicals as EDCs, which is also controversial internationally. In this 
review, the procedures for EDC identification in different organizations/countries were described. Importantly, three aspects 
to be considered in identifying chemical substances as EDCs were summarized, which were mechanistic data, animal experi-
ments, and epidemiological information. The relationships between them were also discussed. To elaborate more clearly on 
these three aspects of evidence, scientific data on some chemicals including bisphenol A, 1,2-dibromo-4-(1,2 dibromoethyl) 
cyclohexane and perchlorate were collected and evaluated. Altogether, the above three chemicals were assessed for interfering 
with hormones and elaborated their health hazards from macroscopic to microscopic. This review is helpful for standardizing 
the identification procedure of EDCs.

Keywords Endocrine disrupting chemical · Identification · Mechanism · Animal experiment · Epidemiology · 
1,2-Dibromo-4-(1,2 dibromoethyl) cyclohexane

Introduction

Endocrine disrupting chemicals (EDCs) are exogenous 
chemicals that can cause adverse health outcomes by affect-
ing the endocrine system (IPCS 2002). EDCs are widely 
found in daily products and can be ingested by humans 
through soil, water, food, and air (Azzouz and Ballesteros 
2012; Salgueiro-González et al. 2015; Wee and Aris 2017), 

thereby affecting various systems and organs in humans, 
including the reproductive, the metabolic, and the nervous 
systems (Fig. 1). The health risks posed by EDCs to humans, 
such as reproductive dysfunction, cognitive deficits, and 
obesity, have been recognized as a major public health issue 
(Åke Bergman et al. 2012; Kahn et al. 2020; La Merrill et al. 
2020). Hence, it is urgent to control and manage EDCs. As 
the first step, the identification of EDCs cannot be ignored.

The increasing number of emerging substances with EDC 
properties cannot be identified as EDCs since there is no 
unified international standard for EDC identification. For 
example, parabens have estrogenic and anti-androgen prop-
erties, which may have potential adverse effects on reproduc-
tive development (Golden et al. 2005; Nowak et al. 2018; 
Sun et al. 2022). However, there is no definite standard 
to identify them as EDCs (Miao et al. 2023). As emerg-
ing environmental pollutants, microcystins can affect the 
reproductive system of a variety of organisms (Chen et al. 
2016; Chen et al. 2021; Xu et al. 2021; Xu et al. 2022). 
The endocrine disrupting effects of microcystins have been 
extensively studied; whether they are classified as EDCs is 
controversial (Zhang et al. 2022). Although different criteria 
have been used to identify EDCs, there are still limitations 
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in assessing a substance as EDCs in practice. First, there 
is no completely identical definition of EDCs (Andersson 
et al. 2018; EPA 2014; Health 2015; OECD 2018b; OEHHA 
2011; Safety 2002). Secondly, the sensitivity of different 
species to endocrine disruptors is varied, as does the expo-
sure period (Browne et al. 2020; Zgheib et al. 2021). For 
these two reasons, the conclusion on the possibility of iden-
tifying a substance as EDC was different in various coun-
tries or regions. Therefore, it is necessary to summarize the 
standards of international agencies and different countries, 
extracting the commonalities from them as strong evidence 
to identify EDCs.

In this review, the identification standards and relevant 
literatures in different countries and organizations were 
collected. The identification methods of EDCs were sum-
marized and evaluated objectively. The detailed informa-
tion about EDC identification was collated and analyzed, 
to rationalize the evidence for identifying an endocrine-
disrupting property of a substance from experimental and 
population epidemiological evidence. In order to elaborate 
on the three lines of evidence necessary to identify EDCs, 
evidences of bisphenol A (BPA), 1,2-dibromo-4-(1,2 dibro-
moethyl) cyclohexane (TBECH), and perchlorate were eval-
uated to identify their endocrine disrupting effects. Their 

identification processes were also described with a view to 
finding the general identification procedure of EDCs. This 
review provided a clear overview of gathering evidence to 
evaluate a substance being assessed as an EDC and pre-
sented its interference process on hormones, which will help 
humans to understand the typical characteristics of EDCs in 
the environment and provide guidance for the prevention and 
control of the threat of EDCs to humans.

Different standards for EDC identification 
around the world

To establish a complete standard for the identification of EDCs, 
strengthen the identification of EDCs, and effectively promote 
the standardization of endocrine identification research, many 
countries have issued corresponding standards. In the Euro-
pean Union, the European Chemicals Agency (ECHA) and 
the European Food Safety Authority (EFSA) jointly drafted 
the identification standard for EDCs, which are matched with 
a series of scientific procedures (Niklas Andersson et al. 2018). 
In the United States, chemicals interfering with hormonal 
actions have identifiable key characteristics (KCs) that can 
be used to identify EDCs (La Merrill et al. 2020). In other 

Fig. 1  EDCs can enter the human body through multiple ways, causing health hazards to the reproductive/endocrine, immune/autoimmune, car-
diopulmonary, and brain/nervous system
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countries, relevant identification measures of EDCs have also 
been taken respectively. In China, the standard related to the 
identification of EDCs is the industry standard “Evaluation 
Method of Pesticide Endocrine Disruptors” issued in 2015, 
which is mainly used to assess whether pesticides have endo-
crine disrupting effects (China 2015). As one of the Organi-
sation for Economic Cooperation and Development (OECD) 
member countries, Japan has made efforts to develop the tests 
for identifying EDCs (Health 2015). France will assess about 
300 plant protective substances and 100 biocidal substances 
for their endocrine disrupting properties, in conformity to the 
regulations and methods set out in the joint EFSA/ECHA guid-
ance document issued by the European Union, as appropri-
ate (ANSES 2021). Regulators use a variety of methods to 
assess the evidence for the inherent hazards of EDCs; they 
vary widely in the way they analyze, collect, and interpret the 
scientific evidence (Abass et al. 2016; Rudén, 2006). In this 
section, the identification criteria of the EU and the US were 
introduced and summarized in detail, considering that the 
identification standards have high international recognition of 
EDC and are widely used to evaluate the endocrine disrupting 
characteristics of chemicals.

