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Abstract
Monitoring air contaminants has become essential to exposure science, toxicology, and public health research. However, 
missing values are common while monitoring air contaminants, especially in resource-constrained settings such as power 
cuts, calibration, and sensor failure. In contaminants monitoring, evaluating existing imputation techniques for dealing with 
recurrent periods of missing and unobserved data are limited. The proposed study aims to perform a statistical evaluation of 
six univariate and four multivariate time series imputation methods. The univariate methods are based on inter-time correla-
tion characteristics, and the multivariate approach considers muti-site to impute missing data. The present study retrieved 
data from 38 ground-based monitoring stations for particulate pollutants in Delhi for 4 years. For univariate methods, miss-
ing values were simulated under 0–20% (5%, 10%, 15%, and 20%), and high 40%, 60%, and 80% missing levels having long 
gaps. Before evaluating multivariate methods, input data underwent pre-processing steps: selecting the target station to be 
imputed, choosing covariates based on the spatial correlation between multiple sites, and framing a combination of target 
and neighbouring stations (covariates) under 20%, 40%, 60%, and 80%. Next, the particulate pollutants data of 1480 days 
is provided as input to four multivariate techniques. Finally, the performance of each algorithm was evaluated using error 
metrics. The results show that the long interval time series data and spatial correlation of multiple stations significantly 
improved outcomes for univariate and multivariate time series methods. The univariate Kalman_arima performs well for 
long-missing gaps and all missing levels (except for 60–80%), yielding low error and high R2 and d values. In contrast, 
multivariate MIPCA performed better than Kalman-arima for all target stations with the highest missing percentage.

Keywords  Imputation techniques · Missing values · Particulate pollution · Multiple imputation · Univariate imputation · 
Missing at random · Spatial correlation · Time series data

Introduction

In common parlance, the issue of missing data exists across 
many areas of research, including exposure science, sta-
tistical surveys, epidemiological studies, and occupational 

health research (Junninen et al. 2004, Huisman 2009, Aslan 
2010, Eekhout et al. 2012, Ramli et al. 2013, Sukatis et al. 
2019, Kumar 2022). Air pollution monitoring has become 
an essential aspect of atmospheric exposure, public health, 
policy framework research, and risk communication to the 
public. The regulators have focused on strengthening the 
ground monitoring station networks to check air quality 
compliance with standards and for research applications. 
As a result, data on air quality is becoming more widely 
available, and the research underlying the associated health 
effects is also significantly growing.

Air pollution has been a significant concern in recent 
years due to unprecedented growth in urban centres. The rise 
in acute air contaminants incidences in many urban centres 
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globally has increased the burden of disease, carrying cul-
pability for around one out of every nine deaths annually. 
The WHO report of 2016 suggests that exposure to ambient 
and household air pollution contributes to mortality of over 
7 million annually (WHO 2016). Also, air pollution is a 
direct indication of sustainable growth since sources of air 
pollution also produce climatic pollutants such as CO2 or 
black carbon (Chan 2015). Monitoring of air pollutants has 
various spatial and temporal scales, and sampling methods 
can range from ground-based continuous monitoring stations 
as part of an ambient monitoring network (AMN) to low-
cost or personal wearable sensors employed in the house-
hold or occupational settings that cover data from hours to 
days. Irrespective of sampling techniques, missingness can 
arise due to a variety of uncontrollable factors, including 
instrument malfunction, sensor sensitivity, maintenance or 
repair, calibration, and many other reasons (Wardana et al. 
2022). Automated air quality monitoring stations preclude 
both regular and unscheduled shutdowns for maintenance. 
For illustration, many air monitors require 1 or 2 h every 2 
weeks to examine (adjust) the zero value and air input flow, 
as well as a full calibration/maintenance every 6 months 
(i.e. a full working day shutdown) (Gómez-Carracedo et al. 
2014, Little and Rubin 2019). Furthermore, remote stations 
experience lengthy outages due to power supply failures, 
problems with air aspiration pumps, or electronic process-
ing malfunction. Such uncontrolled factors can impact time 
series data like air pollution as empty values can distort tem-
poral information such as autocorrelation, trends, and sea-
sonality. Therefore, mechanism and pattern of missingness 
are the most significant aspects to consider when choosing 
the optimal solution for imputation through preventing poor 
handling of missing data and misleading data interpretation.

Rubin and Little gave a mathematical explanation of 
the missing data mechanism and divided it into three 
types based on the relationship of values of attributes with 
unobserved/missing values (Rubin 1976). Missing at ran-
dom (MAR) pattern is frequently observed in air pollution 
research data (Junninen et al. 2004, Plaia and Bondi 2006, 
Ghazali et al. 2020). Using the MAR mechanism, the cause 
of data missingness is explainable as missingness for an 
attribute is defined by the observed data, not by missing 
values. Missing information is recovered by using other vari-
ables for which the sample lacks missing data. In air pollu-
tion studies, missing data has a MAR pattern if data loss is 
due to power failure or system shutdown. When data is lost 
due to the inability of sensors to detect lower concentration 
limits of pollutants, it is missing not at random (MNAR) 
(Gómez-Carracedo et al. 2014). In a complex missingness 
structure, both MAR and MNAR missingness mechanisms 
exist. Furthermore, when data is missing due to unknown 
reasons, then it is missing completely at random (MCAR) 
(Hadeed et al. 2020). However, most empty values exist due 

to explainable conditions (Ghazali et al. 2020). Thus, under-
standing the selectivity of missing data and the correspond-
ing mechanism is a pivotal step for dealing with missing 
data adequately.

Imputation techniques are broadly classified into two 
categories: Single imputation (SI) and multiple imputa-
tions (MI) to completely filled the missing data. SI provides 
single values for missing data items, whereas MI imputes 
multiple values for a given missing datum. Under the SI 
category, mean replacement (unconditional mean imputa-
tion) is the most widely used method in research studies. 
However, this method provides varied results depending on 
the pattern and type of missingness, pattern of missingness 
percentage, and gape size (short or long period of time the 
data are missing from the datasets) of missing values. Under 
the MAR mechanism, the estimated results through mean 
imputation provide inconsistent results through the variance 
of the regression coefficients, whereas the MCAR mecha-
nism holds consistent variance but underestimates (Junger 
and De Leon 2015). Also, mean imputation gives more rel-
evant results for normal data distribution than for skewed 
data. Median is another simple imputation technique that 
provides better results for skewed distribution, ameliorat-
ing the mean imputation gap (Junger and De Leon 2015, 
Hadeed et al. 2020). The univariate single imputation mean 
method tends to alter the tails of distribution as the number 
of observations is higher at the centre of normal distribution 
(Little and Rubin 2019). Another single imputation method 
that fills the missing values of univariate time series data 
of air pollutants using the last observed value of the same 
variable is last observation carried forward (LOCF). This 
method is convenient as it fixes the entire univariate time 
series dataset. However, even in MCAR conditions, this 
method can generate biased estimates (Molenberghs and 
Kenward 2007). Spline interpolation is another univariate 
inter-time imputation technique that imputes NAs values 
using the na.interpolation function in TS imputes package. 
The fitted function is a piecewise nonlinear polynomial that 
uses current available pollutants data to impute missing 
values (Wijesekara and Liyanage 2020). Other univariate 
methods considered for long-missing gaps, highly complex 
time series with trend and seasonality, and low autocorre-
lation are Kalman smoothing and seasonal decomposition 
using na.Kalman and na.seadec function, respectively. The 
seadec algorithm performs seasonal decomposition as a pre-
processing step (Liu et al. 2020).

Multivariate time series imputation is another class 
of imputation techniques that handles multiple variables 
simultaneously, which provide single imputation or multi-
ple imputations for missing data points. For the proposed 
work, all the techniques are multiple imputations based 
that rely on correlations between different co-variables to 
estimate values for missing data. Random forest imputation 
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is a typical example of a multivariate imputation method 
implemented under the mice package (Little and Rubin 
2019). This multivariate imputation approach fills NAs 
data points of the target variable using the time series of 
neighbouring variables. Other widely used multivariate 
imputation methods are predictive mean matching, multiple 
imputations through chain equation (MICE), expectation-
maximisation, weighted predictive mean matching, random 
imputation, and multiple imputation principal component 
analysis. Predictive mean matching (PMM) is considered 
for multivariate imputation under the mice package of R. 
PMM is a hot deck-based algorithm where missing val-
ues are filled using covariates with the same distribution 
characteristics (Kleinke 2018). In their study, Marshall 
et al. (2010a, b) reported that PMM provides less biased 
estimates and significantly improved performance metrics 
in the context of missing covariate data (Marshall et al. 
2010a, b). Another skewed data imputation study recom-
mended that PMM performs better when missing data is 
MAR and < 50% (Marshall et al. 2010a, b). Another algo-
rithm that stimulates multiple variate data points is midas-
touch (multiple imputation by automatic, distance-aided 
donor selection) under the MICE package. The method is 
based on a hot deck iterative algorithm with distance-based 
donor selection, and this measure of distance controls the 
trade-off between bias and variance of estimates (Siddique 
and Belin 2008, Siddique and Harel 2009). This method 
replaces PMM within the mice package by ‘midastouch’ 
(Gaffert et al. 2018). Multiple imputation PCA is another 
stimulation technique that estimates NAs data points and 
considers the similarity between individuals (rows) and the 
link between variables across all individuals. This method 
performs better when the correlation structure between 
variables is stronger (John et al. 2019). Regularised terms 
fix the problem of overfitting by penalising relatively 
unreasonably large parameters. In addition, these multiple 
imputation methods can take account of extra variability, 
yielding more precise results; however, such methods are 
only addressed a little (Schafer 1997).

Despite the fact that a large number of imputation tools 
are present in different statistical packages but used scarcely 
in air pollution studies as the most common approach is to 
ignore them. However, data continuity is important in time 
series modelling as excluding incomplete values influences 
temporal characteristics such as autocorrelation, seasonal-
ity, and trends. Moreover, deep learning algorithm requires 
a large amount of data, and some algorithms are sensitive to 
missing values; therefore, there are better options than com-
plete case analysis to handle especially long missing data. 
Though some studies have used different imputation tech-
niques, may it be single or multiple imputation-based meth-
ods for air quality datasets. However, its overall application 
still needs to be improved, with few tests of performance in 

real-world scenarios and little guidance regarding the impu-
tation of air quality data.

This study presents the comparative analysis of six uni-
variate time series methods used to impute low (0–20%) 
and high missing (40%, 60%, and 80%) percentage along 
with long missing gaps. Different approaches were used to 
filter the temporal components. Kalaman_arima and seadec 
method considered the temporal component of time series. 
In addition, we use spatial correlation component, i.e. multi-
site, to select covariates for multiple imputation methods 
like PMM, MIDAS, RF, and MIPCA to impute high missing 
percentages under four missing categories (20%, 40%, 60%, 
and 80%). We examine the performance of single univariate 
imputation and multivariate muti-imputation methods for 
the short and long consecutive missing periods and provide 
future guidance to implement in other study settings.

Methodology

Study area

The study area considered for the proposed work is Delhi, 
the national capital of India, located in the northern part 
of Indo-Gangetic plain, which lies between the latitude of 
28°24′17″ and 28°53′00″ north and longitude of 76°50′24″ 
and 70°20′37″ of the east with the total geographic area of 
1483 Km2 (700 km2 urban and 783 km2 rural). The climate 
of Delhi makes it favourable for pollution stagnation, espe-
cially during winter when the temperature reaches 22 °C to 
5 °C and with no dispersion (Budhiraja et al. 2019). Accord-
ing to the Koppen classification system of climate Delhi has 
five seasons with the extreme type of climate and witnesses 
714 mm of annual rainfall. From a demographic perspective, 
Delhi has the highest population density of 11,297 persons 
per sq. km as per the 2011 census compared to other Indian 
states/U.T. (Census, 2011; http://​censu​s2011.​co.​in). The key 
factors that cause alarming situation for Delhi’s air quality 
include the city’s landlocked geographical location, residual 
crop burning in neighbouring states of Punjab, Haryana, 
Uttar Pradesh, and Rajasthan, vehicular emissions, industrial 
pollution, and large-scale construction activities (Chatterji 
2021). The city is contending with the capital’s escalating 
air pollution problem and associated health risks.

Data information

The empirical data of 38 continuous air quality monitor-
ing stations (CAQMS) of Delhi is retrieved from the cen-
tral pollution control board website (http://​www.​cpcb.​nic.​
in/). The stations IDs have a series such as D_01, D_02, 
D_03, D_05…………. D_40. It is important to mention over 
here that the data of two stations, namely, D_04, and D_12 

http://census2011.co.in
http://www.cpcb.nic.in/
http://www.cpcb.nic.in/
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are not available. The geospatial distribution of these sites 
is shown in Fig. 1. Air pollutants data are in matrix form, 
(m × n), with each column n (representing variables) con-
taining a time series of two air pollutants (PM2.5 particulate 
matter with an aerodynamic diameter of less than 2.5 μm, 
PM10 particulate matter with an aerodynamic diameter of 
less than 10 μm), considered and each attribute per station 
are studied. The particle pollutants are initially in hourly 
measurements but later aggregated on a 24-h basis. Thus, 
1480 individuals (rows) are considered for two pollutants 
from February 2018 to February 2022 (4 years and 9 days). 
These stations are deployed in traffic, industrial, and residen-
tial zones to monitor important pollutants. While selecting 
the stations for study, some conditions are considered: the 
accessibility of particle pollution with at least 3 years from 
the same timespan is included.

Descriptive statistics of all monitoring stations

Appendix 1 shows descriptive statistics of all stations of the 
Delhi region for the PM2.5 and PM10 datasets. The detailed 
information can be found in Appendix 1 of five statisti-
cal characteristics: mean, 25% quantile, median, and 75% 
quantile, and standard deviation for each station (PM2.5, 
PM10), excluding missing values. The standard deviation 
is a measure of statistical dispersion that indicates how far 
observed values are dispersed from the mean of each vari-
able for different locations. For example, small σ value for 
a monitoring station indicates that the monitored values of 
contaminants are close to the average; in contrast, a high 
standard deviation value depicts that actual values are far 

dispersed from the mean. Another measure of variability 
in descriptive statistics is quartiles, dividing the structured 
observed data (from lowest to highest) into four parts. The 
first quartile (25%) is defined as the value in the middle of 
the range between the minimum and the median, while the 
third quartile (75%) is defined as the value in the middle of 
the range between the median and the maximum (Wardana 
et al. 2022).

Missing data mechanism

Knowledge of the selectivity of missing data and the cor-
responding mechanism is a crucial starting point for dealing 
with missing data effectively. A correct approach to missing 
data is determined by whether the data is MAR or missing, 
not at random (MNAR). Observed data can be used to esti-
mate missing values where the missing data pattern is MAR 
(or can be assumed to be MAR) (Rubin 1976). Such estima-
tion is impossible when the data is MNAR, as estimation 
depends on unobserved/missing data. MNAR condition of 
missingness is nonignorable and generally viewed as a con-
dition that results in biased predicted values. A third mecha-
nism missing completely at random (MCAR) assumes that 
subjects with missing data are a random subset of the entire 
study sample, making them less susceptible to bias.

In most cases, missing data is neither MCAR nor MNAR. 
In the case of air quality data, the missingness condition 
most often observed is MAR, as reasons for missingness 
are known, such as routine maintenance, sensor malfunc-
tion, and power outages (Gómez-Carracedo et al. 2014). In 
some cases, the causes of missingness are unexplainable 

Fig. 1   Study area map showing spatial distribution of 38 ground monitoring stations in Delhi. The map scale is 10 Km/cm
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(e.g. MCAR). Furthermore, complete-case analysis for both 
MAR and MNAR data can produce biased results as such 
conditions have higher missing values and reduce the analy-
sis’s precision. For the MCAR mechanism, complete case 
analysis (which allows for excluding incomplete observa-
tions) produces unbiased results. However, as air pollution 
is time series data, the listwise deletion method may break 
the data structure, resulting in the loss of valuable informa-
tion. MAR’s missing data mechanism is more general and 
realistic than MCAR’s. Modern missing data methods typi-
cally begin with the MAR assumption (Van Buuren 2018). 
Thus, under the proposed study, we assumed MAR condition 
for air quality data imputation from available information.

Missing data statistics

It is important to understand the missing statistics of a 
dataset before selecting imputation techniques (Appendix 
2). The higher percentage of missing value affects the time 
series of air pollutants. It would be much more challenging 
to perform time-related analyses, such as identifying weekly 
patterns or autoregressive models that predict from previous 
days. The percentage of missing across the two variables 
PM2.5 and PM10 in this study varied between 0 and 80%. 

Figures 2 and 3 depict that the dark areas represent the span 
of the monitored values of pollutant with no missing val-
ues, while the white stripes represent the missing values for 
PM2.5 and PM10, respectively.

Depending on the causes of the air pollution data miss-
ing, the gap size of the missing pattern can be divided into 
the short interval and long period missing. The missing-
ness due to temporary power outages and routine mainte-
nance causes short gaps in data collection, while sensor 
malfunctions and other critical reasons cause long-interval 
data missing. Missing values appears both in the discrete 
and consecutive missing pattern. For short-interval broken 
data, different level of missing percentage is considered as 
input for univariate time series imputation methods (20% 
missing rate category divided into four subcategories of 
5%, 10%, 15%, and 20%) and for long-interval of missing 
levels 40%, 60%, and 80% is considered. Furthermore, we 
applied different multiple imputation methods based on the 
MICE algorithm in the case of long-interval missing levels. 
Before multivariate imputation, the pre-processing steps are 
applied to consider the spatial characteristics of monitoring 
stations while imputing missing values. The target stations 
to be filled under four categories, 20%, 40%, 60%, and 80% 

Fig. 2   Missing data pattern for 
1480*38 data matrix of PM2.5

Fig. 3   Missing data pattern for 
1480*38 data matrix of PM10
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is, chosen based on the highest missing percentage (missing 
rates varied for each target station).

The univariate time series methods consider both low 
and high missing percentage monitoring stations for PM2.5 
and PM10, and for multivariate imputation techniques, high 
missing percentage target monitoring sites are selected. The 
neighbouring sites were selected based on spatial characteris-
tics of monitoring sites with a missing percentage of < 20%.

Imputation methods

The methods for imputation of time series can be broadly 
classified into three types: inter-time (time series), inter-
variable (cross-sectional), and inter-variable + inter-time 
(TS cross-sectional). This study considered the first two 
approaches.