Strategy for identifying EDCs in the European Union

EDCs are defined as exogenous substance or mixture that alter 
function(s) of the endocrine system and consequently cause 
adverse health effects in an intact organism, or its progeny, or 
(sub)populations (EC 1998), the same as the WHO’s. A sup-
porting guidance document for identifying EDCs was drafted 
by the ECHA and the EFSA jointly on June 7, 2018 (Niklas 
Andersson et al. 2018). The guidance points out strategy to 
assess whether a substance meets the criteria of EDCs. The 
evaluation strategies mainly include five parts (Fig. 2). Accord-
ing to its identification criterion of EDCs, European Chemicals 
Agency (An agency of the European Union) adds substances 
with endocrine disrupting properties to Candidate List of sub-
stances of very high concern for Authorisation (ECHA 2011).

It is known from the above standards and guidelines that 
they not only have a very clear definition of EDCs but also 
describe how to gather and evaluate all relevant evidences of 
chemicals need to identify, then carry out a mode of action 
(MoA) analysis. A MoA can be described as a series of bio-
logical events of a substance, which result in the specific 
adverse effect in animals and human. Apply a weight of evi-
dence (WoE) (OECD 2018a) approach, in order to estab-
lish whether the EDC criteria are fulfilled. In fact, as early 
as 2013, the European Union issued relevant standards for 
the identification of EDCs. Due to the irrationality of the 
proposed experimental method (Dietrich et al. 2013), it has 
caused debate among experts in different fields (Autrup et al. 
2015; Bergman et al. 2013; Zoeller et al. 2014). In 2018, 
after extensive communication in multi-disciplinary fields, 

scientific screening procedures have been implemented, 
which assess whether plant protection products and bioc-
idal products have endocrine disrupting properties (Niklas 
Andersson et al. 2018). In terms of the identification criteria 
of EDCs, the OECD developed available standardized test 
guidelines for in vivo and in vitro testing (OECD 2018a), 
which the European Union has adopted. In addition, there is 
broad scientific agreement on the interpretation of the effects 
observed on the investigated parameters (ECHA/EFSA 
2018). Therefore, Boberg et al. used this criterion to assess 
endocrine disruption of butylparaben (Boberg et al. 2020). 
The adverse health effects of potential EDCs caused by 
estrogenic, androgenic, thyroidal, and steroidogenic (EATS) 
modalities mainly are addressed by this guidance document. 
However, EDCs not only exert endocrine disrupting prop-
erties through the above four modalities, such as insulin. 
Therefore, in order to comprehensively assess the endocrine 
disrupting effects of emerging pollutants, future deeper stud-
ies are needed complement the non-EATS modalities in the 
testing strategies.

Guidelines for identifying EDCs in the United States

The EDCs were defined by the United States Environmen-
tal Protection Agency (US-EPA) as exogenous substances 
that disrupt the production, release, transport, metabolism, 
binding, action, or elimination of the natural hormones in 
the body responsible for the maintenance of homeostasis 
and the regulation of developmental processes (Diamanti-
Kandarakis et al. 2009; Gerald Ankley et al. 1998). The 
journal Nature Review Endocrinology published a con-
sensus statement written by 15 scientists from the United 
States on November 12, 2019. This consensus evaluated the 
potential threat of EDCs to human health. In this paper, the 
experts argued that chemicals that interfere with hormo-
nal actions have identifiable 10 key characteristics (KCs) 
that can be used to identify EDCs (La Merrill et al. 2020). 
These characteristics include interactions with hormone 
receptors, changes in hormone receptors and receptor cells, 
and alterations in the hormone itself (Vandenberg et al. 
2020). The KC approach eliminates the need for scientists 
and regulators to demonstrate every molecular mechanism 
of the adverse outcomes observed in animals or humans 
exposed to potential EDCs, reducing the tedious task of 
investigators regarding potential EDCs. The approach pre-
cisely meets the common characteristics of EDCs defined 
in different organizations and countries. Muñoz et  al. 
adopted this consensus when assessing whether glypho-
sate is an EDC (Muñoz et al. 2021). In fact, in 1998 the 
U.S. EPA released the Endocrine Disruptor Screening Pro-
gram (U.S.EPA 1998). The level of biological complexity 
from molecular interactions to populations is represented 
by the Tier 1 and Tier 2 screens and tests, to screen and 
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test chemical substances for their endocrine disrupting 
properties, which consistent with the Adverse Outcomes 
Pathway (AOP) (Fig. 3) (Browne et al. 2017). An AOP is 
a conceptual framework designed to enhance the utility 
of path-based data in assessing hazards to different levels 
of organisms, human health, and the environment (Ankley 
et al. 2010). An AOP can be described as the occurrence 
of a series of adverse outcome events. EDCs trigger some 
reversible or irreversible perturbations of normal biology 
through molecular interactions (e.g., binding to receptors 
and altering receptor expression). Furthermore, they con-
tinuously increase at the level of biological tissues, affect-
ing cell and organ function. This is followed by impacts on 
human health or on the survival, growth, or reproduction of 

wildlife. Based on various evidences of BPA, Viguié et al. 
adequately demonstrate that that BPA is an EDC using the 
AOP method (Viguié et al. 2018).

Evidence for assessing the endocrine 
disrupting properties of emerging 
pollutants: based on commonalities 
of the EU and US standards for EDC 
identification

From the above, many countries have been aware of the harm 
of EDCs for a long time and taken measures to reduce the 
impact on human beings and other organisms by formulating 