Univariate time series methods (inter‑time series)

The univariate time series method uses temporal characteris-
tics such as trend, seasonality, autocorrelation, and periodic-
ity for air pollutants data. Temporal substitution techniques 
replace missing air pollutants data either with the mean of 
the whole column (time series) or stimulate the mean of 
neighbouring values using lagged data to fill missing gaps. 
One of the simplest and most popular methods to fix miss-
ing data is to replace them with the overall mean. There are 
better ideas than putting the overall mean in time series data 
like air pollution, which shows seasonality characteristics. 
Thus, mean imputation is generally not recommended by 
statisticians; it is only used in case of rapid fix only when 
less missing data is present. In case of large number of miss-
ing values, a fix value (i.e. mean) can change the distribution 
shape, standard deviation becomes smaller for imputed data 
compared to actual values. For high missing percentage with 
long consecutive gaps, mean imputation can cause shrink-
age in standard deviation. Some studies have illustrated that 
mean imputation can work better with conditions like < 
10% missing values in dataset and low correlation between 
variables (Raymond 1986, Tsikriktsis 2005). Though data 
stratification into smaller groups can slightly enhance this 
method (Norazian et al. 2008, Junior et al. 2016).

Another method, median, is a standard univariate impu-
tation algorithm that does not consider the time series 
characteristics of air pollutants. However, it can give better 
results than the mean in a skewed distribution. Despite their 
popularity, these statistical techniques have the evident con-
straint of ignoring important temporal information and fur-
ther affect correlation structure reasonably (Weerakody et al. 
2021, Iodice D’Enza et al. 2022). However, these univariate 
time series substitution methods are relatively simple and do 
not account for any temporal variation in air pollution data.

LOCF is the univariant time-series longitudinal data 
method. The concept of the LOCF imputation technique is 
to substitute the most recently observed value for the entire 
missing data of the same variable. LOCF must be followed 
by a proper statistical analysis method that distinguishes 
between actual and imputed data. In time series data, the 
first-order Markov model assumes a similar condition as the 
LOCF imputation method. The probability of an observation 
at time ‘t’ depends on the last observation at a time (t-1) 
(Canales 2004). This method is simplest that takes advan-
tage of time series characteristics. However, this algorithm 
has a drawback with a time series dataset with seasonality, 
when there are considerable differences between observa-
tions at t and the last Observation at the time (t-1) (Moritz 
et al. 2015). Another univariate time series method is the 
spline that replaces missing values based on the interpola-
tion algorithm. This temporal interpolation method fits the 
observed data with a curve to stimulate NAs in air pollution 
data (Cho et al. 2020). The imputed air pollutants dataset 
can accurately simulate the temporal trend for short gap size. 
However, in case of more extended gap size, these simple 
imputation techniques like LOCF and interpolation might 
provide significant bias between imputed values and corre-
sponding true values as data structure during an unobserved 
period is unpredictable from a univariate standpoint (Liu 
et al. 2020). This single imputation method ignores uncer-
tainty in imputed values.

‘Seasonally Decomposed Imputation’ and ‘Kalman 
Smoothing on Structural Time Series Models’ are complex 
methods for imputation of missing data in univariate series 
since their ability to capture time-dependent characteristics 
like trend, seasonality, and cycles. However, they necessi-
tate longer computation times (Moritz and Bartz-Beielstein 
2017). In this study, Kalman Smoothing on the state space 
representation of an ARIMA model is used for imputation 
of time series data. However, to obtain more accurate results 
of imputation, smoothing algorithm is used (Agbailu et al. 
2020). This technique has been developed by (Kalman 1960, 
Welch 2006). The algorithm imputes missing values based 
on lagged data points of the same variable. Let z(t − 1) repre-
sents a set of lagged values and assume conditional distribu-
tion of μt is N(μt, pt), μt, pt are assumed to have been deter-
mined (Agbailu et al. 2020). The function na_kalman uses 
KalmanSmooth (as KalmanSmoother) and operates on state 
space representation of an ARIMA model obtained by auto.
arima (Harvey 1990). This imputation technique based on 
the recursive data assimilation system of the Kalman filter 
(Moritz and Bartz-Beielstein 2017). To fill missing values, 
structural model fitted with maximum likelihood is used 
(Han et al. 2023).

Another univariate time series method is Seasonal 
decomposition (Secdec) combined with moving average to 
impute missing values. The Secdec algorithm removes the 
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seasonal component of time series and afterwards algorithm 
like moving average perform imputation on deseasonalised 
dataset (Moritz and Bartz-Beielstein 2017). The air pollut-
ant time series contains various levels of time dependency 
structures, such as 1 and 2 autocorrelation lags which would 
have been poorly captured by straightforward techniques like 
interpolation, mean values, random values. For this reason, 
among other imputation options, we choose moving average 
filters. In actuality, earlier Seadec tests that utilised these 
options produced subpar outcomes. Seadec. is therefore 
described as a useful technique for seasonal and autocor-
related series (Lloret et al. 2000, Benavides et al. 2022).

Multivariate timeseries methods (cross‑sectional 
inter‑variables)

Multivariate is another class of imputation method that 
accounts for temporal characteristics of a set of observed 
predictor variables. Compared to a single imputation (such 
as the mean), having multiple imputations eliminates uncer-
tainty in missing values. In this case, covariates are selected 
as the correlation structure of the data is also an important 
factor in determining the performance of some multiple 
imputation methods (Dray and Josse 2015). The mice func-
tion of the R package MICE is a multiple imputation method 
that estimates the missing data and the variability associated 
with the imputation. MICE is an iterative algorithm; at each 
iteration, all variables except one are fixed and will be used 
as predictors, while an imputation method is chosen for the 
unfixed variable.

Predictive mean matching (PMM) was applied using the 
MICE package. The PMM method is especially effective for 
numerical variables without a normal distribution (Allison 
2001). PMM is a semi-parametric method random case is 
chosen from complete cases with a predictive value that is 
close to the missing case (Little and Rubin 2019). Since 
the method uses data set values, they are accurate and there 
are no arbitrary imputed values (Schenker and Taylor 1996, 
Abayomi et al. 2008). The number of multiple imputations 
is 6 and maxit iterations is 20. Each target variable in the 
dataset is imputed using the donor variables in each itera-
tion. These iterations should be repeated until convergence 
appears to have been achieved (Li et al. 1999). Several 
PMM variants were developed using various predictor vari-
ables (neighbouring stations) combinations. The number of 
imputations generated in PMM is six, and donor selection, 
d = 5, i.e. in each case of target stations missing value to 
be predicted, is matched to five cases with closest values. 
One of the donor values is chosen randomly, and its value 
is assigned to the target station with missing data (Allison 
2015) and 24-h mean across the 20 iterations were used to 
impute daily concentrations of target stations. PMM Imputes 
missing values of target stations from observed values of 

covariates using linear regression coefficients. The advan-
tage of PMM is that the imputed values are drawn from 
a range of observed values, and the possibility of imput-
ing unrealistic values, such as negative concentrations, is 
eliminated (Van Buuren 2018). Similarly, two other multiple 
imputation methods considered for this study in the MICE 
package are MIDAS and Random Forest, which uses covari-
ates to fill the target stations missing values giving multiple 
imputed datasets. RF method is based on Breiman’s algo-
rithm as presented in (Breiman 2001, Doove et al. 2014).
This non-parametric method predicts missing instances of 
features using values of other attributes. In this manner, the 
missing values for that feature are discovered. The process is 
repeated until it converges. For this study, value of parameter 
ntree chosen was 10.

Lastly, the multivariate imputation method was imple-
mented on the air pollution dataset is MIPCA, implemented 
in the missMDA package. Josse and Husson (2009) pro-
posed a regularised version of the iPCA algorithm (RPCA) 
to overcome the problem the overfitting (Iodice D’Enza 
et al. 2022). MIPCA provides multiple imputed datasets 
using the PCA model. The observed values are consistent 
across datasets, whereas the imputed values vary. The vari-
ability in imputed values reflects the variability in missing 
value prediction. According to Little and Rubin (2002), 
multiple imputations are appropriate because it accounts 
for parameter variability (Josse and Husson 2011). The 
Bayesian method is used for multiple imputations to reflect 
variability caused by missing values. The argument used for 
its implementation is a method.mi=‘Bayes’. The threshold 
for the criteria convergence is 1e−04 (Audigier et al. 2016). 
Three steps are followed to perform MIPCA on the incom-
plete dataset: estimate the number of dimensions using the 
function estim_ncpPCA by k-fold cross-validation method 
to select tuning parameters. The second step is to use the 
function impute PCA to run the (regularised) iterative PCA 
algorithm with the number of dimensions selected in the 
first step. The third step is analysing the precision of each 
method by comparing the sample variance of the imputed 
values with the original variance (Li et al. 1999). These steps 
are repeated to achieve convergence.

R packages Functions used for missing values 
imputation

The R software (Crawley 2012) is a free and open-source 
statistical programming language. All single and multiple 
imputation methods are implemented under different R 
packages and are freely available from the Comprehensive 
R Archive Network (CRAN) at http://​www.R-​proje​ct.​org/. 
We use the TS stats time series objects from base R to repre-
sent univariate time series (Zeileis and Grothendieck 2005). 
We implemented multiple univariate time series-based 

http://www.r-project.org/
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algorithms using TS packages such as mean, median (na.
mean function), last observation carried forward (na.locf), 
spline (na.interpolation), Kalman Smoothing on the state 
space representation of an arima model (na. Kalman), sea-
sonally decomposition model (na.seadec) (Moritz and Bartz-
Beielstein 2017). Another R package used for multivariate 
imputation by chain equation is mice. The algorithms used 
are PMM, MIDAS , and random Forest to determine the 
missing values present in target variables (Van Buuren and 
Groothuis-Oudshoorn 2011). MissMDA package is used 
to for imputing missing values through MIPCA algorithm, 
(Stekhoven and Stekhoven 2013, Josse and Husson 2016). 
The evaluation metric to validate the imputation model 
through comparison of imputed and actual observed time 
series data using the goodness of fit hydroGOF package of 
R (Moriasi et al. 2007).