Fig. 2  The definition and the five steps of assessment strategy of 
endocrine disrupting chemicals in European Union. First, all relevant 
information includes all available relevant scientific data (in vivo 
studies or adequately validated alternative test systems predictive of 
adverse effects in humans or animals; as well as in vivo, in vitro, or, 
if applicable, in silico studies informing about endocrine modes of 
action), scientific data generated in accordance with internationally 
agreed study protocols and other scientific data selected applying a 
systematic review methodology. Second, the assembling of lines of 
evidence should take into consideration all the available evidence 
(positive and negative). Relevant and reliable parameters should be 

assembled to determine whether and how they contribute to the lines 
of evidence for adversity and/or endocrine activity. Third, the ini-
tial analysis of the evidence comprises an assessment whether either 
EATS-mediated adversity or EATS endocrine activity has been ‘suf-
ficiently’ investigated. This will allow to stop the EDC assessment 
in case no EATS-mediated adversity or endocrine activity that have 
been observed or to decide whether further data need to be generated. 
Last, in line with the criteria, the conclusions should answer the prob-
lem: Is there a biologically plausible link between endocrine activity 
and observed adverse effect(s)?
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corresponding identification standards. Accurate definition of 
EDCs is a premise for identifying EDCs. There are several 
standards of defining EDCs worldwide currently. Although 
there are some differences in the definition of EDCs in differ-
ent organizations and countries, they all contain two common 
characteristics: they affect the endocrine function, and they 
have adverse effects on health. Given that the European Union 
and the United States have the most well-developed and far-
reaching EDC identification procedures (Kassotis et al. 2020), 
this review is aimed at assessing the endocrine disrupting char-
acteristics of emerging environmental pollutants based on their 
commonalities. The EU is designed to collect all evidence of 
chemicals that disrupting endocrine and conduct weight analy-
sis to determine whether they are EDCs. Mechanism data are 
mainly derived from the testing system of OECD. In contrast, 
in the USA, the identification procedure is to propose 10 KCs 
based on mechanistic data and to identify them in combination 
with adverse effects at different biological levels. Despite the 
fact that there are differences between the EU and the USA in 
the identification criteria for EDCs, there are some similari-
ties between them: (1) the definition of EDCs is very clear; 
(2) EDCs are identified based on their risk/hazard profile; and 

(3) determine the adverse effect of a chemical in the whole 
organism (animal and human) and the mechanism of action of 
the chemical responsible for the adverse effect. The evidence 
presented in this review suggests that the procedure for deter-
mining a chemical as an EDC needs to consider three aspects: 
(1) in vivo and in vitro experiment data show that the adverse 
endocrine outcome is caused by this substance due to its KCs; 
(2) animal experiments have shown that the substance can 
cause pathological changes in animals; and (3) the substance 
can cause adverse outcomes in the human body; that is, epide-
miological studies have shown that a statistical correlation with 
human diseases (Fig. 4). It is beneficial to identify emerging 
environmental contaminants as EDCs by sharing toxicological, 
epidemiological, mechanistic and other EDC information in 
international collaborative databases.

Mechanistic data as an integral part 
of the identification of EDCs: molecular initiation 
events

Mechanism is the organization and integration of collected 
evidence for endocrine disruption across data streams, 

Fig. 3  Concept map of key features of endocrine disrupting chemi-
cals’ adverse outcome pathway. EDCs can cause molecular ini-
tiation events such as interactions with multiple hormone receptors. 
Molecular initiation events lead to adverse outcomes at the cellular 
level including changes in hormone levels and changes in cell fate. 

Edema, deformities, and so on appear at the organ level. Biologically, 
it causes developmental abnormalities, embryo death, increased infer-
tility, and changes in parental behavior. Eventually, the population 
prevalence increases
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possibly from molecular epidemiological studies, in vivo 
and in vitro testing in experimental animal models, high-
throughput testing, and in silico modelling (La Merrill et al. 
2020). The EU criterion is to identify EDCs on the basis 
of the collection of relevant data, followed by an analysis 
of a series of molecular initiating events that contribute 
to adverse outcomes. The ten key characteristics of EDCs 
freeinvestigators from the intricacies between “molecular 
initiating events” and specific modes of action or pathways 
of adverse outcomes (La Merrill et al. 2020).

The mechanism data involved in EDC identification pro-
cedures of the EU and US are dependent on various test 
methods. In 2012, the OECD originally published the Guide-
lines for Standardized Tests for the Assessment of Endocrine 
Disrupting Chemicals aimed at determining the endocrine 
mechanism of chemicals, which detailed the test system for 
the identification of EDCs. This guidance document dis-
cusses in detail both in vitro mechanical screening and in 
vivo screening and testing, covering endpoints relevant to 
humans or vertebrate wildlife, and for non-mammalian wild-
life screening and testing, test species are fish, amphibians, 
birds, molluscs animals, crustaceans and insects (OECD 
2018b). These assays provide a wealth of mechanistic data 
to identify a chemical as an endocrine disruptor.

In vivo experiments can identify potential biomarkers of 
EDCs. For example, there are changes in mRNA and pro-
tein levels of vitellogenin (VTG), changes in circulating hor-
mone levels, and histopathological measurements (Browne 

et al. 2017). It can be directly observed that there are effects 
of chemicals on specific tissues or cell types by in vitro 
methods. Because the in vitro studies are more controlled 
in operation and contain fewer confounding factors, they 
are suitable for identifying the specific mechanism of action 
and specific molecular targets of EDCs. However, with the 
development of experimental methods, moving away from 
experimental animal toxicity testing is more and more pres-
sured, alternative model organism testing methods and in 
silico modelling continue to emerge (Rybacka et al. 2015; 
Schneider et al. 2019). In silico approach can predict that 
specific chemical structures may cause “endocrine disrup-
tion,” mainly including ligand-based and structure-based 
methods, so as to predict the potential EDC activity of a 
given chemical structure. Among the ligand-based meth-
ods, the calculation of molecular descriptors is the simplest, 
which treats the molecule as a whole and calculates a value 
for the entire molecule (Schneider et al. 2019). Estrogen 
receptors including α and β are the most widely researched 
targets of endocrine disruption (Shanle and Xu 2011). 
Similarly, other steroid hormone receptors have been tar-
geted for model development (Chen et al. 2018). Structure-
based approaches, also known as target-based approaches, 
use information from the 3D structure of a protein target 
to screen endocrine disruptors. Docking procedures are 
most widely used in virtual screening activities, based on 
sampling the conformational space of a given ligand in the 
binding pouch of the target molecule, followed by postural 

Fig. 4  Evidence of identify-
ing a chemical as an EDC. 
Three aspects of evidence on 
chemicals should be evalu-
ated when identifying EDCs. 
Epidemiological studies provide 
direct links between EDCs and 
diseases of the reproductive sys-
tem, nervous system, and endo-
crine system in human. Animal 
experiments show that EDCs 
can cause adverse endocrine 
outcomes in different animals 
including model organisms and 
wild organisms. As mechanistic 
data, 10 KCs reveal the causes 
of adverse outcomes induced by 
EDCs in humans and animals at 
the molecular level
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evaluation by scoring functions (Klebe 2006), which has 
been applied to the prediction of endocrine disruption in 
androgen receptors and other nuclear receptors. Using envi-
ronmental chemicals from the Tox21 (toxicity testing in the 
twenty-first century) database, Jeong et al. used estrogen 
receptors and androgen receptors and their homology mod-
els in C. elegans to identify potential endocrine-disrupting 
chemicals through molecular docking simulations, demon-
strating that C. elegans has the potential to serve as an alter-
native model for EDCs screening environmental chemicals 
(Jeong et al. 2019). In silico predictions of EDC properties, 
Jaladanki et al. proposed a molecular docking-based virtual 
screening method for the prediction of potential EDC bind-
ing to nuclear receptors (Jaladanki et al. 2021).