Methods for evaluation metric

There are several methods used for the evaluation of consid-
ered imputation methods. The accuracy of imputation meth-
ods is measured based on the difference between actual and 
imputed data through different error metrics across four lev-
els of missingness (i.e. 0–20%, 20–40%, 40–60%, and 60–80 
missing). Generally, five indicators are used to assess the per-
formance of imputation algorithms as discussed below (Quin-
teros et al. 2019). In common parlance, low missing percentage 
result in lower RMSE/MAE/PBIAS error and higher R2, and 
d scores. The RMSE/MAE values may differ significantly due 
to the physical nature of each pollutant. R2 score is introduced 
to provide a more intuitive view of performance.

Root mean square error: RMSE is an error metric com-
puted between the imputed value and the respective actual 
value time series, i.e. the standard deviation is calculated as 
referred to in Eq. 1.

This method has been extensively used in the literature 
to evaluate the performance of imputation methods (Junger 
and De Leon 2015, Moritz et al. 2015, Wardana et al. 2022). 
In air pollution data, seasonality and trends are observed; 
summer values for particulate pollutants are low compared 
to winter. The upward trend can be seen during winter, but 
error metrics like RMSE may not be appropriate for such 
data with significant differences (Moritz et al. 2015). A 
lower value indicates that the model performed better.

Mean absolute error: MAE is an important error metric 
for datasets showing strong trends. The evaluation metric is 
based on the difference between imputed values and actual 
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observed values in time series. This metric is least affected 
due to the dataset having a strong trend, i.e. the difference 
between datasets is high. Unlike RMSE, MAE is the more 
natural measure of average error that is unambiguous as 
RMSE varies with the variability of the error magnitude 
distribution, the square root of the number of errors (n1/2), 
and the average-error magnitude (Willmott and Matsuura 
2005) Eq. 2.

Coefficient of determination: R2 is commonly used for 
evaluating models as a goodness-of-fit metric. R2 is calcu-
lated by squaring the correlation coefficient between two 
columns and evaluating the variance between observed and 
predicted concentrations (Quinteros et al. 2019, Hadeed 
et al. 2020) Eq. 3.
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imputed datasets. It indicates how well the model explains 
the variance in the observations when compared to using the 
mean of the observations as the prediction.

Percentage bias: PBIAS: The goodness of fit measures 
the average tendency of an imputation algorithm, i.e. if the 
imputed 24-h aggregated pollutants concentration within 
each station is larger or smaller than their observed values. 
A low value of PBIAS indicates accurate model simula-
tion (zero implies optimal value; positive values indicate 
overestimation bias, while negative values indicate under-
estimation bias in the model). The metric is calculated in 
percentage as given in Eq. 4.

Index of agreement: Willmott (1981) developed the 
Index of Agreement (d) as a standardised measure of 
model prediction error that ranges from 0 to 1(Willmott 
and Matsuura 2006). A value of one indicates a strong 
positive match, while a value of zero indicates no agree-
ment at all. The index of agreement can identify additive 
and proportional differences in observed and simulated 
means and variances; however, due to squared differ-
ences, it is extremely sensitive to extreme values (Legates 
and McCabe Jr 1999) given in Eq. 5.
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where x
i
&x

i
 are the ith value of actual and imputed 

observations respectively and 
́
x
i
 is the mean of actual 

datasets.

Result and analysis

Initially, 38 monitoring stations and two pollutants per station 
were analysed. Descriptive statistics were applied on all the 
stations for PM2.5 and PM10, including mean, 25% percentile, 
median, 75% percentile, and standard deviation, as mentioned 
in Appendix 1. The statistical dispersion around the mean for 
particulate pollutants varies across all the stations, with the 
highest of all stations being 135.28 ± 108.83 for PM2.5 and 
308.78 ± 143.58 for PM10. Next, to understand the complexity 
of time series data for NAs, it is necessary to know the statistics 
of missing components like the number of missing values, per-
centage of missing, number of gaps, average gap size, longest 
NA gap (series of consecutive NAs), and most frequent gap size 
(series of consecutive NA series). Appendix 2 provides detailed 
missing statistics information on the air pollutants dataset. A 
total of 1480 observations are considered for each station. The 
percentage of missing across 38 stations varied between 0 and 
80%. The missing percent range, 0–80, is divided into four cat-
egories (0–20%, 20–40%, 40–60%, and 60–80%). Most of the 
stations lie between 0 and 20, missing percentage. Therefore, 
we further categorised 0–20% into four ranges 0–5%, 5–10%, 
10–15%, and 15–20%. Furthermore, some stations were elimi-
nated from the univariate time series experimental, with a miss-
ing percentage of < 1.0%. The largest missing gap size (NAs 
in rows) is 1016 days continuous, with an average gap size of 
70.2 for PM2.5 and PM10. Furthermore, air pollutants data are 
omitted in a random manner because data may be missed due 
to a variety of explainable circumstances. For example, many 
air pollutants analysers require 1 to 2 h every 2 weeks to verify 
and analyse the air input flow. The unanticipated events, such 
as power supply, pump, and electronic processor failure, occur 
randomly, resulting in missingness, as shown in Figs. 2 and 3. 
The missing pattern is missing at random (MAR) as NAs data 
can be imputed based on observed data.

Univariate imputation techniques

Tables 1 and 2 show imputation results of different univariate 
(mean, median) and univariate time series methods (LOCF, 
spline, Kalman_arima, seadec) under various measurement 
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0 ≤ d ≤ 1

indicators (MAE, RMSE, PBIAS, d, R2), low (0–20%) and 
higher missing (at 40%, 60%, and 80%) percentage, and air 
pollutants (PM2.5, PM10) through comparison of imputed value 
with actual observed value within each station. PBIAS meas-
ures the difference between observed and imputed mean con-
centrations of pollutants (Tables 1 and 2). The results estimated 
through univariate substitution methods that replace the missing 
values of air pollutant data with the mean and median of the 
single imputation value for each station show that the median 
imputation method consistently resulted in low PBIAS% across 
all levels of missingness compared to mean substitution for all 
sites. In the case of the mean imputation method, a decline of 
PBIAS% is observed across all stations with increasing miss-
ing values. Also, mean and median methods do not account for 
any temporal characteristic of PM2.5 and PM10 time series data. 
Thus, both method performance depends only on the percent-
age of missing, not merely on missing interval gaps (short gap/
longer consecutive missing gap).

For PM2.5 low missing percentage, i.e. for 0–20%, the 
Kalman imputation yields absolute bias, i.e. the difference 
between actual and simulated 24-h mean by 1.87 μg/m3 (for 
station D_36 at 5 %missing), 4.43 μg/m3 (D_26 at 10% miss-
ing), 1.83 μg/m3 (D_13 at 15 % missing), 0.90 μg/m3(D_31 
at 20% missing), and for higher missing percentage at 40% 
missing, this differences is around 3.64 μg/m3 (D_01), at 
60% missing, 4.46 μg/m3 (D_06), and at 80% missing, 
imputed mean differed from observed mean by 67.39 μg/
m3 (D_18). The biasness between the estimated and actual 
values increases with an increase in missing percentages. 
However, in the case of Kalman imputation, the biasness 
also depends on missing gap size. For instance, D_31 has a 
higher missing percentage than D_26. However, the missing 
interval in the case of D_31 has longer consecutive values 
(consecutive gap of 153 values) compared to D_26 (longest 
gap of 33 continuous missing values) refers to Appendix 2. 
The univariate time series Kalman_arima method accounted 
for the temporal characteristics of continuous readings of 
4 years of data like autocorrelation and seasonal trends 
that potentially improved the performance of the Kalman 
method for long consecutive missing intervals. The method 
performed well for stations with long consecutive missing 
gaps, irrespective of the percentage of missing values.

Furthermore, compared with the mean and median, 
LOCF performs well for < 20% level of missing; how-
ever, for higher missing percentage, the difference between 
imputed and observed mean increases, and the performance 
decrease significantly with high values of MAE, RMSE, and 
PBIAS%. The NAs values filled with the spline interpolation 
method accurately stimulate the temporal trend of particu-
late pollutants at the low level of missing < 5%; however, 
with increasing missing percentage, the evaluation metric 
PBIAS% provides negative values indicating high bias 
between imputed values and corresponding actual values.
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Correlation metric R2 was used to estimate the relation-
ship between daily observed and 24-h imputed concentra-
tions of PM2.5 and PM10. A high R2 value indicates the 
significant performance of imputation methods, and a low 
value signifies the weak relationship between observed and 
imputed values. Mean, median, LOCF, Kalman_arima, and 
sedec imputation method all produced higher R2 values than 
the spline method, with Kalman producing the highest R2 
(Table 1). R2 values for Kalman are around 0.99 at 0–5% 
missingness (D_15), 0.95 at 5–10% missingness (D_26), 

0.99 at 10–15% missingness (D_13), and 0.94 at 15–20% 
missingness (D_31). At 40%, 60%, and 80% missingness, R2 
dropped significantly to around 0.85, 0.94, and 0.43, respec-
tively for PM2.5. Similar results can be observed for PM10 for 
the Kalman method in Table 2. The performance of spline is 
significant only for ≤ 5% missing percentage.