In line with the above experiments, it is found that there 
are an increasing number of approaches to explore the 
mechanism of EDCs. As an emerging class of toxic chemi-
cals, EDCs will be actually identified by their mechanism 
of action, rather than by their chemical structure or specific 
type of use (Schneider et al. 2019). Therefore, mechanis-
tic data is the initiating events that have adverse effects on 
humans and other organisms and an indispensable part of 
the identification of EDCs.

Adverse effects in different species need to be 
assessed for the identification of EDCs

EDCs can affect a variety of organisms (Bernanke and 
Köhler 2009; Chen et al. 2019; Patisaul et al. 2018; Segner 
2009). The field of EDC originated in large part from the 
study of wildlife species; classical toxicology tests are essen-
tial to study them in detail. Classical toxicology relies heav-
ily on rodent models, especially rat, and mouse models, but 
species diversity remains a central element of on-going EDC 
research (Guillette and Gunderson 2001). Extensive studies 
of terrestrial and aquatic species are also required. However, 
classical EDC animal models such as sheep, quail, mini pigs, 
dogs, rabbits, and non-human primates are rarely used for 
EDC studies due to numerous factors (Patisaul et al. 2018). 
For decades, research groups have used Daphnia magna 
as an EDC screening model (Dang et al. 2012; Kang et al. 
2014). The endocrine systems in daphnia are quite different 
from vertebrates’ “EATS” systems; therefore, daphnia may 
not be able to serve as an alternative for vertebrate EDCs 
testing. Wild species including fish, birds, crocodiles, and 
other reptiles remain sentinels for the health of their vital 
organisms and ecosystems (Guillette and Gunderson 2001).

A growing diversity of vertebrate models, including trans-
genic mouse and rat lines, zebrafish Danio rerio, and monog-
amous rodents, has been used to assess endocrine disruptors 
(Patisaul et al. 2018). For example, BPA has been exten-
sively studied as a typical EDC. At first, BPA was found to 
have adverse effects on wild animals. For further study, the 

researchers observed the phenotype of rats exposed to BPA 
and found that it can cause vaginal lesions in female rats 
(Ahmed et al. 2014). For aquatic studies, zebrafish exposed 
to BPA resulted in pathological changes in testicular tis-
sue (Forner-Piquer et al. 2020) and follicular atresia in the 
ovary (Giommi et al. 2021; Molina et al. 2021). For birds, 
exposure to BPA resulted in decreased uterine tubular gland 
density and mucosal thickness in hens (Yigit and Daglioglu 
2010) and resulted in malformed Müllerian ducts (embry-
osalpinx) in female quail embryos and feminization of the 
left testis (ovotestis) in male chicken embryos (Berg et al. 
2001).

We can see that endocrine system function and health 
have been compromised in a variety of organisms, including 
rodents, fish, and birds, and their organ systems have dif-
ferent degrees of pathological changes. While mechanisms 
of action can provide an efficient way to identify potential 
EDCs, their endocrine disrupting effect on the whole ani-
mal cannot be presented. More importantly, a single inde-
pendent surrogate model is less accurate in reflecting the 
overall toxicity of an EDC in an in vivo organism (Fabian 
et al. 2019). Toxicological experiments are indispensable. 
Toxicology can play a predictive role by providing alerts 
about the potential effects of chemicals on humans. The 
basic assumption is that limiting exposure to chemicals 
to levels well below those that would have adverse effects 
on animals will prevent harmful consequences for humans 
(Adami et al. 2011). Therefore, the outcomes from different 
organism exposures are necessary to identify EDCs.

Population epidemiology provides direct evidence 
for the identification of EDCs: the relationship 
between EDC exposures and human health 
outcomes

Currently, growing evidence have shown that EDC expo-
sures are associated with endocrine-related diseases, such 
as male reproductive health (Hauser et al. 2015), female 
reproductive health (Gallo et al. 2016), and birth out-
comes (Hu et al. 2021; Raghavan et al. 2018; Spinder et al. 
2021), neurodevelopment (Ramírez et al. 2022), obesity 
and metabolism (Legler et al. 2015; Zamora et al. 2021), 
and immune dysfunction (Casas and Gascon 2020; Clay-
ton et al. 2011). These exposure outcomes are inseparable 
from epidemiological studies.

Epidemiology is “the study of the occurrence and dis-
tribution of health-related events, states, and processes in 
specific populations, including the study of the determi-
nants that influence these processes, and the application 
of this knowledge to the control of related health prob-
lems” (Porta 2016). Epidemiology plays an important role 
in exploring causes, preventing and controlling diseases, 
formulating strategies and measures for disease prevention 
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and control, and evaluating the effect of prevention and 
control, which has an irreplaceable effect on improving 
the health of the population. The epidemiological study 
of EDCs is the study of disease phenomena and health 
status in human exposed to EDCs. That is, it starts from 
the population and always focuses on the population 
health effects, not only considering the individual disease 
problem, but also considering how endocrine disruptors 
are reflected at the organ and molecular level. Epidemio-
logical studies provide key information of the relation-
ship between EDC exposures and human health effects 
(Ho et al. 2022). It can provide a direct link between the 
adverse outcomes and EDCs. There are certain advantages 
to conduct the research on EDCs directly in humans over 
animal studies, since it eliminates the need for interspecies 
extrapolation and allows the study of realistic pathways, 
admixtures, and exposure durations relevant to humans.