The index of agreement (d) measures the prediction error 
that varies from 0 to 1. A value of 0 indicates no agree-
ment between the simulated and observed values, and 1 
indicates a perfect match. Spline results for both pollutants 

Table 1   Comparative evaluation of univariate time series imputations method using five different metrics for PM2.5. The stations with highest 
missing percentage under each category are considered and for other stations results are in supplementary file (Appendix 3)

% of missing Stations ID’s Error metric Mean Median LOCF Spline Kalman Seadec

Sub-category of 
missing %

0–20% 0–5% D_36 (4.05%) MAE 3.28 2.44 2.00 1.75 1.87 2.13
RMSE 18.03 13.38 13.51 11.63 12.02 13.58
PBIAS% 3.40 2.50 2.10 1.60 1.95 2.20
d 0.99 0.99 0.99 0.99 0.99 0.99
R2 0.95 0.97 0.97 0.98 0.98 0.97

5–10% D_26(8.11%) MAE 7.65 5.67 4.55 15.51 4.43 4.73
RMSE 27.92 20.70 20.31 85.74 18.81 21.28
PBIAS% 8.10 6.00 4.80 −6.00 4.70 5.00
d 0.97 0.98 0.98 0.80 0.99 0.98
R2 0.89 0.94 0.94 0.52 0.95 0.94

10–15% D_13 (12.57%) MAE 9.85 7.39 5.55 53.98 1.84 5.08
RMSE 29.41 22.07 17.06 204.41 8.26 16.51
PBIAS% 12.60 9.50 7.10 −65.20 2.40 6.50
d 0.95 0.97 0.98 0.47 1.00 0.99
R2 0.85 0.92 0.95 0.31 0.99 0.95

15–20% D_31 (15.54%) MAE 12.06 8.29 16.54 121.94 1.66 10.67
RMSE 34.69 23.84 49.31 435.92 9.57 36.28
PBIAS% 13.80 9.50 18.90 −137.50 1.90 12.20
d 0.96 0.98 0.91 0.27 1.00 0.95
R2 0.86 0.93 0.72 0.21 0.99 0.84

20–40% NA D_01 (25.00%) MAE 22.37 16.17 38.68 39006.46 3.64 43.79
RMSE 49.60 35.85 88.46 104243.60 23.05 98.88
PBIAS% 25.50 18.50 44.10 44515.70 4.20 50.00
d 0.91 0.95 0.77 0.00 0.98 0.73
R2 0.76 0.88 0.36 0.15 0.94 0.28

40–60% NA D_06 (57.23%) MAE 70.17 57.68 43.40 3205.77 4.46 61.67
RMSE 92.75 76.24 61.31 5770.05 19.81 85.74
PBIAS% 133.80 110.00 82.80 −5733.40 8.50 117.60
d 0.70 0.78 0.85 0.02 0.99 0.74
R2 0.45 0.64 0.72 0.17 0.94 0.47

60–80% NA D_18 (72.64%) MAE 94.95 82.50 97.11 2454435.87 79.38 87.82
RMSE 128.90 123.76 134.56 3466196.80 110.14 126.65
PBIAS% 259.80 244.00 286.50 −8048964.10 241.00 251.60
d 0.33 0.41 0.24 0.00 0.46 0.39
R2 0.24 0.29 0.15 0.08 0.31 0.26
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(Tables 1 and 2) show a significant drop in d values after 
0–5 missing percentage categories. In some cases, a 0 value 
is observed for D_22 and D_05 (Table 1 and Appendix 3) 
and PM10 stations D_05 and D_01 (Table 2 and Appen-
dix 4). Mean, median, locf, and sedec all performed well 
except for 40–60% and 60–80%, missing the percentage cat-
egory. Kalman gives the highest d values across all missing 
categories.

The error metric RMSE performed well for mean, median, 
locf, Kalman, and seadec for low missing percentage 

categories (0–5%, 5–10%). RMSE, like other error met-
rics, increased with the level of missingness (Table 1). At 
10–15%, 15–20%, 20–40%, 40–60%, and 60–80% missing, 
Kalman and the median performed well; however, spline 
imputation produced the highest RMSE values for the high 
missing category (Table 1 and Appendix 3). In the case of 
PM10, locf, median, and Kalman perform equally well for 
higher missing percentages (Table 2 and Appendix 4).

Another error metric is MAE which is less sensitive to 
outliers in predicted values. Similar to RMSE, the lower the 

Table 2   Comparative evaluation of univariate timeseries imputations method using five different metrics for PM10. The stations with highest 
missing percentage under each category are considered and for other stations results are in supplementary file (Appendix 4).

% of missing Stations ID’s Error metric Mean Median LOCF Spline Kalman Seadec

Sub-Category of 
missing %

0–20% 0–5% D_08 (4.66%) MAE 10.29 9.28 6.28 62.55 6.47 6.44
RMSE 47.63 42.97 34.03 363.04 32.85 37.23
PBIAS % 4.90 4.40 3.00 −27.20 3.10 3.10
d 0.97 0.97 0.98 0.49 0.99 0.98
R2 0.89 0.91 0.94 0.30 0.95 0.93

5–10% D_32 (9.08%) MAE 15.73 13.61 8.48 36.00 3.66 9.39
RMSE 50.25 43.49 30.16 158.06 20.80 33.00
PBIAS% 10.90 9.40 5.90 −15.10 2.50 6.50
d 0.94 0.96 0.98 0.72 0.99 0.98
R2 0.82 0.86 0.93 0.45 0.97 0.92

10–15% D_31 (13.51%) MAE 24.75 22.82 32.50 328.87 3.62 23.44
RMSE 71.17 65.63 97.23 1224.22 20.24 74.77
PBIAS% 13.80 12.70 18.10 182.60 2.00 13.00
d 0.92 0.93 0.86 0.04 0.99 0.91
R2 0.75 0.79 0.55 0.08 0.98 0.72

15–20% D_15 (17.23%) MAE 23.34 21.40 19.11 32.27 15.76 19.49
RMSE 64.63 59.25 69.13 99.14 52.62 62.61
PBIAS% 15.00 13.70 12.30 20.50 10.10 12.50
d 0.90 0.92 0.90 0.81 0.94 0.91
R2 0.72 0.76 0.67 0.41 0.80 0.73

20–40% NA D_01 (25.81%) MAE 40.86 36.80 50.32 112392.56 4.92 65.58
RMSE 91.36 82.28 112.71 300312.52 31.22 150.85
PBIAS% 25.00 22.50 30.80 68774.30 3.00 40.10
d 0.87 0.90 0.82 0.00 0.99 0.72
R2 0.66 0.73 0.50 0.22 0.95 0.25

40–60% NA D_27 (59.93%) MAE 133.89 128.44 95.65 139.43 93.99 110.89
RMSE 172.95 165.91 123.56 206.03 121.59 143.80
PBIAS% 149.60 143.50 106.90 148.80 105.00 123.90
d 0.65 0.67 0.78 0.57 0.79 0.73
R2 0.35 0.41 0.71 0.12 0.74 0.57

60–80% NA D_18 (73.11%) MAE 121.57 112.74 94.91 3885226.13 123.69 104.19
RMSE 142.21 130.56 113.94 5486955.24 148.25 125.18
PBIAS% 257.40 235.60 196.10 −8615733.80 274.30 218.90
d 0.41 0.53 0.39 0.00 0.53 0.40
R2 0.18 0.28 0.25 0.05 0.21 0.10
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value, the better the performance of the simulated method. 
At 0–8% missing percentage, spline performed moderately 
well; however, performance declined after. Mean method 
performance yield high MAE values as the missing percent-
age increases. Seadec provides fluctuating results across all 
levels of missing. Median, locf, and Kalman performed well 
across all levels of missing, with Kalman at 20–80% miss-
ing, performing best, yielding the lowest MAE values of 
1.66 (D_31), at 15–20% missing, 3.64 (D_01) at 20–40% 
missing, 4.46 (D_06) at 40–60% missing, and 47.11 (D_18) 
for 60–80% missing (Table 1). Similar results for PM10 are 
observed in Table 2.

Based on univariate time series results, the worst per-
forming method was spline, which consistently produced 
high errors at low and high missing percentages except for 
values ≤ 5% missing level. Even in some cases, PBIAS gives 
negative values and MAE, and RMSE is 3–4 times higher 
than considered univariate methods (Tables 1 and 2). Across 
all levels of missingness, kalamn_arima provided the best 
estimates of 24-h mean PM2.5 and PM10 concentrations. At 
low levels of missingness (0–20%), the mean method per-
formed well when evaluating the error metric for 1480 days. 
However, as missingness increases, performance becomes 
low. Median and locf imputation performed on average at 
higher levels of missingness (20–60%) (Tables 1 and 2). 
Henceforth, Kalman_arima is the better-performing impu-
tation method for use with PM2.5 and PM10 data from all 
univariate methods across all metrics.

We further worked on different multiple imputation 
methods using another characteristic of time series data, 
i.e. inter-variable/cross-sectional (described in the “Evalu-
ation of spatial characteristics” section and the “Multivariate 
imputation” section). First, the target stations were selected 
for both variables with the highest missing percentage under 
four categories at 20%, 40%, 60%, and 80%. Then, to fill in 
missing values in target stations, neighbouring stations were 
chosen based on spatial correlation values using the Pearson 
coefficient. Finally, after framing the data matrix of 1480*4, 
different MICE-based imputation methods were applied and 
evaluated based on five error metrics.

Evaluation of spatial characteristics

Selecting target station

Air pollutants possess strong spatial relationship, but such 
characteristic is scarcely used in imputing missing air pol-
lutants data. A total of 38 monitoring stations deployed 
in Delhi can have highly stochastic spatial correlations 
among each other. To reconstruct incomplete data, the 
proposed study used spatial characteristics of all monitor-
ing stations for two variables (PM2.5 and PM10) to select 

covariates and concurrently use these co-variables for 
multiple imputations to yield less biased estimates for 
high missing percentages (process mentioned in Fig. 4). 
The considered multivariate methods take advantage of 
the spatial relationship by using highly correlated sites 
as covariates to fill the missing values of target stations. 
There are two assumptions while selecting covariates, i.e. 
the combination of neighbouring stations has a significant 
correlation (> 0.50) with the target site and has a low 
missing percentage compared to the target stations to be 
filled. This pre-processing step is advantageous when the 
target station’s sensors fail to get data on air pollutants. 
Then the lost values can be estimated from the neighbour-
ing station’s data. Even though the raw dataset has several 
pollutants, we consider two variables, PM2.5 and PM10, 
as target pollutants from a health perspective. The same 
pollutant PM2.5/PM10 is combined from 38 monitoring 
stations, and the correlation coefficient is calculated to 
examine the spatial characteristics of air contaminants.

The selection of the target station is based on the high-
est missing percentage from each category, i.e. 20%, 40%, 
60%, and 80%. For instance, target stations selected for 
PM2.5 based on the above criteria are D_31 (15.54%), D_01 
(25.00%), D_06 (57.23%), and D_18 (72.64%) and similarly 
for PM10 D_15 (17.23%), D_01 (25.81), D_27 (59.93%), 
and D_18 (73.11%) under 20%, 40%, 60%, and 80% miss-
ing percent category as mentioned in Table 3. Furthermore, 
to fill in missing data in target stations, a combination of 
covariates neighbouring stations is chosen based on their 
coefficient correlations with the target station.

Spatial correlation coefficient of pollution data to select 
covariates for MICE algorithm

To analyse the overall spatial correlation of air pollut-
ants data, a length of 1480 individuals and 38 columns 
are considered, with a significance level (α) of 0.01, to 
compute Pearson coefficient ρ. Examining PM2.5 and 
PM10 target pollutants coefficient of correlation among 
air monitoring stations is an important task in cross-
sectional imputation. First, the data of the same target 
pollutant (PM2.5/PM10) is combined for all stations into a 
single data matrix of m*n, where m = 1480 (no. of indi-
viduals) and n = 38 (representing columns as the number 
of monitoring stations) given in Fig. 4. Once the data is 
prepared in 1480*38 for a single pollutant further, corre-
lation coefficients are calculated through Pearson correla-
tion formulae for each pollutant as given in Eq. 6. Pearson 
correlation determines the linear relationship between a 
pair of monitoring stations for two time series for the 
same pollutant of the same timestamp.
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Suppose the Dt  and  Dn are two time series with 
sequences as (D1

t, D2
t, D3

t⋯⋯⋯⋯Di = 1480
t) and ( D1

n, D2
n, 

D3
n⋯⋯⋯⋯Di = 1480

n) of PM2.5/PM10 data for the target and 
neighbouring station of Delhi with the same time range (1 
to 1480 days), respectively. Equation 6 r(Dt, Dn) indicates 
the correlation coefficient of the target and neighbouring 
stations’ time series for the same attribute. Di

t and Di
n repre-

sents ith sampling points for Dt and Dn, respectively. Further 
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n . The numerator represents 
the covariation of both time series Dt and Dn from their 
mean values, and the denominator denotes the variance of 
Dt and Dn. Correlation coefficient value range between −1 
and 1. If the value of r = 1, for Dt and Dn then stations are 
highly correlated, and if it is −1 then they are negatively 
correlated, and the 0 value of r represents no obvious linear 
relationship between the two stations.

Appendices 6 and 7 depict the target station’s correlation 
with different air monitoring stations for PM2.5 and PM10, 
respectively. While analysing the correlation matrix, the results 
show that target station particulate pollution significantly cor-
relates with neighbouring stations. The target stations having 
Pearson coefficient value of > 0.5 Dnsuggests that particle pol-
lution has significant spatial correlation and is little affected 
by meteorological and social activities. The correlation matrix 
for Dtand Dn shows that particle pollution in Delhi is not uni-
formly dispersed as the spatial correlation between Dtand Dn 
is independent of the geographical distance between the two 
as mentioned in Appendix 5. The obtained coefficient infers 
the strength of the relationship between Dt and Dn for PM2.5 
and PM10 (Appendix 6 and 7). The negative coefficient values 
in PM2.5 and PM10 datasets correspond to a negative relation-
ship. Appendix 6, the r value among PM2.5 monitoring stations 
range between −0.43 and 0.98. Pollutant PM2.5 correlations are 

Fig. 4   General description of spatial characteristics of monitoring stations to fill missing values using multivariate imputation techniques based 
on MICE algorithm

Table 3   Criteria for selection of target station to impute missing val-
ues

Missing % category Highest missing 
percentage under each 
category (%)

Target stations

PM2.5 PM10 PM2.5 PM10

0–20% 15.54 17.23 D_31 D_05
20–40% 25.00 25.81 D_01 D_01
40–60% 57.23 59.93 D_06 D_27
60–80% 72.64 73.11 D_18 D_18
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strong for target station D_06 with 31 neighbouring stations, 
except D_01, D_07, D_18, and D_31 have negative values. In 
contrast, the correlations with target stations D_31, D_01, and 
D_18 are weaker with most of the paired neighbouring stations 
except for three (presented in bold). Appendix 7 shows that the 
correlation coefficients between Dt and Dn stations measur-
ing PM10, which range from −0.63 to 0.98, are more varied. 
Furthermore, based on the correlation coefficient analysis of 
each station, we draw different combinations of Dn for each 
Dt ,as given in Table 4, which are eligible to deliver data to 
impute target sites. We carefully selected the three Dn with the 
highest correlation coefficients (> 0.50) to Dt. Table 4 shows 
the selected neighbouring stations for PM2.5 and PM10, sorted 
from highest to lowest ρ values.

Selecting neighbouring station (covariates) to frame 
combination

After analysing the overall spatial correlation between the tar-
get and neighbouring stations (covariates) for the same pol-
lutants, the next step is selecting neighbouring stations based 
on ρ values of paired stations (Dt and Dn) and frame combina-
tions. We selected the three highest ρ values between Dt and 
Dn and built a data matrix of 1480*4 (one Dt and three Dn) for 
multivariate imputation techniques. The selected neighbour-
ing sites may differ for PM2.5 and PM10 as correlation coef-
ficients vary, as given in Appendix 6 and 7. Based on Appen-
dix 6 and 7 results, the number of neighbouring stations Dn 
(as covariates) are selected as input for multivariate methods 
based on the MICE algorithm. Three neighbouring stations 
are selected for each target column (in total, four columns are 
used as input) Dt based on the first three highly correlated 
neighbouring sites with Dt as given in Table 4. The columns 
of the input set contain data from the target station as well 
as data from nearby stations. Before finalising three neigh-
bouring stations as input in multiple imputation methods, we 
evaluated the imputation results for the varying number of 
neighbouring stations (2 to 5) for PM2.5 and PM10. It was 
analysed that performance is only significant if the number 
of neighbouring stations increased and decreased. However, 
it increases the computation load. Therefore, we use three 
neighbouring stations Dn in addition to the target station Dt 
for multivariate imputation techniques.

Multivariate imputation

The data matrix obtained after spatial correlation analysis 
is 1480*4 (1480 represents daily concentration values, and 
four refers to one Dt and three Dn columns) to impute tar-
get stations with the highest missing percentage from each 
category (20%, 40%, 60%, 80%) for PM2.5 and PM10 (target 
pollutants). The multivariate imputation methods like PMM, 
MIDAS, RF, and MIPCA are based on the MICE algorithm 
that uses target air pollutants data of Dn, neighbouring sites, 
which are chosen based on correlation coefficient (> 0.5) to 
impute high missing percentage data of target stations. The 
highly correlated neighbouring sites (as covariates) are used 
to estimate high missing percentage data of (Dt). The miss-
ing percentage for covariates is fixed at < 20%. MICE-based 
methods provide multiple imputation values to missing data 
instead of just one, as in the case of the univariate method. 
Multiple imputation methods were used for each missing 
category, and evaluation metrics were used to compare the 
accuracy of the estimated results for PM2.5 and PM10 con-
centrations at each target station (Tables 5 and 6). One of the 
crucial features of MICE-based methods is it gives multiple 
imputed values for each target station missing values, as 
mentioned in Fig. 4 of step 6.

PMM, MIDAS, RF, and MIPCA consistently resulted in 
the lowest PBIAS values across 0–20% and 20–40% levels of 
missingness; however, for PM10 at the same missing levels, 
the values of PBIAS were slightly higher. At 40–60% and 
60–80%, the PBIAS increases as missingness increases. The 
multivariate method outperformed in terms of low PBIAS 
error compared to univariate methods across all missing 
levels except for kalman_arima in D_06 (Table 1). R2 and 
d values are high at 20% and 40% missing levels for both 
variables, but the performance decreases as the missing 
percentage increases. The MIPCA method performed well 
for both variables. PMM, MIDAS, RF, and MIPCA showed 
good performance for both target pollutants PM2.5 and PM10 
at 20% and 40%, with low error and high R2. However, the 
performance of methods decreases as the level of missing 
increases.