Generally, it is difficult to fully simulate actual human 
exposure to EDCs in animal studies due to the complex 
exposures and personal or behavioral factors encountered 
in real life (Ho et al. 2022). Therefore, animal experiments 
are no substitute for epidemiological studies. Although the 
European Union, the United States Environmental Protec-
tion Agency, etc. have issued a number of documents on 
EDC screening and identification, most of the evidence for 
identifying which chemical can be regarded as EDC mainly 
comes from in vitro and in vivo studies (ECHA/EFSA 
2018; U.S.EPA 1998); more and better evidence is needed 
to demonstrate the effects of exposure to EDCs on human 
health. Epidemiological studies are a logical and necessary 
complement to in vitro and in vivo experimental studies of 
EDCs to characterize the nature and extent of risk to human 
EDCs (Lee and Jacobs 2015). Traditionally, epidemiology 
and toxicology often work in parallel and complement each 
other. The epidemiological studies can direct present risks of 
human disease associated with exposure to EDCs and other 
research efforts; whether in animal models, in vitro or in 
silico studies further deepen our understanding of potential 
toxicological mechanism of EDCs (Terry et al. 2019). It can 
be seen that the three aspects of evidence complement each 
other, fully revealing that chemicals interfere with endocrine 
function and health.

The evidence on endocrine disruption 
of BPA was reviewed based on the procedure 
in this review

Estrogenic disruptors are considered a type of important 
chemicals that induce biological responses consistent 
with the effects of endogenous estrogens (Korach 1993; 
Li et al. 2012a). Among them, BPA, one of the classic 
chemicals with estrogenic activity, has been widely used 

in industrial production since first synthesized in 1891 
(Meng et al. 2019). At present, BPA is still an industrial 
component, widely used in the synthesis of polycarbonate 
plastic epoxy resin and other polymer materials, and is 
almost ubiquitous in urban life.

Mechanistic data of BPA about endocrine disruption

Plentiful scientific papers on the mechanism of BPA have 
been published. These data has revealed the molecular 
mechanisms underlying the phenotypic effects of BPA 
in humans and animals, which offer molecular initiating 
events of BPA.

BPA activates nuclear receptors (Andersen et al. 1999; 
Li et al. 2012b), membrane receptors (Watson et al. 2007), 
and G-protein-coupled receptors (Thomas and Dong 2006) 
in a variety of species.

BPA affects the expression of estrogen receptors. It can 
increase the expression of ER mRNA in specific regions of the 
brain in mice exposed during gestation (Rebuli et al. 2014).

BPA alters the signal transduction of estrogen-respon-
sive cells. BPA-induced proliferation of Sertoli TM4 cells 
is mediated by the induction of ERK phosphorylation. In 
the human testicular seminoma cell line (JKT-1), BPA 
activates cAMP-dependent and cGMP-dependent protein 
kinase pathways to phosphorylate CREB (cAMP-response 
element binding protein) (Bouskine et al. 2009).

BPA causes epigenetic modification of hormone-asso-
ciated cells. BPA affects promoter-specific methylation in 
brain, prostate, and human breast cancer cells (Bhan et al. 
2014; Wang et al. 2016; Yaoi et al. 2008). The ER-binding 
region of the long non-coding RNA HOTAIR promoter is 
enriched by trimethylation on H3K4 and H3K4-specific 
methyltransferases in human breast cancer cells (Bhan 
et al. 2014). In mouse prostate, neonatal exposure to BPA 
activates the histone methyltransferase MLL1 to persis-
tently increase H3K4 trimethylation at genes associated 
with prostate cancer (Wang et al. 2016).

BPA affects hormone synthesis. BPA inhibits steroidogen-
esis in the rat testis (Akingbemi et al. 2004). BPA reduces 
cytochrome p450 aromatase levels and the expression of other 
steroidogenic regulatory proteins (Mahalingam et al. 2017).

BPA alters hormone distribution or circulating hormone 
levels. Drinking water exposure of pregnant Sprague–Daw-
ley rats to BPA, the serum estradiol level of the offspring 
increased (Wu et al. 2020).

BPA alters fate of hormone-producing or hormone-
responsive cells. Developmental exposure to BPA alters the 
differentiation of mammary epithelial cells and increases 
the number of alveolar buds (structures that eventually 
produce milk in lactating females) in the mammary gland 
(Markey et al. 2001; Vandenberg et al. 2008). BPA also 
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increases the proliferation index in the mammary gland pan-
creas and uterine endothelial cells (Bosquiazzo et al. 2010; 
Moral et al. 2008).

Animal experiments of BPA in endocrine disruption

Animal studies have shown the pathological effects of BPA 
on the female reproductive system and male reproductive 
system. However, is the evidence that BPA causes repro-
ductive system disorders credible? That is, the study used 
standardized methods and clearly described experimental 
procedures and results (SCHEER—Scientific Committee on 
Health, Revision 2018). In the quality assessment of indi-
vidual toxicity studies of chemicals, the European Chemi-
cals Agency, the United States Food and Drug Administra-
tion (FDA), and the OECD have agreed on the use of the 
Klimisch method (Vandenberg et al. 2016). Experts need 
to make a clear quality assessment of the research in terms 
of validation/validity, reliability, and adequacy and ensure 
that the assessment results are understandable and convinc-
ing. When evaluating animal studies, consider the following: 
the strain, sex, and age of the tested animals; the origin and 
purity of TBECH; post-exposure changes of experimental 
animals (including clinical features, organ tissue changes 
and hematological changes); presentation of control data; 
description of test conditions; and route and dose of admin-
istration (Klimisch et al. 1997). To evaluate the reproduc-
tive system hazards of BPA in animals, the evidence of the 
effects of BPA on various animals was collected and sorted 
out, and the results are shown in Table 1.

Epidemiological evidence for BPA endocrine 
characteristics

There are a lot of epidemiological studies on the endocrine 
disrupting effects of BPA, mainly focusing on the relation-
ship between BPA and female reproductive system diseases, 
male reproductive dysfunction, obesity, and so on (La Mer-
rill et al. 2020). Among them, epidemiological studies con-
firmed that the reproductive system is an important target 
organ of BPA (Ma et al. 2019).