From a spatial correlation perspective, PMM, MIDAS, 
RF, and MIPCA decrease substantially with a decrease in 
correlation (as given in Appendix 5). For all target stations 

Table 4   Covariates selection 
for each target station based on 
highest correlation coefficient

Dn (1st, 2nd, and 3rd) having significant spatial correlation with Dt

PM2.5 PM10

Dt 1st 2nd 3rd Dt 1st 2nd 3rd

D_31 D_38 D_05 D_22 D_05 D_38 D_22 D_31
D_01 D_31 D_38 D_14 D_01 D_38 D_31 D_15
D_06 D_34 D_02 D_40 D_27 D_34 D_28 D_38
D_18 D_31 D_22 D_37 D_18 D_31 D_22 D_38
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Table 5   Evaluation of 
multivariate imputation 
methods for PM2.5 under four 
missing categories with highest 
missing percentage Dt

% of missing Target stations Combination of 
neighbouring sta-
tions

Error metric PMM MIDAS RF PCA

0–20% D_31 D_38, D_05, D_22 MAE 0.93 0.89 0.98 0.95
RMSE 7.16 6.93 8.23 7.23
PBIAS% 1.00 0.90 1.00 1.00
d 1.00 1.00 1.00 1.00
R2 0.99 0.99 0.99 0.99

20–40% D_01 D_31, D_38, D_14 MAE 1.69 1.90 1.85 1.74
RMSE 15.78 17.59 18.49 13.85
PBIAS% 1.60 1.80 1.70 1.60
d 0.99 0.99 0.99 0.99
R2 0.97 0.96 0.96 0.98

40–60% D_06 D_34, D_02, D_40 MAE 47.66 45.58 47.54 45.20
RMSE 76.58 74.35 79.82 72.33
PBIAS% 90.90 86.90 90.60 86.20
d 0.78 0.79 0.77 0.80
R2 0.49 0.51 0.45 0.54

60–80% D_18 D_31, D_22, D_37 MAE 74.16 73.87 68.86 75.10
RMSE 109.25 115.20 100.75 89.03
PBIAS% 243.50 242.60 226.10 246.60
d 0.54 0.51 0.58 0.63
R2 0.14 0.11 0.18 0.44

Table 6   Performance 
comparison of four MICE based 
imputation methods for PM10 
four missing categories with 
highest missing percentage Dt

% of missing Target Stations Combination of neigh-
bouring stations (covari-
ates)

Error Metric PMM Midas RF PCA

0–20% D_05 D_38, D_22, D_31 MAE 7.82 7.84 8.02 8.08
RMSE 49.19 49.74 51.30 50.25
PBIAS% 3.30 3.30 3.40 3.40
d 0.97 0.97 0.97 0.97
R2 0.90 0.89 0.89 0.89

20–40% D_01 D_38, D_31, D_15 MAE 40.82 40.09 41.21 40.99
RMSE 107.43 105.97 107.45 91.49
PBIAS% 25.00 24.60 25.20 25.10
d 0.84 0.85 0.84 0.87
R2 0.53 0.54 0.53 0.66

40–60% D_27 D_34, D_28, D_38 MAE 134.41 135.57 134.37 132.35
RMSE 197.21 195.44 196.37 190.80
PBIAS% 150.20 151.50 150.10 147.90
d 0.59 0.59 0.59 0.65
R2 0.15 0.16 0.15 0.36

60–80% D_18 D_31, D_22, D_38 MAE 207.80 210.19 203.16 191.25
RMSE 276.10 280.02 269.37 234.72
PBIAS% 218.40 220.90 213.50 200.60
d 0.52 0.51 0.53 0.60
R2 0.09 0.08 0.10 0.30
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(Tables 5 and 6), MIDAS and MIPCA imputation methods 
consistently produced the lowest MAE, RMSE, ad PBIAS 
error across all levels of missingness; however, the error 
metrics values increased at 60–80% missingness. MIPCA 
performed best in all methods for all high missing percent-
age target stations. PMM performed well for target stations 
with < 50% missing percentage (Table 5).

Statistical significance test (Wilcoxon Signed Rank 
Test): comparison of imputation methods

Since the Kolmogorov-Smirnov test revealed that many of 
our features originated from populations with non-normal 
distributions, the statistical Wilcoxon Signed Rank Test 
was used to demonstrate which method performed better 
(Cohen, Cohen et al. 2013). We have performed Wilcoxon 
signed rank test (one-tail) for comparison of univariate 
(mean, median, LOCF, spline, kalman_arima, seadec.) 
and multivariate (PMM, MIDAS, RF, PCA) methods with 
varying missing percentages at the significance level = 
0.05. Based on the five evaluation metrics results, we have 
formulated two null hypotheses to evaluate the consist-
ency of performance of Kalman and the MIPCA imputa-
tion method for long gaps and high missing percentages. 
Null hypothesis (H0

1) is there is no significant difference 
in the performance of Kalman_arima imputation meth-
ods compared to five univariate methods (mean, median, 
LOCF, spline, seadec.). Null hypothesis (H0

2) is there is 
no significant difference in the performance of MIPCA 
compared to all nine considered methods (six univariate 
and three multivariate), especially for high missing per-
centages and long gaps. To determine the likelihood of 
Kalman and MIPCA imputation methods performance on 
PM2.5 and PM10 datasets and we compared nonparametric 
test results of target methods (Kalman and MIPCA) with 
different imputation techniques at the missing percentage 
of 20% (5%, 10%, 15%, 20%), 40%, 60%, and 80%. This 
resulted in a total of 142 pairwise test (70 for Kalman 
and 72 for MIPCA) is included in Table 7 and 8. In all 
tests, the pairs the sets are (Ki, Kj), where Ki is the target 
method (Kalman) and Kj (j = 1, 2, …., 5) are the rest five 
univariate methods. For multivariate method testing, the 
pairs are (Li, Lj), where Li is the target method (MIPCA) 
and Lj (j = 1, 2, 3, .…, 9) are nine univariate and multi-
variate methods. In Table 7, three conditions are consid-
ered (1) Ki > Kj (2) Ki ≅ Kj (3) Ki < Kj and similarly in 
Table 8, (1) Li > Lj (2) Li ≅ Lj (3) Li < Lj, these conditions 
respectively denote the performance of target method (Ki 
and Li is significantly better than Kjand Lj; (2) there is 
no significant difference between the performances of Ki 
and Kj, Li and Lj; and (3) the performance of Ki and Li is 
significantly less than Ki and Lj. Table 7 illustrates the 
results of Kalman imputation; it was found that at the low 

missing percentage (5%, 10%,15%, and 20%) out of 40 
tests, Kalman is statistically significant for 14 cases and in 
20 cases, it performed equally well as Wilcox test statistic 
closely match null hypothesis, and in 6 instances Kalman 
showed p-value > 0.05. From Table 7, it is observed that 
at 5% missing class, from 10 tests, Kalman performed 
statistically significant with p-value < 0.05 for 2 cases 
(p-value = 0.034, 0.028) and performed equally well for 
6 cases and in 2 cases, it performed less than Kj (p-value 
= 0.425, 0.163). In 10% missing class, out of 10 tests, 
the low performance of Kalman remains constant (p-value 
= 0.855, 0.879, the number of times Kalman performs 
equally with others decreases to 5, while the number of 
wins over others increases to 3 (p-value = 0.002, 0.012, 
0.020). At 15% missing level, win cases for Kalman are 4 
(p-value = 0.001, 0.018, 0.027, 0.010), loss cases decrease 
to 1 (p-value = 0.171), and performed equally for 5 cases. 
At 20%, the number of cases the Kalman lost increased to 
2 (p-value = 0.171, 0.228), equally performed with oth-
ers decreased to 4, but the winning frequency remains the 
same as previous (p-value = 0.025, 0.013, 0.001, 0.001).

For 40%, 60%, and 80% (high missing percentage with 
long gaps), the kalman method performed better with win-
ning frequencies of 6, 8, and 9 at 40%, 60%, and 80%, 

Table 7   Comparison of kalman with five univariate methods based 
on Wilcox signed rank test 

p-value frequency (α = 0.05)

Missing percentage Ki > Kj ki ≅ Kj Ki < Kj

5% 2 6 2
10% 3 5 2
15% 4 5 1
20% 4 4 2
40% 6 3 1
60% 8 2 0
80% 9 1 0
Total 36 26 8
Percentage of cases 51.43% 37.14% 11.43%

Table 8   Comparison of MIPCA with nine imputation methods based 
on Wilcox signed rank test

p-value frequency (α = 0.05)

Missing percentage Li > Lj Li ≅ Lj Li < Lj

20% 10 6 2
40% 12 7 1
60% 14 4 0
80% 18 0 0
Total 54 17 3
Percentage of cases 75% 23.61% <1%
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respectively. On the contrary, Kalman shows insignificant 
results for 1, 0, 0 times (p-value= 0.866) at 40%, 60%, 
and 80%, respectively. Table 8, the multivariate method 
(MIPCA) considers four classes 20%, 40%, 60%, and 80%. 
A total of 72 tests were implemented; at 20% onwards, 
MIPCA performed significantly better than others for 10 
cases, equally well for 6 cases, and in 2 cases it lost (p-value 
= 0.879, 0.855). At 40%, 60%, and 80% missing classes, the 
winning cases are 12, 14, and 18, respectively, performed 
equally well for 7, 4, and 0 cases, respectively, and found 
statistically insignificant results for 1 (p-value = 0.526), 0, 
and 0 at 40%, 60%, and 80%, respectively. To summarise, 
in the case of Kalman (Table 7), beyond 20%, the perfor-
mance increases with a rising missing percentage. The 
overall performance of Kalman is 51.43%, significantly 
better than other univariate methods; in 37.14% of cases, 
it is comparable to the other five univariate methods and of 
11.43% cases, it performed insignificant to others. Similarly, 
for multivariate (MIPCA), the overall performance is quite 
significant compared to all nine methods from 20% onwards 
with a 75% success rate, 23.61% cases performed equally 
with others, and < 1% cases performed worse than the nine 
considered methods.