In the female reproductive system, the effect of BPA on 
female hormones is related to the thickness of the endome-
trial wall. The relationship between changes in endometrial 
wall thickness and BPA levels with age was observed, and 
it was found that endometrial thickness was positively cor-
related with urinary BPA level in young women and gradu-
ally thickened with the increase of BPA concentration, while 
endometrial thickness was negatively correlated with urinary 
BPA concentration in older women (Mínguez-Alarcón et al. 
2015). In addition, the number of cases of polycystic ovary 
syndrome (PCOS) is increasing year by year, and the inci-
dence is higher in adolescent and women of reproductive 

age, of which the incidence is 5%–10 in women of repro-
ductive age. In population epidemiological studies, elevated 
BPA concentrations have been observed in adolescent and 
adult women with PCOS and are positively associated with 
hyperandrogenism, which suggests a potential role of BPA 
in the pathophysiology of PCOS (Palioura and Diamanti-
Kandarakis 2015). In pregnant women, adverse pregnancy 
outcomes are also strongly associated with BPA exposure, 
such as miscarriage and preterm delivery. Cantonwine et al. 
found that women who gave birth at 37 weeks or less had 
higher urinary BPA concentrations than women who gave 
birth after 37 weeks (Cantonwine et al. 2010). In addition, 
spontaneous preterm birth (PTB) and preterm premature 
rupture of membranes (pPROM) have also been reported 
to be associated with BPA levels in adverse pregnancy out-
comes; Shen et al. concluded that BPA exposure may be 
associated with the risk of recurrent abortion (RM) (Shen 
et al. 2015). Furthermore, Behnia et al. found a positive cor-
relation between BPA concentration and the risk of PTB or 
pPROM (Behnia et al. 2016).

For the male reproductive system, BPA can affect the qual-
ity and function of sperm by altering the levels of related hor-
mones in the body, thus harming fertility. In a cohort study, 
Mustiels et al. found that BPA was significantly associated 
with higher serum total testosterone (TT) levels (Mustieles 
et al. 2018). Furthermore, Ferguson et al. showed that BPA 
actually decreased serum testosterone (T) concentration and 
increased estradiol (E2) concentration (Ferguson et al. 2014).

Based on the above review of the evidence on the endo-
crine disrupting effects of BPA, it can have adverse effects 
on animals and humans (Fig. 5).

The evidence on endocrine disruption 
of TBECH was reviewed based 
on the procedure in this review

Exogenous substances that interfere with androgens are 
called androgen disruptors. Since male sexual differentiation 
is entirely androgen dependent (Williams-Ashman 1965), it is 
highly susceptible to androgen-disruptors. Epidemiological 
studies and animal experiments have found that exposure to 
androgen disrupting chemicals is connected with diseases 
of the reproductive system in both sexes, including reduced 
sperm counts, increased infertility, testicular dysgenesis syn-
drome, and testicular and prostate cancers (Luccio-Camelo 
and Prins 2011). More than a dozen substances, such as 
TBECH and phthalates, are considered chemicals that disrupt 
androgen. TBECH is one of the few androgen receptor ago-
nists (Kuang et al. 2014; Luccio-Camelo and Prins 2011). By 
collecting and analyzing evidence for TBECH, the endocrine 
disrupting properties of TBECH are assessed and procedures 
for the chemical to be identified as an EDC are presented.
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TBECH, also known as 1,2-dibromo-4-(1,2-dibromoethyl) 
cyclohexane (DBE-DBCH), is manufactured by Albermarle 
as Saytex BCL-462 (Nguyen et al. 2017). As a common class 
of brominated flame retardants, it is widely used in household 
products and industrial products, including electrical fabrics 
and furniture, in order to improve the fire performance, so as 
to have a great impact on human living environment (Brown 
et al. 2014). The presence of four isomers of TBECH has 
been detected in a variety of environmental substrates and 
organisms, including soil, water species, indoor dust, fish, 
baby feces, and even Arctic environments, due to its exten-
sive production and use (Marteinson et al. 2020). Recently, 
a large number of experimental studies have shown that 
TBECH has endocrine disrupting effect, hepatotoxicity, and 
reproductive toxicity (Wang et al. 2020), and among them, 
the environmental endocrine disrupting characteristics have 
gradually become the focus of research.

Mechanistic data of TBECH about endocrine 
disruption

TBECH interacts with or activates hormone receptors. 
TBECH activates the human androgen receptor (Khalaf et al. 
2009; Larsson et al. 2006) and Zebrafish androgen recep-
tors (Pradhan et al. 2013). TBECH can activate androgen 

receptors and interact with and alter thyroid and estrogen 
receptors in chickens (Asnake et al. 2014). TBECH induces 
AR-mediated physiological responses in LNCaP cells, sug-
gesting that by acting as a partial agonist (Wong et al. 2016).

TBECH alters hormone receptor expression. Prostate-
specific antigen (PSA) activity in LNCaP cells and HepG2 
cells was determined by enzyme-linked immunosorbent 
assay. All the TBECH dienantiomers could induce the 
expression of PSA in LNCaP cells (Khalaf et al. 2009). 
Effects of transcriptional activation of mutant (ARW741C 
and ART877A) cells exposed to androgen-derived bromi-
nated flame retardant TBECH revealed that TBECH induced 
the expression of androgen receptor target genes, thereby 
altering the expression of hormone receptors (Kharlyngdoh 
et al. 2016).

TBECH alters hormone synthesis. γ- and δ-TBECH 
altered the transcription of androgen-responsive genes 
and steroidogenic genes in prostate epithelial cells (Khar-
lyngdoh et al. 2018). In addition, TBECH was altered in 
genes involved in the regulation of steroid biosynthesis, 
steroid metabolism, and prostate epithelial morphogenesis 
(Bereketoglu et al. 2021). In addition to the hormone-related 
receptors, EDCs act on enzymes involved in steroidogen-
esis and the metabolism of hormones (Sifakis et al. 2017). 
Phthalates, for example, are a specific class of plasticizer 

Fig. 5  The evidence of mechanism data, animal experiment, and epidemiology on endocrine disruption of BPA
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that exert anti-androgenic effects by inhibiting the synthesis 
of testosterone in Leydig cells as a result of direct inhibi-
tion of CYP17 (Foster 2005). Thiophosphates are a class 
of organophosphorus pesticides that inhibit P450 enzymes 
involved in the metabolism of estrone and testosterone in the 
liver, namely, CYP3A4 and CYP1A2 (Usmani et al. 2006; 
Usmani et al. 2003). After exposure to DBE-DBCH, liver 
mRNA levels of two phase I metabolic enzymes, CYP2H1 
and CYP3A37, were significantly increased by fourfold 
and eightfold, respectively, and CYP3A37 was also signifi-
cantly induced based on PCR arrays (Crump et al. 2014). 
Therefore, TBECH can cause changes in the corresponding 
enzymes, resulting in changes in hormone synthesis.