Discussion

The missing data are commonly encountered in air pollution 
data due to calibration, repair of instruments, inconsistent 
power supply, and voltage fluctuation, which affects routine 
monitoring. Regular air monitoring is crucial to understand 
the impacts of policy changes and health impacts due to 
exposure and designing the daily alert system. In this con-
text, we investigated approaches for dealing with missing 
data for low and high missing percentages. Among the six 
univariate methods evaluated across several metrics, the 
Kalman_arima method performed well across all miss-
ing levels except for 60–80%. Low missing percentage < 
5% spline produced the best 24-h mean estimates with the 
lowest error and highest R2 and d values. Mean, median, 
and locf imputation methods performed inconsistently for 
input time series in terms of percent missing. Seadec. It also 
provides uncertain results for stations with a high missing 
percentage. Kalman_arima imputation method performed 
exceptionally well for time series data for both variables 
with strong seasonality and trend. It may be a realistic option 
for imputing time-series data of this type. Effective univari-
ate time series imputation algorithms utilised inter-time cor-
relation characteristics. The performance of imputation is 
always highly dependent on the characteristics of the input 
time series, and therefore, for time series with strong sea-
sonality, Kalman_arima performed well with statistically 
significant cases for about 51.43% cases, where p-value for 

higher missing percentage and long gaps were lower than 
0.05 (alpha value).

The multivariate imputation methods PMM, MIDAS, RF, 
and MIPCA performed much better for target stations, with 
the highest missing percentage under 20% and 40% missing 
categories. At 60% and 80% performed of PMM, MIDAS, 
and RF significantly dropped. However, MIPCA performed 
highly significant than Kalman_arima at 60% and 80%. This 
is because multivariate imputation methods impute missing 
values from observed concentrations of neighbouring sta-
tions (covariates) with similar spatial characteristics. Com-
parison of MIPCA with nine imputation methods based on 
Wilcox signed rank test p-value frequency (α = 0.05), also 
suggest that above results based on evaluation metrics are 
significant. MIPCA performed highly statistically significant 
compared to other univariate and multivariate methods, as 
p-value were lower than < 0.05.

Interestingly, MIPCA performed well across all levels of 
missingness. One possible explanation for the superior per-
formance of MIPCA imputation from univariate imputation 
is the spatial correlation characteristics of the monitoring 
station. The MICE algorithm captures the spatial charac-
teristics of the neighbouring station’s time series data to 
fill target stations missing values. This would explain why 
univariate methods using partial data observed within each 
station (Inter-time correlations) yielded low estimates of 
PM concentrations, especially for high missing percent-
ages, compared to multivariate methods using spatial char-
acteristics (cross-sectional relationship) between target and 
neighbouring stations.

Relatively median showed good performance was an 
unexpected finding given that this method can yield biased 
estimates under MAR and is generally discouraged. One rea-
son for mean imputation’s success could be that the partially 
observed data within each station is distributed positively 
skewed (Miettinen 2012, Junger and De Leon 2015, Hadeed 
et al. 2020). The mean imputation method performed well 
for low missing levels, but the results dropped as the miss-
ing percentage increased. Moreover, the method provides a 
constant value for a missing gap, which brings biasness in 
a time series with seasonal characteristics like an air pollu-
tion dataset. Therefore, this method is highly discouraged 
for the MAR dataset (Quinteros et al. 2019). In time series 
data, the first-order Markov model assumes a similar condi-
tion as the LOCF imputation method (Canales 2004). LOCF 
fills the missing values with t-1 observed values. LOCF per-
formed well for short interval gaps; however, for long gap 
size, especially in the case of time series data having tempo-
ral characteristics like seasonality and trend, this method’s 
performance drops (Moritz and Bartz-Beielstein 2017). 
The performance of seadec. fluctuates and needs to con-
sider the temporal component of the time series accurately 
as the level of missing increases. The method utilized partial 
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data observed within each station to predict concentrations 
missing within the same station, which may be effective for 
monitoring stations located in areas completely different 
from one another.

Kalman_arima univariate time series approach can 
work efficiently for monitoring stations located in a 
resource-constrained location with one/ two stations. 
The temporal characteristics to impute values based 
on inter-time correlation, like seasonality, may explain 
this method’s success. In addition, the method considers 
some aspects of the structural nature of the time series 
and computes the probability of concentrations based 
on lagged observed values. In addition, to the inter-time 
correlation component of time series, the multivari-
ate time series algorithms consider correlation among 
covariates. PMM performed better for target stations 
with < 50% missing percentage (Marshall et al. 2010a, 
b). MIDAS performed better than PMM as it selects 
donor values based on distance and is a higher variant 
of PMM. RF performed slightly better than PMM and 
MIDAS for 40–60% and 60–80%. The following high 
iteration number ensures the algorithm imputes 24-h 
PM2.5 and PM10 missing data with low error and high 
R2 and d values.

One of the limitations of the proposed study is that 
it used the time series characteristics like inter-time cor-
relation and inter-variable (cross-sectional) correlation 
separately for univariate time series and multivariate 
time series. The performance for a high missing percent-
age can be improved if both the characteristics, i.e. TS 
cross-sectional (inter-variable + inter-time) taken into 
account simultaneously. Also, univariate methods like 
mean, median, and locf fail to capture temporal events 
like trend and seasonality. This could have consequences 
in designing an alert system where specific tasks may be 
associated with high pollutant concentrations. Such a 
univariate imputation method may only account for these 
high pollutant tasks if the concentration of pollutants is 
observed. Imputed values are based on partial observa-
tions, which can result in under- or overestimation. Thus, 
considering this limitation of simple univariate methods, 
kalamn_arima appears to be a viable option for imputing 
missing data in samples and populations with high het-
erogeneity, and multivariate imputation method MIPCA 
used spatial characteristics of monitoring stations to give 
better results for high missing percentage target stations.

There are only a few comparable studies in the con-
text of ambient air monitoring data over the long-time 
interval. The existing studies are tailored to impute miss-
ing data, which are frequently preceded and followed 
by observed data for short periods. However, in our 
proposed, there are long consecutive periods of missing 
data at a fixed time interval, and also, in some cases, 

the missing data have random start points in a column. 
Thus, this unique nature of missing data can explain 
the difference between our proposed study’s and previ-
ous studies’ imputation performance. The advantage of 
our study is its large sample size; however, it is limited 
to ambient particulate pollution in densely populated 
urbanised regions. Therefore, the results for other pol-
lutants can vary depending on the contaminant, sampling 
duration, and co-variates selected.

For instance, (Hadeed et al. 2020) compared imputa-
tion methods for short-term monitoring of PM2.5. Their 
study used datasets with varying degrees of missingness to 
assess the performance of mean, median, random, Markov, 
LOCF, Kalman, PMM, and RMM. The three univariate 
methods, random, Markov, and mean outperformed all 
missing levels. The multivariate method used predictor 
variables such as type of fuel, geographic location, relative 
humidity, and temperature to impute PM2.5 missing con-
centration. However, PMM, and RMM performed worse 
as the covariates selected are heterogeneous. However, our 
study contains the following: Continuous data of 4 years 
which allows the seasonality and trend to be accounted for, 
potentially improving the univariate time series method 
Kalman_arima as it requires inter-time correlation to work 
efficiently. In addition, the study employed spatial correla-
tion characteristics of multiple stations to select covari-
ates to impute target stations missing concentration, and 
MIPCA performed well across all missing levels.

(Junger and De Leon 2015) explored missing levels 
ranging from 5 to 40% in their study. Twelve imputation 
methods, including univariate and multivariate methods, 
were evaluated (complete case analysis, mean, median, 
nearest neighbour, EM models, ARIMA, general addi-
tive models, and spline models). For 366 days, each day 
concentrations were collected from 10 sampling sites, and 
found concentrations were strongly correlated between sta-
tions. Even with low levels of missingness, conditional 
mean performed well, whereas unconditional imputation 
(median, mean) performed poorly. Multivariate methods 
such as conditional mean and EM-models performed 
remarkably well as the frequency and interval of missing 
data increased. Our study results were similar to those 
published by (Junger and De Leon 2015); however, in our 
study the distribution is skewed, the median performed 
better at low missing levels than mean. The improved 
performance is attributed to the inclusion of a longitudi-
nal component and the high inter-site correlation among 
monitoring stations. The study of long-term monitoring 
data from multiple sites in our analysis could explain the 
commonalities in imputation performance. More complex 
multivariate imputation methods like PMM, MIDAS, RF, 
and MIPCA impute concentrations performed well based 
on information observed at other monitoring sites.
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Conclusion

Imputation methods presented in this study yield reliable 
results for high missing concentrations and long consecutive 
gaps. The overall performance of kalamn_arima methods is 
influenced by missing concentration statistics like missing 
gap size and missing percentage. For a long consecutive 
missing gaps, Kalman_arima performs well irrespective of 
missing percentage, and long gaps specially for 1016 con-
secutive values and high missing percentages, MIPCA gives 
significant results. The relevant imputation technique for 
missing concentration should be chosen based on missing 
data statistics and variables temporal and spatial character-
istics. The imputation methods can be useful in resource-
constrained developing nations where still manual monitors 
are used, or a smaller number of continuous monitoring sta-
tions are deployed, power cuts, sensor failures, etc. However, 
there has been little work done in evaluating current methods 
for filling missing data for long consecutive gaps and high 
missing percentages. Our finding can help reconstruct long 
missing gaps and high missing percent data for deep learning 
prediction algorithms that requires continuous time series 
data without gaps for designing the alert system. Regardless 
of the finding, more studies are required to investigate and 
identify appropriate imputation technique that are pervasive 
to various settings.
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