TBECH alters hormone distribution or circulating hor-
mone levels. Juvenile brown trout exposed to high doses of 
TBECH significantly reduced total plasma thyroxine (Park 
et al. 2011). However, there are also experiments showing 
occasional differences in circulating plasma E2, T, and 11-KT 
levels after TBECH treatment, but no clear time trend or dose 
response (Gemmill et al. 2011). TBECH altered the transcript 
levels of androgen-responsive genes in human cervical can-
cer (HeLa), ductal breast cancer (T-47D), and prostate cancer 
(LNCaP) cells (Kharlyngdoh et al. 2016). β-and t-TBECH 
exposure could affect the expression of one or more of 4 genes 
involved in the thyroid hormone pathway (Porter et al. 2014).

Animal experiments of TBECH in endocrine 
disruption

Mice and rats, the most commonly used animal models, have 
been studied in vivo, which have shown that TBECH can 
damage the reproductive and nervous system of mice and 
rats, which strongly proves that TBECH plays an endocrine 
disrupting effect in animals. Because TBECH is widely dis-
tributed in environmental media, and it is present in munici-
pal sewage (Ruan et al. 2019), urban watershed (Wang and 
Kelly 2017), and seawater and sediments (Liu et al. 2021b; 
Ruan et al. 2018a; Ruan et al. 2018b), which can affect aquatic 
organisms. Experiments in zebrafish, amphibians, and others 
have been carried out. The above experimental animals were 
all exposed to laboratory conditions. What effects will expo-
sure to TBECH in the natural environment have on animals? 
Study finds TBECH in ring-billed gulls in highly industri-
alized stretch of St. Lawrence River downstream of Mon-
treal (Gentes et al. 2012). In addition, herring gulls (Larus 
argentatus) are from seven colonies of five Laurentian Lakes 
(Gauthier et al. 2009). It was found that falcones, American 
kestrels (Falco sparverius), and chicken were all disrupted 
by TBECH. So TBECH can have adverse effects on a wide 
variety of animals, at both laboratory and natural environment 
exposure levels. The evidence of health effects of TBECH on 
multiple organisms should be to analyze whether it is reliable. 
Based on the above evaluation criteria for animal studies, we 

collected and sorted out the evidence of the effects of TBECH 
on various animals, and the results are shown in Table 2. 
These studies have clearly described the above content, and 
it is reasonable to assume that TBECH is reliable in causing 
adverse health outcomes of animals based on the evidence.

Epidemiological evidence for TBECH endocrine 
characteristics

The study on a cohort of 61 adults in Oslo shown that dietary 
exposure was the most important route of TBECH exposure, 
which was an important part of all exposure routes through 
multivariate linear regression analysis (Tay et al. 2019). In 
addition, researchers recruited 60 mothers who gave birth to a 
healthy child at Uppsala University Hospital in 2009 and 2010, 
and according to the results, dietary exposure was also found 
to be the main route of exposure to TBECH (Sahlström et al. 
2014). Unfortunately, no epidemiological studies have been 
conducted on the association between TBECH and related dis-
eases. Although humans may be exposed to TBECH through 
indoor dust and air, the trend of human exposure is unknown.

These data indicate a lack of evidence for TBECH in pop-
ulation epidemiology. Animal models are abundant in the 
study of TBECH, including rats, birds, and fish. So based on 
these studies, some mechanism data are obtained. It is lack-
ing of the evidence for the health effects of TBECH in the 
population. But it is well known that humans are contami-
nated by hundreds of man-made chemicals, which makes 
it extremely difficult to prove conclusively that a chemical 
is causing harm to human health. Even for chemicals that 
have been well studied over the past few decades, such as 
BPA and some phthalates, the evidence for harm to human 
health has only recently come to light (Sarink et al. 2021). 
If TBECH is not classified as an EDC due to lack of epi-
demiological evidence, greater harm to organisms may be 
caused. It is an important issue how the “missing” evidence 
for adverse effects on human health could be obtained. The 
International Program on Chemical Safety first developed a 
systematic approach to drawing conclusions about human 
correlation (causation) (Sonich-Mullin et al. 2001); later, 
it was substantially expanded with the development of the 
noncancer effect framework (Seed et al. 2005). If there is 
sufficient evidence in animal studies to establish MoA and 
it is effective in humans, combined with pharmacokinetics 
and kinetic characteristics, then the effects seen in animals 
may also be seen in humans, and the potential effects of a 
chemical on humans are possible (Julien et al. 2009). More 
research on that is urgently needed in order to reveal the 
effects of TBECH in human health.

Through reviewing the evidence of TBECH in endocrine 
disruption, TBECH can cause adverse outcomes to organ-
isms by interfering with the formation of receptors and hor-
mones (Fig. 6).
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The evidence on endocrine disruption 
of perchlorate was reviewed based 
on the procedure in this review

Studies have confirmed that a variety of environmental 
pollutants, including phenolic compounds, brominated 
flame retardants, pesticides, and perchlorates, can affect 
the normal function of the thyroid gland, such as inhibit-
ing the synthesis and secretion of TH and inhibiting the 
absorption of iodine by the thyroid gland (Xu et al. 2017). 
Perchlorate is a typical substance that interferes with thy-
roid hormones because perchlorate-induced natrium-iodide 
symporter (NIS) interference is a well-recognized thyroid 
disrupting mechanism (Lisco et al. 2020).

Mechanistic data of perchlorate about endocrine 
disruption

Perchlorates reduce thyroid hormone levels in humans and 
other animals by limiting the amount of iodine used to syn-
thesize these hormones (La Merrill et al. 2020). Perchlo-
rate inhibits thyroid hormone synthesis and competitively 

interferes with iodine accumulation in the thyroid gland. This 
works through the sodium–iodide symporters, which is an 
effective competitive inhibitor of iodide uptake in human 
rodents and other vertebrates (Dohán et  al. 2007). The 
sodium–iodide symporters are usually present in the thyroid 
gut placenta, lactation breast, and choroid plexus membrane 
and thus plays a role in transporting iodide ion (Zoeller 2006).

Animal experiments of perchlorate in endocrine 
disruption

In terms of animal experimental evidence, York et  al. 
found that low doses of perchlorate can reduce serum T4 
levels in pregnant rats and their young rats (York et al. 
2005). In addition, Gilbert and Sui also found that expo-
sure to perchlorate during the development of adult hip-
pocampi can impair synaptic function and irreversible 
damage to the response to synaptic transmission (Gilbert 
and Sui 2008). The same as TBECH, the evidences of the 
effects of perchlorate on various animals were collected 
and sorted out (Table 3).

Fig. 6  The evidence of mechanism data, animal experiment, and epidemiology on endocrine disruption of TBECH
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Epidemiological evidence for perchlorate endocrine 
characteristics

A number of population epidemiological studies have dem-
onstrated that urine determination of perchlorate (a biomarker 
of perchlorate exposure in pregnant women) is associated 
with reduced maternal thyroid hormone levels (La Merrill 
et al. 2020). Studies evaluated the relationship between per-
chlorate exposure and circulating thyroid hormone levels in 
neonates, since neonates are particularly sensitive to inhi-
bition of thyroid hormone synthesis (van den Hove et al. 
1999). Among the five studies in which thyroid hormone 
levels were measured within a day of birth, there was consist-
ent evidence. Newborn babies from communities that have 
been exposed to perchlorate have lower T4 levels, higher 
TSH levels, and prevalence of thyroid disease than those 
from unexposed communities. Furthermore, in assessing the 
potential effects of low environmental exposure to perchlorate 
on thyroid function, urinary perchlorate concentrations were 
approximately twice as high in the exposed population as in 
the general population, and both free thyroid hormone and 
thyrotropic hormone levels were altered. It is concluded that 
perchlorate exposure may affect the production of thyroid 
hormones during pregnancy (Steinmaus et al. 2016).

As shown in Fig. 7, perchlorate causes thyroid dysfunc-
tion in animals and humans by specifically interfering with 
thyroid hormone synthesis.

Conclusion and outlook

This review objectively described the identification proce-
dures of EDCs in the European Union and United States. 
Identification of EDCs is different in various organizations 
and countries. Here, the reasonableness of the chemical 
being identified as an EDC was evaluated by collecting 
information on the toxic mechanisms, experimental ani-
mal effects, and epidemiological evidence. Next, based on 
this information, the identification procedures of EDCs for 
three types of chemicals (BPA, TBECH, and perchlorate) 
were resolved. Through reviewing the relevant evidence, 
BPA, TBECH, and perchlorate have sufficient mecha-
nisms of endocrine disruption. They can cause adverse 
health effects in animals, mainly manifested in changes in 
organ morphology, pathological tissues, hormone levels in 
blood, endocrine behavior, and other aspects. Therefore, 
they can be referred to as EDCs. In contrast to BPA and 
perchlorate, the health effects of TBECH on humans are 
unclear. Although there are ways to extrapolate toxicol-
ogy findings to the population, epidemiological studies 
are urgently needed to be conducted.

Regarding the hormonal interference of chemicals, 
it was shown that BPA can interfere with insulin levels, Ta
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which may potentially contribute to the development of 
insulin resistance (Lee et al. 2013). In fact, many emerging 
chemicals in the environment do not interfere with just one 
hormone; they often have effects on multiple hormones at 
the same time. TBECH not only interferes with androgens 
but also affects thyroid function. A study has shown that 
plasma thyroid hormone levels decreased and thyroid epi-
thelial cell height increased after exposure to β-TBECH 
(Park et  al. 2011). The above shows that TBECH can 
interfere with endocrine function through other pathways, 
which strengthens the rationality of TBECH as an EDC.

It is worth noting that with the development of science 
and technology, computers and artificial intelligence 
have been more and more widely used. Recently, French 
experts identified unvalidated methods for chemical 
characterization of EDCs through artificial intelligence 
screening literature and database exploration. They used 
an updated version of the AOP-helpFinder text mining 
approach to screen abstracts of articles referenced in 
PubMed automatically, combining exploring manually. 
Therefore, 226 unique non-validated methods were iden-
tified (Zgheib et al. 2021). Consequently, the application 
of new techniques can be introduced in the establishment 
of criteria for the identification of EDCs. Mechanism 
data is important in identifying EDC properties in chemi-
cals. The current rapid development of novel in vitro and 
in silico methods is promising to fill information gaps 
on action mechanisms of EDCs. It is helpful to improve 
confidence in identifying EDCs. However, there is a need 

to ensure the reliability and regulatory relevance of such 
methods, which requires joint efforts and collaboration 
among method developers, researchers, and regulatory 
agencies. Due to the differences in endocrine signaling 
across animal species, an in-depth study of the effects of 
chemicals on the endocrine systems of various species is 
required. Given the “3Rs” principle, reduction, refine-
ment and replacement (Russell et al. 1959), fewer model 
organisms should be tested in vivo, but rather utilizing 
in vitro screening, cross-species extrapolation and read-
across approaches to reduce the needs for animal tests. 
In addition, there are species differences in the toxicoki-
netic and biotransformation of EDCs considering the 
differences in endocrine signaling between animals and 
humans (Testai et al. 2013). Hence, if a chemical pos-
sesses the evidence of adverse outcomes after exposure in 
experimental animals, the relevance of observed effects 
to the human then needs to be addressed. Finally, inter-
disciplinary efforts combining knowledge from wildlife, 
laboratory animals, in vitro, in silico, and human studies 
are needed to provide a more comprehensive approach for 
EDC identification. Identifying potential EDCs requires 
the integration of mechanistic information, results on the 
effects on animals, human, and the rational linking of 
the results. Different related standards of EDCs should 
be developed and integrated to form a unified global 
standard, which will be conducive to the management 
and control of EDCs, so as to protect the health of other 
organisms and humans.

Fig. 7  The evidence of mechanism data, animal experiment, and epidemiology on endocrine disruption of perchlorate
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